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1. Introduction  
 

The concept of the dynamic vibration absorber (DVA) is 

historically one of the first strategies for passive vibration 

control of dynamically excited mechanical and civil 

engineering structures and structural components (Frahm 

1911). It relies on attaching a free-to-vibrate mass to the 

structural system whose motion is to be suppressed 

(primary structure), such that significant kinetic energy is 

transferred from the primary structure to the attached mass. 

Considering a linear spring in parallel with a dashpot (e.g., 

a linear viscous damper) to attach the vibrating mass to the 

primary structure, the so-called tuned mass-damper (TMD) 

is, arguably, the most widely studied passive DVA in the 

literature (e.g., Ormondroyd and Den Hartog 1928, Brock 

1946, Den Hartog 1956, Warburton 1982, Rana and Soong 

1998, Asami et al. 2002, Krenk 2005, Ghosh and Basu 

2007, Bakre and Jangid 2007, Leung and Zhang 2009, 

Tributch and Adam 2012, Bortoluzzi et al. 2015, Salvi and 

Rizzi 2016) and the most commonly used in practical  
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applications. The widespread use of the classical linear 

TMD is mainly due to the existence of simple and well-

established design approaches seeking to determine optimal 

TMD stiffness and damping properties that minimize the 

response of a given dynamically excited primary structure 

for an a priori fixed attached mass. Focusing on periodic 

narrow-band excitations, Den Hartog (1956) established a 

semi-empirical TMD design approach by relying on the 

observation that all frequency response functions (FRFs) of 

a TMD-equipped undamped single degree-of-freedom 

(SDOF) primary structure pass through the same two 

points. Based on this “fixed point” theory, Den Hartog 

(1956) and Brock (1946) reached simple closed-form 

expressions for the TMD stiffness and damping properties, 

widely used in practical TMD design, to suppress the peak 

displacement of sinusoidal force-excited undamped SDOF 

primary structures (see also Krenk 2005). Further, 

Warburton (1982) followed the above design approach to 

derive TMD design formulae minimizing different response 

quantities of interest for harmonic force and base-excited 

undamped SDOF primary structures. More recently, Ghosh 

and Basu (2007) demonstrated that the fixed point theory 

leads to near-optimal TMD vibration suppression 

performance for the case of lightly damped SDOF primary 

structures with critical damping ratio up to 3%, applicable 

to a wide range of structures and structural components. 

Notably, the above TMD design formulae can be further 
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applied to suppress the vibratory motion corresponding to a 

single (e.g., the dominant) structural mode shape in the case 

of lightly damped multi degree-of-freedom (MDOF) 

primary structures (e.g., Rana and Soong 1998). 

Further to vibration suppression, the potential of the 

TMD to harvest energy from large- amplitude low-

frequency oscillating primary structures has been recently 

recognized (Rome et al 2005) and explored by various 

researchers focusing primarily on large-scale (civil 

engineering) primary structures. In particular, TMDs can 

achieve simultaneous vibration suppression and energy 

generation by employing either electromagnetic (EM) 

devices (e.g., Tang and Zuo 2012, Shen et al. 2012, Zuo and 

Tang 2013, Gonzalez-Buelga et al. 2014, Shen et al. 2016), 

or piezo-electric materials (e.g., Adhikari and Ali 2013) to 

connect the TMD mass to the primary structure as opposed 

to using only dampers. In this manner, part of the kinetic 

energy of the primary structure is transformed into electric 

energy instead of being “lost” at the dampers in the form of 

heat. The thus generated energy may be stored to batteries 

for later use (Zuo and Tang 2013), or can be used to achieve 

energy-autonomous semi-active or even active TMD 

vibration control strategies (Tang and Zuo 2012, Gonzalez-

Buelga et al. 2014), or to power wireless sensors for 

structural health monitoring (Shen et al. 2012, Makihara et 

al. 2015). 

Despite being widely used in practice, the classical 

(linear passive) TMD is known to suffer from the problem 

of “detuning” due to such reasons as nonlinear behaviour of 

the primary structure (e.g., Domizio et al. 2015), and/or 

uncertainty and variations to the dynamic properties of the 

primary structure over time (e.g., Wang and Lin 2015). 

Detuning affects significantly the TMD vibration 

suppression performance (and consequently its potential for 

energy harvesting), especially for the case of 

harmonic/narrow band excitations as its effectiveness 

depends heavily on ensuring resonance between the primary 

structure and the TMD. To this end, different strategies have 

been considered to enhance the robustness to detuning of 

the passive TMD for the purpose of controlling a single 

primary structure vibration mode. One such strategy is to 

use hysteretic/yielding components to attach the TMD mass 

to the primary structure (e.g., Ricciardeli and Vickery 1999) 

which widens the operational TMD frequency range around 

the target primary structure natural frequency. Nevertheless, 

optimal design of inelastic TMDs is considerably more 

challenging compared to the linear TMD. Alternatively, 

robustness to detuning effects can be achieved by use of 

multiple TMDs (MTMDs) linked in parallel (e.g., Xu and 

Igusa, 1992, Yamaguchi and Harnpornchai 1993) or in 

series (Zuo 2009). In the parallel configuration, each 

individual TMD is tuned to a different frequency such that 

the effective frequency band becomes wider. In the series 

configuration, a chain of two or more appropriately 

determined masses are attached to the primary structure and 

tuned to achieve “multiple resonance” at the cost of 

excessive attached mass displacements. Parallel MTMDs 

have been considered for wind-induced vibration 

suppression in piers of cable-stayed bridges (Casciati and 

Giuliano 2009) and for traffic-induced vibrations 

suppression in (foot-)bridges (e.g., Lin et al 2005), among 

other applications. Nevertheless, optimal MTMD design is 

appreciably more involved than single TMD design (see 

e.g., Jokic et al. 2011) due to the increased number of 

design variables, while heuristic/experiential assumptions 

need to be made for the mass distribution among the TMDs 

(see e.g., Bandivadekar and Jangid 2012, Yang et al. 2015).  

To this end, it is argued that, perhaps, the simplest and 

most straightforward way to enhance the performance and 

robustness to detuning of the classical single TMD is to 

increase the attached mass for which “optimum” stiffness 

and damping parameters is sought in TMD design. Indeed, 

the larger the attached TMD mass considered, the more 

effective an optimally designed linear TMD becomes to 

suppress excessive primary structure vibrations and the less 

sensitive to detuning effects (see e.g., De Angelis et al. 

2012 and references therein). Nevertheless, these benefits 

come at the cost of an increase total weight of the overall 

TMD-equipped structural system. To circumvent the latter 

trade-off, this paper considers coupling the classical linear 

TMD with an inerter device, introduced by Smith (2002), in 

a so-called “sky-hook” configuration as has been recently 

proposed by the authors (Marian and Giaralis 2014). In this 

manner, the resulting tuned mass-damper-inerter (TMDI) 

configuration exploits the mass amplification effect of the 

inerter (i.e., a linear two-terminal device of negligible 

mass/weight which resists the relative acceleration of its 

terminals) to increase the inertia of the attached mass, 

without increasing the overall weight of the controlled 

structure. In fact, the authors showed that for the same 

attached mass the TMDI performs better than the classical 

TMD, treated as a special case of the TMDI, in suppressing 

the displacement variance of stochastically based-excited 

SDOF and MDOF primary structures (Marian and Giaralis 

2013, 2014). More recently, the potential of the TMDI for 

the seismic protection of primary structures modelled as 

SDOF systems has been explored by Pietrosanti et al. 

(2017) and by Masri and Caffrey (2017), while Giaralis and 

Petrini (2017) considered the use of TMDI for wind-

induced vibration mitigation in a benchmark tall building 

accounting for vortex shedding effects.   

Herein, closed-form formulae are derived for optimal 

TMDI design in harmonically excited undamped SDOF 

primary structures based on the fixed point theory. These 

formulae are then used to quantify the gains in terms of 

vibration suppression and of weight reduction for optimally 

designed TMDI vis-à-vis the classical TMD. Further, the 

incorporation of a linear electromagnetic motor shunted by 

a resistive load is considered to gauge the potential of the 

TMDI for energy harvesting. This is analytically assessed 

by assuming the availability of a flywheel-based inerter 

device with varying mass amplification property. The latter 

consideration introduces a new “degree of freedom” which 

allows to vary the apparent inertia of the energy harvester 

leveraging the trade-off between vibration suppression and 

energy harvesting at will, without any changes to the 

attached mass. 

Overall, apart from the novel closed-form expressions 

for the TMDI design for harmonic excitations, this paper 

makes original contributions by analytically quantifying (1) 
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the vibration suppression performance enhancement of the 

TMDI compared to the classical TMD in harmonically 

force-excited and support-excited primary structures, (2) the 

weight reduction achieved by the TMDI compared to the 

classical TMD as a function of the inerter mass 

amplification property for a predefined vibration 

suppression performance, and (3) the increase of the 

available electric power to be generated from harmonically 

excited primary structures by employing a passive energy 

harvesting enabled TMDI with varying inertance.  

The remainder of the paper is organized as follows. In 

Section 2 the ideal flywheel-based inerter is briefly 

presented and the governing equations of motion and 

associated frequency response functions of TMDI equipped 

SDOF primary structures are furnished. In Section 3, 

closed-form expressions for the design of the TMDI for 

harmonically excited primary structures are derived based 

on the fixed point theory and the benefits of the TMDI vis-

à-vis the TMD in terms of vibration suppression and weight 

reduction are analytically quantified. Section 4 introduces 

an energy harvesting enabled TMDI and quantifies 

analytically its vibration suppression and power generation 

capabilities for harmonically excited primary structures, 

while Section 5 quantifies the increase to the available 

energy for harvesting by varying the inerter property of the 

energy harvesting enabled TMDI. Finally, Section 6 

summarizes the main conclusions of the work. 

 

 

2. The tuned mass-damper-inerter for single-degree-
of-freedom (SDOF) structures 

 

2.1 Rack-and-pinion flywheel-based ideal inerter 
 

The ideal inerter was conceptually defined by Smith 

(2002) as a linear two terminal mechanical element of 

negligible physical mass/weight developing an internal 

(resisting) force F proportional to the relative acceleration 

of its terminals. That is 

1 2( - )F b u u  (1) 

where u1 and u2 are the displacement coordinates of the 

inerter terminals and, hereafter, a dot over a symbol denotes 

time differentiation. In the above equation, the constant of 

proportionality b is the so-called inertance measured in 

mass units (kg). Importantly, several different inerter 

prototypes were devised and experimentally characterized 

over the past decade achieving inertance values b orders of 

magnitude larger than the devices’ physical mass, while 

approximating the linear behavior in Eq. (1) within a wide 

frequency range of practical interest (e.g., Papageorgiou and 

Smith 2005, Wang et al. 2011, Chuan et al. 2012, Swift et 

al. 2013, Gonzalez-Buelga et al. 2016, Hu et al. 2016). For 

example, the early and most widely-known inerter 

implementations incorporate rack-and-pinion or ball-screw 

mechanisms to transform, through gearing, the translational 

kinetic energy associated with the relative motion of the 

device terminals into rotational kinetic energy at a 

lightweight fast-spinning disk or “flywheel” (Smith 2002, 

Papageorgiou and Smith 2005). The inertance in such 

flywheel-based inerters depends primarily on the number of 

gears and on the gearing ratio used to drive the flywheel, 

rather than on the mass of the flywheel.  

To elaborate further on this point, consider a typical 

mechanical realisation of the inerter comprising a flywheel 

linked to a rack-and-pinion via n gears. Fig. 1 depicts such a 

device for the special case of n=4. The inertance of this 

device is given by 

2 2

2 2
1

n
f k

f
k

pr k

r
b m

pr



 

 
  

 
 (2) 

where 
fm  and 

f  are the mass and the radius of 

gyration of the flywheel, respectively, pr  is the radius of 

the flywheel pinion, and 
kr  and 

kpr  (k=1,2,..,n) are the 

radii of the k-th gear and its corresponding pinion, 

respectively, linking the rack to the flywheel pinion (see 

also Fig. 1). Assuming a flywheel of 10kg mass with a ratio 

/f pr  = 3 driven by a single gear (i.e., n=1) with a 

1 1/r pr =4 gear ratio, the inertance computed from Eq. (2) 

is b= 1440 kg (see also Smith 2002). Adding two more 

gears with a common gear ratio equal to 3, yields an inerter 

with b= 116640 kg, that is, a device with a physical mass 

three orders of magnitude smaller than its inertance. The 

above simple example illustrates the scalability of flywheel-

based inerters through gearing. It also suggests that it is 

practically feasible to achieve inerters with 

adjustable/varying inertance without any change to their 

weight either in a stepped manner, by means of standard 

gearboxes with fixed gear ratios, or, continuously, by means 

of continuously varying transmission gearboxes, similar to 

those used in automotive engineering applications (Dhand 

and Pullen 2015). 

In view of Eqs. (1) and (2), it is seen that the ideal 

(linear) inerter can be construed as an inertial/mass 

amplification device whose gain depends on b and on the 

relative acceleration observed by its terminals. In fact, in 

the special case where one of the inerter terminals is 

“grounded” (i.e., linked to a stationary point), the inerter 

behaves as a “weightless” mass equal to b. For instance, by 

setting 2u  in Eq. (1), the inertance b is added to the 

physical mass associated with the dynamic degree-of-

freedom (DOF) corresponding to the displacement u1 within 

a dynamical system.  

 

 

 

Fig. 1 Schematic representation of a rack-and-pinion 

flywheel-based inerter device with 4 gears 
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This inerter property was originally recognized by Smith 

(2002) and motivates the consideration of the so-called 

tuned mass-damper-inerter (TMDI) configuration (Marian 

and Giaralis 2014) reviewed in the following sub-section. 

 

2.2 Equations of motion for TMDI equipped SDOF 
primary structures 

 

Consider the class of dynamically excited structures 

amenable to be modelled as single-degree-of-freedom 

(SDOF) systems. The TMDI aims to suppress the motion of 

such systems (primary structures) by coupling the classical 

tuned mass-damper (TMD) with a grounded inerter in a 

skyhook configuration (Marian and Giaralis 2014). 

Specifically, the TMDI comprises a mass m2 attached to the 

primary structure via a linear spring of stiffness k2 and a 

viscous damper with damping coefficient 
2c , along with 

an inerter device with inertance b linking the attached mass 

to the ground as shown in Fig. 2. It is emphasized, in 

passing, that the TMDI is different from the various inerter-

based DVAs considered by Hu and Chen (2015) and 

optimally designed in Hu et al. (2015) for harmonic 

excitation. In the latter DVAs, motivated mostly by 

suspension systems in vehicle engineering applications, the 

inerter is sandwiched in between the primary structure and 

the attached mass is conjunction with damper and spring 

elements in different layouts. Nevertheless, the TMDI 

considers a sky-hooked (grounded) inerter aiming to 

suppress vibrations in stationary (i.e., non-moving) primary 

structures. A practical example is the case of highway truss 

bridges oscillating along their longitudinal direction in 

which the deck is interpreted as the attached mass m2 

connected to the main truss of mass m1 through bearings 

modelled via the spring k2 and dashpot c2 as considered by 

Hoang et al. (2008). In this case, the inerter can link the 

bridge deck to the ground at the abutments and the 

dynamical system of Fig.2 applies to find the optimal 

bearing system that would minimise the truss vibrations in 

the longitudinal direction of the bridge.   

 

 

 (a) Force-excited 

 
(b) Base acceleration-excited 

Fig. 2 Tuned mass-damper-inerter-equipped SDOF primary 

structure 

The equations of motion of a TMDI equipped undamped 

SDOF primary structure with mass m1 and stiffness k1 are 

written in matrix form as 

 

 
22 2 2 2 2 2 2 2

11 1 2 2 1 2 1 2 1

0

0

F tm b x c c x k k x

F tm x c c x k k k x

             
              

              

 
(3) 

under the assumption that the physical mass of the inerter, 

the damper, and the spring are negligible compared to the 

m1 and m2 masses. In the previous equations, x1 and x2 are 

the displacement response histories relative to the ground of 

the primary structure and of the attached mass, respectively. 

Furthermore, the forcing vector in the right hand size of Eq. 

(3) specializes as 

 

   
 

 
 2 2 2

1 1 1

0
g

F t F t m
or a t

F tF t F t m

         
         

         

 (4) 

The first vector in Eq. (4) corresponds to a force-excited 

primary structure subject to a load F(t) as shown in Fig. 

2(a). The second vector in Eq. (4) corresponds to a base-

excited primary structure subject to the ground acceleration 

time-history αg(t) as shown in Fig. 2(b). 

In view of Eqs. (3) and (4), it is readily seen that for the 

case of force-excited primary structures, the TMDI 

coincides with a classical TMD with attached mass m2+b. In 

this regard, all known approaches and formulae for 

vibration control and energy harvesting for force-excited 

SDOF primary structures equipped with the classical TMD 

are applicable for the TMDI as well: one needs only to 

replace the attached TMD mass, m2, by the sum of the 

attached mass and the inertance, m2+b, as required in the 

various expressions derived for the classical TMD (e.g., 

Den Hartog 1956, Krenk 2005, Salvi and Rizzi 2016). 

However, this is not the case for acceleration base-excited 

primary structures in which the effective (inertial) force 

applied to the attached mass due to the ground acceleration 

is proportional to m2 and not to m2+b. To this end, only the 

case of acceleration base-excited TMDI equipped primary 

structures is explicitly considered in the ensuing 

mathematical development as the associated expressions 

quantifying the performance for vibration suppression and 

energy harvesting cannot be trivially derived by substitution 

to known results applicable to the classical TMD. Still, 

certain plots and final analytical formulae pertaining to 

force-excited TMDI equipped primary structures will also 

be presented and discussed in subsequent sections for the 

sake of completeness and comparison, as deemed essential. 

Denote by ωTMDI and δTMDI  the natural frequency and 

the critical damping ratio of the TMDI, respectively, 

defined as 

2

2

TMDI

k

m b
 


 , 2

22( )
TMDI

TMDI

c

m b






 (5) 

Further, consider the mass ratio µ, frequency ratio 

TMDI , and inertance ratio 𝛽 expressed as 

2

1

m

m
   , 

1

TMDI
TMDI





  , and 

1

b

m
   (6) 
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respectively, where ω1= (k1/m1)
1/2 is the natural frequency of 

the primary structure. Using the above dimensionless 

quantities, the complex frequency response function (FRF) 

in terms of the relative displacement x1 of the base-excited 

primary structure in Fig. 2(b) can be written as 

   

   

21
1 1

2 2

2
2 2 2 2

2 2

1 1

( )

1 2 1

1 2 2

g

TMDI TMDI TMDI

TMDI TMDI TMDI TMDI TMDI TMDI

x
G

a

i

i i

 

      

  
         

 

 

   

  
     

 

 

(7) 

in the domain of frequencies ω by considering the 

normalized acceleration input ag/ω1
2. In the latter equation 

and hereafter 1i   . Moreover, the complex FRF for 

the same dynamical system in terms of the relative 

displacement x2 of the attached mass is written as 

    

   

22
2 1

2 2 2

1

2
2 2 2 2

2 2

1 1

( )

1 2

1 2 2

g

TMDI TMDI TMDI

TMDI TMDI TMDI TMDI TMDI TMDI

x
G

a

i

i i

 


      

 

  
         

 

 

   


  
     

 

 

(8) 

Note that by setting b=β=0 in Eqs. (7) and (8), the FRFs 

in terms of the relative displacements x1 and x2, respectively, 

for an undamped SDOF primary structure equipped with the 

classical TMD are retrieved. In this regard, the classical 

TMD may be viewed as a special case of the TMDI. 

In the following section, optimal TMDI design for 

undamped harmonically excited SDOF primary structures is 

sought by considering the minimization of the peak value 

attained by the magnitude of the FRF in Eq. (7), |G1(ω)|, 

hereafter referred to as the dynamic amplification factor 

(DAF). This is the most common design criterion adopted 

in the literature for vibration suppression under harmonic 

excitation (Krenk 2005). Further, in Section 4, the kinetic 

energy of the TMDI equipped SDOF primary structures 

available to be transformed into electric energy via a 

standard electromagnetic energy harvester is quantified. The 

latter requires the consideration of both the FRFs in Eqs. (7) 

and (8).  

 

 

3. Optimal TMDI design and performance for 
vibration suppression in harmonically excited SDOF 
structures 

 

3.1 Derivation of TMDI parameters in closed-form 
based on the fixed point theory 

 

Assume that the TMDI equipped structure in Fig. 2(b) is 

subjected to a harmonic ground acceleration excitation αg. 

Given fixed values for the μ and β ratios defined in Eq. (6), 

it is sought to determine optimal values for the TMDI 

stiffness coefficient k2 and damping coefficient c2, or, 

equivalently, for the dimensionless frequency and damping 

ratios TMDI  and ζTMDI defined in Eqs. (6) and (5), 

respectively, such that the peak relative displacement of the 

primary structure is minimized. To this aim, the optimal 

tuning/design approach of Den Hartog (1956) is herein  

 

Fig. 3 Relative displacement response amplitude of 

undamped support excited TMDI equipped SDOF primary 

structure with mass ratio μ=0.1, inertance ratio β=0.1, 

frequency ratio υTMDI=0.5, and for various damping ratios 

δTMDI 

 

 

adopted. This approach is based on the “fixed point theory” 

which relies on the empirical observation that the DAF 

curves |G1(ω)| in Eq. (7) for b=β=0 (i.e., for the classical 

TMD) and for fixed attached mass and frequency ratio pass 

through two specific points, the location of which is 

independent of the damping coefficient c2. Importantly, this 

observation holds for TMDI equipped harmonically base-

excited primary structures (case of β≠0), as well. For 

illustration, Fig. 3 plots the DAF |G1(ω)| in Eq. (7) for 

several values of the TMDI damping ratio δTMDI and for 

fixed values μ, β, and 
TMDI . Evidently, there exist two 

“stationary” points, denoted by P1 and P2, where the DAF 

curves intersect for all damping coefficient values c2 or, 

equivalently, for all TMDI damping ratios ζTMDI.  

The location of P1 and P2 points on the frequency axis 

can be found by considering the equation 

2 2

1 1
0

lim ( ) lim ( )
TMDI TMDI

G G
 

 
 

  (9) 

By collecting the real and imaginary parts in the 

numerator and denominator in Eq. (7), the square 

magnitude of the FRF G1(ω) can be expressed as 

2 2 2
2

1 2 2 2

4
( )

4

TMD

TMD

A B
G

C D













 (10) 

where 

2 2(1 ) TMDIA      , (1 ) TMDIB      ,  

24
2 2

2 2

1 1

1 (1 )TMDI
TMDIC


   

 

 
      

 

, and 

2

2

1

[1 (1 )].TMDID


  


     

(11) 

By substituting Eq. (10) in Eq. (9) and upon some 

algebraic manipulation, one obtains 

AD BC   (12) 

Adopting the positive sign in Eq. (12) and making use 

of the expressions in Eq. (11), the trivial (static) solution 

ω=0 is reached, which is not of interest. However, by 
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adopting the negative sign in Eq. (12) together with Eq. (11) 

yields the following quadratic equation in ω2 

 
0)1(2

)1)(1(2)2()22(

22
1

222
1

4





TMDI

TMDI



  
(13) 

The two roots, 
2

1P  and 
2

2P , of the last equation are 

the squared frequencies corresponding to the stationary 

points P1 and P2.  

The tuning approach of Den Hartog (1956) suggests that 

the peak response of the considered primary structure is 

minimized when the following two conditions hold:  

(I) |G1(ω)| attains the same value at the points P1 

and P2, and  

(II) |G1(ω)| attains a local maximum at the points 

P1 and P2. 

By enforcing condition (I) for the limiting value 

δTMDI→∞, that is 

1 1 1 2lim ( ) lim ( )
TMDI TMDI

P PG G
 

 
 

  (14) 

the following expression for the sum of the roots of Eq. (13) 

is reached  

2 2

1

2

1
2

2

1
P P

µ





 

 
 (15) 

Further, a second expression for the sum of the roots of 

Eq. (13) can be readily written as 

)22(

)1)(1(2)2( 22
12

2
2
1









 TMDI

PP
 (16) 

This is obtained by taking the ratio of the linear 

coefficient over the quadratic coefficient in Eq. (13) with 

the negative sign. Making use of Eqs. (15) and (16) the 

following formula for the optimal frequency ratio in Eq. (6) 

is obtained in closed-form as a function of the (given) ratios 

μ and β 

1 (1 )(2 )

1 2(1 )

OPT

TMDI

  


  

  


  
 (17) 

The above frequency ratio ensures that |G1(ω)| in Eq. (7) 

attains the same value at frequencies 
1P  and 

2P  for 

any δTMDI since it satisfies condition (I) through Eq. (14). 

Next, condition (II) of the Den Hartog design approach 

is enforced by setting the first derivative of |G1(ω)| at the 

two stationary points equal to zero. That is 

1 2

1 1( ) ( )
0

P P

d G d G

d d
   

 

 
 

   (18) 

Application of Eq. (18) yields two different values for 

δTMDI which make the gradient of the DAF curve zero at the 

two stationary points. Following Brock (1946), the 

“optimal” TMDI parameter δTMDI is taken as the average of 

these two values (though other alternatives are possible 

Krenk (2005)), yielding 

2 26 (1 ) (1 )(6 7 )

8(1 )(1 )[2 (1 )]

OPT

TMDI

      


     

    


     
 (19) 

Substituting in Eq. (7) the TMDI tuning parameters in 

Eqs. (17) and (19), the following expression for the DAF at 

points P1 and P2 is reached 

 1 1 1 1 2

(1+ )( 2 2)
max ( ) ( ) ( )P PG G G


  
  

 

 
  


 (20) 

Note that by setting β=b=0 to Eqs. (17), (19) and (20) 

the closed-form expressions for optimal parameters and 

DAF of the classical TMD for undamped harmonic base 

acceleration excited SDOF systems are retrieved 

(Warburton 1982). In the remainder of this section, the 

potential of the TMDI vis-à-vis the classical TMD to 

achieve enhanced vibration suppression for the same 

attached mass and attached mass/weight reduction for the 

same level of vibration suppression is assessed. In doing so, 

pertinent plots based on the herein considered optimal 

design approach are provided and discussed. 

 

3.2 Vibration suppression performance of TMDI vis-à-
vis the classical TMD 

 
To facilitate a comparison between the TMDI 

configuration of Fig. 2(b) and the classical TMD, Table 1 

collects the previously derived formulae for the optimal 

TMDI tuning parameters and the corresponding peak DAF 

for undamped SDOF primary structures subjected harmonic 

base acceleration with the known formulae for the classical 

TMD (b=0). Furthermore, closed-form expressions for 

optimal tuning parameters and peak DAF for the case of 

TMDI-equipped force excited primary structures (Fig. 2(a)) 

are also included in Table 1 for the sake of completeness. In 

the latter case, the expressions for the TMDI are trivially 

derived from the known expressions of the classical TMD 

(also included in Table 1) with attached mass m2+b.  

Further, Figs. 4(a) and 4(b) plot the optimal design 

parameters in Eqs. (17) and (19), respectively, for several 

different values of the mass ratio μ as a function of the 

inertance ratio β. The latter quantity takes values within a 

suggested interval of practical interest [0,1], with β=0 being 

the limiting value for which the TMDI degenerates to the 

classical TMD. It is observed that the optimal frequency 

ratio TMDI  decreases as β increases for all values of μ 

considered, while it also decreases as the attached m2 mass 

increases. Further, the optimum damping ratio ζTMDI 

increases monotonically with the normalized inerter 

constant β for all considered values of μ, while it also 

increases as the attached m2 mass increases. The rate of 

change of both the TMDI optimum parameters with β is 

higher for smaller values of β and μ, while for μ>0.2 the 

rate of change is almost constant. Similar trends are 

observed for the optimal parameters for the case of force-

excited primary structures in Figs. 4(c) and 4(d), though a 

more prominent trend of saturation (i.e., decrease rate of  
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* Den Hartog (1956); ** Warburton (1982) 

 

 

change) is seen with β, especially for the relatively small 

values of mass ratio considered. A comparison between Figs. 

4(a) and 4(b), and figs. 4(c) and 4(d), respectively, suggests 

that for μ<0.1 the optimal TMDI parameters are practically 

the same for the force-excited and the base-acceleration-

excited primary structures across the considered range [0 1] 

of β values, despite the differences in the derived analytical 

formulae in Table 1. This observation suggests that β and μ 

ratios are not interchangeable in treating different types of 

excitations for relatively large attached mass ratios.  

To assess the achieved level of vibration suppression by 

the TMDI vis-à-vis a same-weight classical TMD, Fig. 5(a) 

plots the DAF |G1(ω)| for optimally designed (i.e., using the 

formulae in Table 1) TMDI-equipped undamped SDOF 

primary structure under harmonic base acceleration 

excitation with mass ratio μ= 0.1 and for different values of 

the inertance ratio β, including the β=0 value corresponding 

to the classical TMD. The frequency axis is normalized by 

the natural frequency of the uncontrolled primary structure 

ω1. It is seen that the larger the inertance of the optimally 

designed TMDI is, the more significant DAF reduction is 

achieved compared to the TMD case at the natural 

frequency ω1 of the primary structure as well as at the 

frequencies
1P  and 

2P of the stationary points. Note, 

however, that as the inertance increases, the location of the 

stationary points shifts to lower frequencies and the distance 

of the two points increases. As a result, the DAF values for 

relatively low excitation frequencies (i.e., lower than 70% 

the resonant frequency ω1) may increase with increasing 

inertance. Nevertheless, in practical applications, dynamic 

vibration absorbers are used to suppress excessive 

oscillations in harmonically excited structures due to 

resonance and, therefore, their vibration suppression 

performance is normally gauged within a relatively narrow 

frequency band centered at the natural frequency of the 

uncontrolled structure. In this regard, it is observed that 

optimally designed TMDIs perform remarkably better than 

a same-weight optimally designed TMD within a 

substantially wide frequency (wider than [0.8ω1 1.2ω1] for 

the considered case of μ=0.1) and, more importantly, the  

 

 

 

 (a) Base-excited primary structure 

 
(b) Base-excited primary structure 

 
(c) Force-excited primary structure 

 
(d) Force-excited primary structure 

Fig. 4 Optimum TMDI frequency ratio υTMDI and damping 

ratio δTMDI for varying inertance ratio 𝛽 and for several mass 

ratio values μ for undamped SDOF primary structures 

Table 1 Closed-form expressions for optimally tuned TMDI and classical TMD for undamped SDOF structures subjected to 

harmonic excitation 

 Optimal frequency ratio (υTMDI) Optimal damping ratio (δTMDI) 
Peak dynamic amplification factor 

(  1max ( )G


 ) 

Force excited 

TMD* 

1

1 
 

 

3

8 1




 

2 




 

Force excited 

TMDI 

1

1   
 

 

 

3

8 1

 

 



 
 

2  

 

 


 

Base excited 

TMD** 

1 2

1 2








   

3

8 1 1 / 2



  
  

2
1 


  

Base excited 

TMDI 

1 (1 )(2 )

1 2(1 )

  

  

  

  
 

2 26 (1 ) (1 )(6 7 )

8(1 )(1 )[2 (1 )]

      

     

    

     
 

(1+ )( 2 2)  

 

 


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DAF curves become flatter across frequencies as the 

inertance ratio increases. The latter observation 

demonstrates that TMDIs with larger inertance ratios are 

also more robust to detuning effects and to uncertainty in 

the excitation frequency and/or in the primary structure 

properties than a same-weight TMD. 

In light of the above discussion and plots in Fig. 5(a), it 

can be intuitively argued that an increase of the inertance in 

the TMDI has the same positive effects as an increase of the 

mass ratio in the TMD (see e.g., De Angelis et al. 2014), 

without, however, any substantial increase to the overall 

weight. To further elaborate on this important practical 

aspect, Fig. 5(b) plots DAF curves for optimally designed 

TMDs for different attached mass values. A comparison 

between Figs. 5(a) and 5(b) establishes that better vibration 

suppression close to resonance and increased robustness to 

detuning effects and uncertainty can be achieved either by 

increasing the attached mass (and therefore the added 

weight) of the classical TMD or by increasing the inertance 

of the TMDI (for a fixed attached mass/weight). 

Interestingly, for base acceleration excited primary 

structures (i.e., the case considered in Fig. 5) an optimally 

designed TMD with attached mass ratio μTMD performs 

worse than an optimally designed TMDI having a sum of 

the attached mass and inertance ratio, μTMDI + β equal to 

μTMD. Nevertheless, for force excited primary structures the 

previous two dynamic vibration absorbers yield the same 

DAF curve. 

Further to the above comments, it is observed in Fig. 5(a) 

that the positive influence of the inerter tends to saturate 

with increasing inertance values. To better quantify this 

trend, Fig. 6 plots the peak DAF (i.e.,  1max ( )G


  in 

Table 1) for optimally designed TMDIs as a function of the 

inertance ratio β and for several attached mass ratios 

normalized by the peak DAF for optimally designed TMDs.  

 

 

 (a) Optimally designed TMDIs (b>0) 

 
(b) Optimally designed TMDs (b=0) 

Fig. 5 Dynamic amplification factor (DAF) spectra for base 

acceleration excited primary structures 

 
 (a) Base-excited primary structure 

 
(b) Force-excited primary structure 

Fig. 6 Peak DAF of optimally designed TMDI-equipped 

SDOF structures normalized by the peak DAF of 

optimally designed TMD-equipped SDOF structures 

 

 

It is seen that the rate of reduction of the peak DAF 

achieved by the TMDI compared to same-weight TMDs at 

the stationary points (note that the location of these points 

varies for each structure, since 
1P  and 

2P  frequencies 

are functions of μ and β as seen by Eqs. (13) and (17)), 

reduces as larger inertance ratio values are considered.  

Furthermore, it is also deduced from Fig. 6 that for a 

fixed value of inertance the positive impact of the inerter is 

more prominent as TMDs with smaller attached mass are 

considered. In other words, the positive influence of 

increasing the attached TMDI mass saturates for larger 

mass ratios, as in the case of the classical TMD (see also 

Fig. 5(b)). The practical significance of this observation is 

that the inerter is more effective/beneficial for vibration 

supression when it is coupled with more lightweight TMDs. 

Importantly, similar observations and trends on the 

improved level of vibration suppression achieved by the 

TMDI vis-a-vis the classical TMD as a function of the 

attached mass and inertance ratio hold for randomly base-

excited primary structures (Marian and Giaralis 2014). As a 

final remark, the curves in Figs. 6(a) (base acceleration 

excitation) and 6(b) (force excitation) practically coincide 

even for excessively large attached mass ratio values.  

 

3.3 Attached mass/weight reduction of TMDI vis-à-vis 
the classical TMD 

 
The previous discussion quantified the improved 

vibration suppression capabilities of the TMDI vis-à-vis the 

classical TMD in a performance-assessment context. 

However, the TMDI bears a significant advantage over the 

TMD within the more practical performance-based design 

context: it achieves the same level of vibration suppression 

with significantly smaller attached mass ratios than the 
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classical TMD and therefore with significantly reduced 

added weight to a given primary structure. This aspect is 

quantified in Fig. 7 which plots the peak DAF in a TMD(I) 

design bar-chart format. These design charts provide for the 

required attached mass ratio to achieve a target (i.e., pre-

specified by the design engineer) peak DAF for different 

values of inertance including the limiting case of β=b=0 

corresponding to the classical TMD. For illustration, 

suppose that it is sought to achieve a peak DAF of 4 for a 

particular base acceleration excited primary structure. From 

Fig. 7(a), it is seen that this value of DAF can be achieved 

by an optimally designed TMDI with 60% smaller attached 

mass than the one required by an optimally designed 

classical TMD and an inertance ratio of β=0.05. Further, an 

optimally designed TMDI with double the previous 

inertance (i.e., β=0.1) achieves the target peak DAF of 4 

with a 4.5 times smaller attached mass than the one required 

by the TMD yielding an overall significantly lighter 

dynamic vibration absorber. To further support this 

argument, assume that the mass of the primary structure 

under consideration is m1= 360t. A flywheel-based rack-

and-pinion inerter with inertance b= 36t (i.e., corresponding 

to β=0.1) can be achieved by using a flywheel with mass 

equal to 10kg and ratio γf/γpr= 3 connected to the rack by 

two gears (n=2 in Eq. (2)) with transmission ratios: r1/pr1= 

5 and r2/pr2= 4 (see also Fig. 1). Clearly, the total weight of 

such an inerter device is negligible compared to the 

achieved inertance b.      

 

 

 

 (a) Base-excited primary structure 

 
(b) Force-excited primary structure 

Fig. 7 Mass ratio against peak DAF bar-charts for optimum 

design of TMDI-equipped SDOF structures 

 

 

4. Energy harvesting in harmonically excited TMDI 
equipped structures 
 

4.1 An energy harvesting enabled TMDI  
 

Having established the benefits of the TMDI for 

vibration suppression, this section explores its potential for 

harvesting energy from primary structure oscillations. To 

this aim, the linear dissipative damper of the TMDI is 

substituted by a linear translational electromagnetic motor 

(EM) shunted by a purely resistive load, as shown in Fig. 8. 

Compared to the standard TMD-based energy harvesters 

proposed in the literature for electric generation from low-

frequency large-amplitude oscillations (see e.g., Tang and 

Zuo 2012, Gonzalez-Buelga et al. 2014), the herein 

considered energy harvesting-enabled TMDI considers 

additionally a grounded inerter. This consideration enables 

leveraging the inertia of the attached mass, without 

changing the DVA total weight. In this respect, the 

functionality of the inerter in the proposed configuration is 

significantly different from the various energy harvesters 

found in the literature which utilize rack-and-pinion (e.g., 

Tang and Zuo 2012) or ball-screw mechanisms (e.g., 

Cassidy et al. 2011, Hendijanizadeh et al. 2013), similar to 

those used in flywheel-based inerters, to enable the use of 

rotational EMs by transforming the translational kinetic 

energy to rotational kinetic energy. 

The dashpot with coefficient cM shown in the 

mechanical configurations of Fig. 8 is included to model the 

mechanical parasitic damping leading to energy losses. A 

standard EM comprising a moving magnet DC voice coil 

linear actuator is assumed (e.g., Zhu et al. 2012, Gonzalez-

Buelga et al. 2014). The moving magnet observes the 

relative motion of the primary structure and of the attached 

mass and travels within a magnetic field of constant flux 

density J generating a voltage V expressed as 

1 2( )V J x x   (21) 

 

 

 (a) Force-excited 

 
(b) Base acceleration-excited 

Fig. 8 Energy harvesting enabled TMDI-equipped SDOF 

primary structure 
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The EM resists the relative motion between the primary 

structure and the attached mass by developing a damping 

force FEM in the mechanical domain written as 

1 2( )EM EMF c x x   (22) 

where EMc  is the electromechanical damping coefficient. 

The above damping force is linearly proportional to the 

generated electric current I, that is 

EMF J I  (23) 

Using Eqs. (21) to (23) in conjunction with Ohm’s law 

I=V/R, which relates the electric current I through a circuit 

with total resistance R due to a voltage V, the electromechan

ical damping coefficient EMc is expressed as 

2

( )
EM

C L

J
c

R R



 (24) 

In the last equation, RC represents the internal 

“parasitic” resistance of the EM modeling the energy losses 

within the device, while RL is the resistive load. In deriving 

Eq. (24), the inductance of the EM is neglected (e.g., Zhu et 

al. 2012). A comparison between the dynamical systems in 

Figs. 2 and 8 suggests that the equations of motion and the 

FRFs of section 2.2 are applicable to the herein considered 

energy harvesting enabled TMDI by setting 

2 EM Mc c c   (25) 

 

4.2 Quantification of the available energy for 
harvesting 

 

In this section, the available energy to be harvested from 

the vibrating system of Fig. 8 is quantified by assuming that 

the energy harvesting enabled TMDI is optimally designed 

for vibration suppression under harmonic excitation as 

detailed in section 3.1. (Table 1). Specifically, the available 

power to be harvested through the resistive load RL is given 

by the standard relationship in the electrical domain 

2

LP I R  (26) 

Using the above relationship in conjunction with Eq. 

(21) and Ohm’s law, the following expression for the 

available power to be harvested from the dynamical systems 

in Fig. 8 under harmonic excitation is reached 

 
2

2

2
( )

( )
RV L

C L

J
P G R

R R
 


 (27) 

In the above equation, RVG is the relative velocity FRF 

between the m1 mass of the primary structure and the 

attached m2 mass given as 

1 2

2

1

( ) ( )
( )RV

G G
G i

 
 




  (28) 

where the FRFs G1 and G2 have been defined in Eqs. (7) 

and (8), respectively, for base acceleration excitation. 

Similar expressions for G1 and G2 readily follow from Eqs. 

(3) and (4) for force excited primary structures. 

Figs. 9(a) and 9(c) plot the magnitude of the
RVG  FRFs 

against the normalized frequency by ω1= (k1/m1)
1/2 for 

optimally designed TMDI-equipped undamped SDOF 

primary structures under base acceleration and force 

excitations, respectively, with mass ratio μ= 0.1 and for 

different values of the inertance ratio β. It is seen that the 

values of these FRF spectra reduce for increasing inertance 

ratios which achieve an overall improved level of vibration 

suppression (see also Figs. 5(a) and 6). However, the 

reduction of  
RVG  is not beneficial in terms of energy 

harvesting as is readily seen in Eq. (27). The effect of the 

increased inertance ratio β to the energy harvesting potential 

of the proposed TMDI system is quantified in Figs. 9(b) and 

9(d) plotting the magnitude of the power in Eq. (27) as a 

function of the normalized ω/ω1 frequency. 

 

 

 (a) Base-excited primary structure 

 
(b) Base-excited primary structure 

 
(c) Force-excited primary structure 

 
(d) Force-excited primary structure 

Fig. 9 Relative velocity amplitude FRF (Eq. (28)) and 

available power for harvesting (Eq. (29)) spectra for various 

optimally designed TMDI equipped SDOF primary 

structures 
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These plots have been obtained by taking J=11.34 N/A 

and Rc= 2.96Ω which corresponds to a particular off-the-

shelf EM device used by Gonzalez-Buelga et al (2014), and 

by assuming that M EMc c . It is observed that the increase 

of the ratio β reduces the available power for harvesting 

close to the natural period of the primary structure. 

However, similarly to what has been observed and 

discussed in view of Fig. 5(a), the effect of β to saturates for 

β>0.5, while the range of frequencies that the available 

power spectra take on non-negligible values increases (i.e., 

the curves become flatter). In every case, by juxtaposing 

Figs. 5(a) and 9(b), the well-known trade-off between 

vibration suppression performance and available energy for 

harvesting of the TMD-based energy harvesters (e.g., Tang 

and Zuo 2012, Ali and Adhikari 2013 and Gonzalez-Buelga 

et al. 2014) is confirmed for the proposed energy harvesting 

enabled TMDI, as well. In passive optimally designed 

TMD-based energy harvesters, this trade-off depends 

heavily on the assumed TMD inertial property governed by 

the fixed mass ratio μ (e.g., Gonzalez-Buelga et al. 2014). 

Nevertheless, the inertial property of the herein considered 

TMDI system, depends not only on the a priori fixed mass 

ratio μ, but also on the inertance ratio β. To this end, the 

next section explores the potential of considering passive 

sub-optimal TMDIs with varying inertance to achieve 

increased available energy for electric power generation. 

 

 

5. Enhanced energy harvesting TMDI performance 
through varying inertance 

 

Ιn certain practical applications, it may be desired to 

increase electric power generation from primary structure 

oscillations during times when vibration suppression 

requirements are relaxed. In conventional TMD-based 

energy harvesters, such considerations are addressed by 

varying the damping property of the EM (e.g., Cassidy et al. 

2011, Zhu et al. 2012, Gonzalez-Buelga et al. 2014), to 

achieve a desirable trade-off between energy harvesting and 

vibration suppression. However, in the case of the energy 

harvesting enabled TMDI of Fig. 8 it is viable to achieve a 

trading between the above two objectives by varying its 

total apparent inertia, intuitively defined as m2+b. This can 

be accomplished by considering a typical flywheel-based 

inerter, as the one shown schematically in Fig. 1, with 

varying inertance b in Eq. (2) via standard transmission 

gearboxes to switch gearing ratios /k kr pr  and/or the 

number of gearing stages n. 

To illustrate the usefulness of treating the inertance 

property of the energy harvesting-enabled TMDI as a 

“degree of freedom” leveraging the trade-off between 

energy harvesting and vibration suppression, Fig. 10 plots 

DAF spectra and available power for harvesting spectra for 

one optimally designed TMDI for vibration suppression 

with mass ratio μ= 0.1 and inertance ratio 𝛽=0.6 and for 

several sub-optimal TMDIs. The optimal TMDI parameters 

are determined as  0.1, 0.6OPT

TMDI    =0.5651 and 

 0.1, 0.6OPT

TMDI    =0.4132 using Eqs. (17) and (19), 

respectively. It is observed that as β reduces, the (sub-

optimal) TMDI allows for more energy to be harvested 

across a range of excitation frequencies centered at the 

primary structure natural frequency ω1, at the cost of 

increased oscillations to the primary structure at the same 

range of frequencies. Therefore, by keeping constant all the 

TMDI properties but the inertance b leverages effectively 

the trade-off between energy harvesting and vibration 

suppression. This aspect is further quantified in Fig. 11 

which plots the normalized peak DAF and peak available 

power for harvesting for non-optimal TMDIs as the 

inertance ratio β changes for four different values of the 

mass ratio μ and for constant optimal TMDI parameters 

(β=0.6) reported in Table 2. As the inertance is reduced 

below β=0.6 (i.e., departing from the optimum design point 

for vibration control), the available energy for harvesting 

increases significantly (for fixed attached mass, stiffness, 

and damping properties). 

It is important to note that in the above presented 

numerical results and discussion the damping and stiffness 

properties of the TMDI are purposely kept constant, for the 

following two reasons: (i) to isolate the effect of a varying 

inertance to the achieved levels of vibration suppression and 

of available energy for harvesting, and (ii) to by-pass the 

need of posing any particular, and therefore non-general, 

optimization criterion balancing between the conflicting 

objectives of minimizing the oscillation amplitude of the 

primary structure and maximizing energy generation. 

Nevertheless, it is possible to vary the stiffness and/or the 

damping properties, as well, to achieve an overall optimal 

retuning of the device assembly as a whole, yet such 

considerations fall outside the scope of this study and are 

left for future work. 

 

 

 

 (a) DAF spectra 

 
(b) Available power for harvesting speactra 

Fig. 10 Performance of optimally designed TMDI system 

for vibration suppresion with  µ=0.1and 𝛽=0.6 (constant 

ʋTMDI=0.5651 and ζTMDI=0.4132) and for several values of 

inertance 
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Table 2 Optimal TMDI parameters derived for β=0.6 and 

several mass ratio μ values 

Mass 

ratio μ 
Frequency ratio 

OPT

TMDI  Damping ratio 
OPT

TMDI  

0.2 0.5512 0.4497 

0.4 0.4226 0.5227 

0.6 0.3484 0.6026 

0.8 0.2846 0.6990 

 

 

 

 (a) Peak DAF 

 
(b) Peak available power for harvesting 

Fig. 11 Performance of non-optimal TMDIs normalized by 

the peak DAF and peak available power for harvesting, 

respectively for optimally designed TMDI for β=0.6 as 

functions of the inertance ratio β 

 

 

6. Conclusions 
 

The TMDI configuration, recently introduced by the 

authors for vibration suppression of stochastically base-

excited structures, have been considered for vibration 

control and energy harvesting in harmonically excited 

structures. Closed-form analytical expressions for optimal 

TMDI parameters, stiffness and damping, given mass and 

inertance ratios have been derived by application of Den 

Hartog semi-empirical approach widely used for the design 

of the classical TMD to suppress the motion of 

harmonically excited undamped SDOF structures. Based on 

pertinent analytically derived results, it was shown that the 

TMDI is more effective from a same mass/weight classical 

TMD to suppress vibrations close to the natural frequency 

of the uncontrolled structure, while it is more robust to de-

tuning effects and uncertainties in estimating the structural 

properties of the primary structure. This is because the 

TMDI exploits the mass amplification effect of a grounded 

inerter: the larger the inerter constant (inertance), the more 

reduction to the peak response displacement of the primary 

structure is achieved over a wider band of frequencies for 

the same attached mass. Moreover, it was demonstrated that 

the mass amplification effect of the inerter coupled with the 

herein derived optimum TMDI design parameters achieves 

significant weight reductions for a target/predefined level of 

vibration suppression in the context of performance-based 

design compared to the classical TMD. It is expected that 

this aspect of the TMDI can lead to simple and cost-

effective robust vibration suppression in demanding 

practical applications enjoying many practical benefits over 

large-mass passive TMDs. Furthermore, the potential of 

simultaneous energy harvesting and vibration suppression 

in passive mode by means of a novel energy harvesting 

enabled TMDI has been explored utilizing a typical 

electromagnetic motor for electric energy generation.  It 

was shown that the inertance leverages the available power 

to be harvested in an optimally designed TMDI for 

vibration suppression. This was achieved by treating the 

inertance as an inertial/mass related degree of freedom, not 

normally considered in the design of conventional TMDs 

for energy harvesting, assuming the availability of a 

flywheel-based inerter device implementation with varying 

inertance through mechanical gearing.  

Overall, the herein furnished analytical results have 

quantified the benefits of coupling a grounded linear inerter 

device with the classical TMD for vibrations suppression, 

attached weight reduction, and energy harvesting in 

harmonically excited SDOF structures. In this respect, it is 

envisioned that this study will pave the way for further 

developments, through theoretical and experimental 

research, towards adaptive DVAs and energy harvesters 

with varying inertial/mass properties, besides stiffness and 

damping, yielding smart structures and structural 

components. Nevertheless, further research is warranted to 

gauge the gains of the TMDI over the classical TMD in 

terms of weight reduction and energy harvesting in multi-

mode MDOF structures such as in wind-excited tall 

buildings. In such structures, the TMDI mass is attached 

towards the top floors via dampers and linear stiffeners, or 

hangers in case of pendulum-like TMD implementations 

and, therefore, the inerter cannot be grounded: it needs to be 

connected to a different floor from the one that the mass 

damper is attached to (Marian and Giaralis 2014, Giaralis 

and Petrini 2017).  
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