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1. Introduction  
 

Studying the problem in various configurations and 

shapes needs more consideration and development of 

mathematical equations. For example analysis of the 

structures such as curved beams or doubly curved plates 

needs more complexities and mathematical operations 

rather than corresponding straight structures. Due to these 

conditions, analysis of straight structures have attracted 

more considerations from various researchers rather than 

curved or doubly curved structures. In this work, we focus 

on the combination of curved beam with multi-field loads 

and first-order shear deformation theory. 

Vibration control of a composite beam integrated with 

curved piezoelectric layers was studied by Sun and Tong 

(2001) using a novel method for designing fiber modal 

sensors and modal actuators based on curved piezoelectric 

fiber. The influence of the curvatures of the fibers was 

investigated on the sensing signals. Sun and Tong (2002) 

presented a method for analysis of thin-walled curved 

beams with partially debonded piezoelectric actuator/sensor 

patches. They solved the problem using displacement 

continuity and force equilibrium conditions at the interfaces 

between the bonded and debonded regions. Shi (2005) 

analyzed bending behaviors of a piezoelectric and 

functionally graded curved actuator based on theory of 

piezo-elasticity subjected to an external voltage. The 

influence of power index of functionally graded material 

was investigated on the results and the obtained results were  
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approved by comparison with finite element approach. 

Koutsawa and Daya (2007) presented static and free 

vibration analyses of laminated glass beam rest on 

viscoelastic foundation. For free vibration analysis, finite 

element method was used. Kuang et al. (2007) investigated 

static responses of a circular curved beam bonded with 

piezoelectric actuators. The model was studied by one-

dimensional beam theory of piezo-elasticity and the 

obtained results were verified by comparison with finite 

element results. The influence of electric potential on the 

bending analysis of a functionally graded piezoelectric 

curved beam was studied by Shi and Zhang (2008). Theory 

of piezo-elasticity was employed for derivation of the 

governing equations of the model and the bending results 

were derived using Taylor series expansion method. 

Electro-elastic analysis of piezoelectric laminated slightly 

curved beams was performed by Susanto (2009) based on 

an analytical model. The author has mentioned that 

stretching-bending coupling due to curvature has a 

considerable effect on the frequency parameters. The 

numerical results showed that increasing the radius of 

curvature leads to increase of the natural frequencies of 

curved beam. 

Zhou et al. (2010) studied the transient analysis of a 

curved piezoelectric beam with variable curvature as 

piezoelectric vibration energy harvester. The influence of 

surface effects was studied on the electromechanical 

response of a curved piezoelectric nanobeam subjected to 

mechanical and electrical loads by Yan and Jiang (2011) 

based on Euler–Bernoulli curved beam theory. They 

mentioned some usefulness of the current model as 

nanoswitches or nanoactuators for control of displacement. 

Arefi (2014) studied piezo-magnetic analysis of a thick 

shell of revolution made of functionally graded materials 

using tensor analysis and a curvilinear coordinate system. 
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Arslan and Usta (2014) employed theory of elasticity for 

electro-mechanical analysis of a curved bar. A comparison 

with previous results including an actuator under an initial 

electric potential was performed for verification of the 

results. The influence of the applied couple has been studied 

on the electro-mechanical results such displacement and 

electric potential distribution. Arefi and Khoshgoftar (2014) 

studied the influence of gradation of piezoelectric materials 

and electric potential on the electro-elastic analysis of a 

spherical shell. Arefi (2015) studied elastic solution of a 

curved beam made of functionally graded materials with 

various cross sections such as circular, rectangular and 

triangular. The influence of some important parameters such 

as non-homogeneous index and various cross sections was 

investigated on the stress distribution of curved beam. 

Hosseini and Rahmani (2016a) studied free vibration 

responses of curved functionally graded nanobeam based on 

nonlocal elasticity theory using Hamilton’s principle. They 

presented an analytical approach based on Navier method to 

investigate the influence of parameter, opening angle, 

aspect ratio, mode number, and gradient index on the 

responses of curved nanobeam. Hosseini and Rahmani 

(2016b) presented an analytical approach for calculation of 

thermal buckling loads and natural frequencies of 

temperature dependent functionally graded curved beam. 

The influence of nonlocal parameter and temperature loads 

was investigated on the buckling loads and natural 

frequencies of nanobeam using nonlocal elasticity theory. 

They mentioned that considering temperature dependencies 

leads to lower natural frequency responses. Kananipour et 

al. (2014) developed differential quadrature method for 

dynamic analysis of a curved nanobeam. 

Zhou et al. (2016) studied the piezoelectric laminated 

curved nanobeams with variable curvature as an element of 

electromechanical systems. They modeled the curved beam 

using radial and tangential displacements and rotation. The 

influence of some geometrical parameters and patterns of 

layers studied in detail. The influence of applied electric 

and magnetic potentials on the sandwich rod, beam and 

plates was studied by the first two authors (Arefi and 

Zenkour 2017, Arefi and Zenkour 2016 a, b, c, d, e Zenkour 

and Arefi 2017 a). 

In this paper, the first-order shear deformation theory is 

used to derive the governing equations of motion for a 

sandwich curved beam integrated with piezomagnetic face-

sheets. The electric and magnetic potentials is assumed as 

combination of a linear function along the thickness 

direction that reflects applied electric and magnetic 

potentials and a cosine function that reflects electric and 

magnetic boundary conditions. Combination of curved 

beam problem with piezo-magnetic materials leads to an 

important and novel subject that can be applicable in 

electro-mechanical systems as sensor and actuator for 

control of deflections or stresses. 

 

 

2. Formulation 
 

In this section, the formulation of a curved beam is 

presented. Two displacement components are considered 

including radial and circumferential displacements. First-

order shear deformation theory is used for circumferential 

displacement. Based on this theory, two displacement 

components are expressed as (Arefi and Rahimi 2014, Arefi 

2015, Shi and Zhang 2008) 

𝑢𝑟(𝑟, 𝜃) = 𝑢𝑟(𝜃),

𝑢𝜃(𝑟, 𝜃) = 𝑢𝜃(𝜃) + 휁𝜒(𝜃),
 (1) 

in which 휁 = 𝑟 − 𝑅. In addition, 𝑢𝑟(𝜃), 𝑢𝜃(𝜃) are radial 

and circumferential displacements of mid-surface and 𝜒(𝜃) 

is beam rotation. In Eq. (1), 휁 shows variation from mid-

surface (Fig. 1). 

Strain-displacement relations based on polar coordinate 

are defined as 

휀𝑟𝑟 =
𝜕𝑢𝑟

𝜕𝑟
= 0,

휀𝜃𝜃 =
𝑢𝑟

𝑟
+

1

𝑟

𝜕𝑢𝜃

𝜕𝜃
=

𝑢𝑟

𝑅 + 휁
+

1

𝑅 + 휁

d𝑢𝜃

d𝜃
+

휁

𝑅 + 휁

d𝜒

d𝜃
,

휀𝑟𝜃 =
1

𝑟

𝜕𝑢𝑟

𝜕𝜃
+

𝜕𝑢𝜃

𝜕𝑟
−

𝑢𝜃

𝑟
=

1

𝑅 + 휁

d𝑢𝑟

d𝜃
+ 𝜒 −

𝑢𝜃

𝑅 + 휁
−

휁

𝑅 + 휁
𝜒,

 (2) 

In this stage, the stress components including 

circumferential and shear stresses for elastic core are 

defined as 

𝜍𝜃𝜃
𝑐 = 𝐶𝜃𝜃𝜃𝜃

𝑐 휀𝜃𝜃 ,

𝜍𝑟𝜃
𝑐 = 𝐶𝑟𝜃𝑟𝜃

𝑐 휀𝑟𝜃 ,
 (3) 

in which 𝐶𝑖𝑗𝑘𝑙
𝑐  are stiffness coefficients of elastic core. The 

constitutive relations for piezomagnetic face-sheets are 

defined as (Arefi 2014, Arefi and Zenkour 2016 a, b, c, d, 

Shi and Zhang 2008) 

𝜍𝜃𝜃
𝑝

= 𝐶𝜃𝜃𝜃𝜃
𝑝

휀𝜃𝜃 − 𝑒𝜃𝜃𝑟
𝑝

𝐸𝑟 − 𝑞𝜃𝜃𝑟
𝑝

𝐻𝑟 ,

𝜍𝑟𝜃
𝑝

= 𝐶𝑟𝜃𝑟𝜃
𝑝

휀𝑟𝜃 − 𝑒𝑟𝜃𝜃
𝑝

𝐸𝜃 − 𝑞𝑟𝜃𝜃
𝑝

𝐻𝜃 ,
 (4) 

in which 𝐶𝑖𝑗𝑘𝑙
𝑝

 are stiffness coefficients of elastic core. In 

addition, 𝑒𝑖𝑗𝑘
𝑝

 are the piezoelectric coefficients, 𝑞𝑖𝑗𝑘
𝑝

 are 

piezomagnetic coefficients, 𝐸𝑖 and 𝐻𝑖 are the components 

of electric and magnetic fields, respectively. For calculation 

of stress in piezo-magnetic face-sheets, it is necessary to 

calculate electric and magnetic fields. Electric and magnetic 

fields are derived using electric and magnetic potentials as 

(Arefi and Zenkour 2016 a, b, c, d, Arefi and Zenkour 2017 

a, b, c, d) 

 

 

Fig. 1 The schematic diagram of a sandwich curved beam 
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𝐸𝑟 = −
𝜕�̆�

𝜕𝑟
,     𝐸𝜃 = −

1

𝑟

𝜕�̆�

𝜕𝜃
,

𝐻𝑟 = −
𝜕�̆�

𝜕𝑟
,     𝐻𝜃 = −

1

𝑟

𝜕�̆�

𝜕𝜃
.

 (5) 

The curved beam is subjected to applied electric and 

magnetic potentials. To apply initial electric and magnetic 

potential at top and bottom of face-sheets, a linear function 

of radial components is used. In addition for general 

distribution of electric and magnetic potentials, a cosine 

function is used to apply homogenized electric and 

magnetic boundary conditions. The electric and magnetic 

fields are assumed as combination of a cosine function 

along the thickness direction and an unknown function 

along the circumferential direction 𝜃 (Arefi and Zenkour 

2016 a, b, c, d, 2017 a, b, c, d) 

�̆�(𝑟, 𝜃) = −𝜓(𝜃) cos (
𝜋

ℎ𝑝
𝜌) +

2𝜓0

ℎ𝑝
𝜌,

�̆�(𝑟, 𝜃) = −𝜙(𝜃) cos (
𝜋

ℎ𝑝
𝜌) +

2𝜙0

ℎ𝑝
𝜌,

 (6) 

in which 𝜓0, 𝜙0  are applied electric and magnetic 

potentials, 𝜌 = 휁 ±
ℎ𝑒

2
±

ℎ𝑝

2
 for top and bottom piezo-

magnetic face-sheets. Substitution of electric and magnetic 

potential into Eq. (6) gives electric and magnetic fields as 

follows 

𝐸𝑟 = −
𝜋

ℎ𝑝

𝜓 sin (
𝜋

ℎ𝑝

𝜌) −
2𝜓0

ℎ𝑝

,     𝐸𝜃 =
1

𝑟

𝜕𝜓

𝜕𝜃
cos (

𝜋

ℎ𝑝

𝜌) ,

𝐻𝑟 = −
𝜋

ℎ𝑝

𝜙 sin (
𝜋

ℎ𝑝

𝜌) −
2𝜙0

ℎ𝑝

,     𝐻𝜃 =
1

𝑟

𝜕𝜙

𝜕𝜃
cos (

𝜋

ℎ𝑝

𝜌) .

 (7) 

The electric displacement and magnetic induction along 

the radial and circumferential directions are derived as 

(Arefi and Zenkour 2016 a, b, c, d) 

𝐷𝑟
𝑝

= 𝑒𝑟𝜃𝜃
𝑝

휀𝜃 + 𝜖𝑟𝑟
𝑝

𝐸𝑟 + 𝑚𝑟𝑟
𝑝

𝐻𝑟 ,

𝐷𝜃
𝑝

= 𝑒𝜃𝑟𝜃
𝑝

𝛾𝑟𝜃 + 𝜖𝜃𝜃
𝑝

𝐸𝜃 + 𝑚𝜃𝜃
𝑝

𝐻𝜃 ,
 (8) 

 

𝐵𝑟
𝑝

= 𝑞𝑟𝜃𝜃
𝑝

휀𝜃 + 𝑚𝑟𝑟
𝑝

𝐸𝑟 + 𝜇𝑟𝑟
𝑝

𝐻𝑟 ,

𝐵𝜃
𝑝

= 𝑞𝜃𝑟𝜃
𝑝

𝛾𝑟𝜃 + 𝑚𝜃𝜃
𝑝

𝐸𝜃 + 𝜇𝜃𝜃
𝑝

𝐻𝜃 ,
 (9) 

in which 𝑚𝑖𝑗
𝑝

 and 𝜇𝑖𝑗
𝑝

 are dielectric and electromagnetic 

coefficients. In this stage and using the Hamilton's principle 

∫ 𝛿(𝑇 − 𝑈 + 𝑉)d𝑡 = 0 , we can derive the governing 

equations of motion. The variation of strain energy 𝛿𝑈 is 

defined as (Zenkour and Arefi 2017 a, b) 

𝛿𝑈 = ∭ (𝜍𝜃𝜃𝛿휀𝜃𝜃 + 𝜍𝑟𝜃𝛿휀𝑟𝜃
𝑣

−𝐷𝑟𝛿𝐸𝑟

− 𝐷𝜃𝛿𝐸𝜃 − 𝐵𝑟𝛿𝐻𝑟 − 𝐵𝜃𝛿𝐻𝜃  )d𝑉. 
(10) 

By substitution of volume element d𝑉 = 𝑏𝑟d𝑟d𝜃 =
𝑏(𝑅 + 휁)d휁d𝜃  and variation of strains, electric and 

magnetic fields into Eq. (10), we will have 

 

𝛿𝑈 = ∭ {𝜍𝜃𝜃 [
𝛿𝑢𝑟

𝑅 + 휁
+

1

𝑅 + 휁

d𝛿𝑢𝜃

d𝜃
+

𝜒

𝑅 + 휁

d𝛿𝑢1

d𝜃
]

𝑣

+ 𝜍𝑟𝜃 [
1

𝑅 + 휁

d𝛿𝑢𝑟

d𝜃
−

𝛿𝑢𝜃

𝑅 + 휁
+

𝑅

𝑅 + 휁
𝛿𝜒] 

 −𝐷𝑟
𝜋

ℎ𝑝
𝛿𝜓 sin (

𝜋

ℎ𝑝
𝜌* − 𝐷𝜃

1

𝑟

𝜕𝛿𝜓

𝜕𝜃
cos (

𝜋

ℎ𝑝
𝜌* + 𝐵𝑟

𝜋

ℎ𝑝
𝛿𝜙 sin (

𝜋

ℎ𝑝
𝜌* 

 −𝐵𝜃
1

𝑟

𝜕𝛿𝜙

𝜕𝜃
cos (

𝜋

ℎ𝑝
𝜌*} (𝑅 + 휁)d휁d𝜃. 

(11) 

By definition of resultant of mechanical, electrical and 

magnetic components, we will have variation of strain 

energy as follows 

𝛿𝑈 = ∭ [𝑁𝜃𝜃𝛿𝑢𝑟 + 𝑁𝜃𝜃

d𝛿𝑢𝜃

d𝜃
+ 𝑀𝜃𝜃

d𝛿𝜒

d𝜃
+ 𝑁𝑟𝜃

d𝛿𝑢𝑟

d𝜃𝑣

+ (𝑅𝑁𝑟𝜃 + 𝑀𝑟𝜃)𝛿𝜒 − 𝑁𝑟𝜃𝛿𝑢𝜃 

 −𝑀𝑟𝜃𝛿𝜒 + �̅�𝑟𝛿𝜓 − �̅�𝜃
𝜕𝛿𝜓

𝜕𝜃
+ �̅�𝑟𝛿𝜙 − �̅�𝜃

𝜕𝛿𝜙

𝜕𝜃
] d𝜃, 

(12) 

in which the resultant components are defined as (Arefi and 

Zenkour 2016 a, b, c, d) 

*𝑁𝜃𝜃 , 𝑁𝑟𝜃+ = ∫ {𝜍𝜃𝜃
𝑝

, 𝜍𝑟𝜃
𝑝

}d휁
;

ℎ𝑒
2

;
ℎ𝑒
2

;ℎ𝑝

+ ∫ *𝜍𝜃𝜃
𝑐 , 𝜍𝑟𝜃

𝑐 +d휁
:

ℎ𝑒
2

;
ℎ𝑒
2

+ ∫ {𝜍𝜃𝜃
𝑝

, 𝜍𝑟𝜃
𝑝

}d휁

ℎ𝑒
2

:ℎ𝑝

ℎ𝑒
2

 

*𝑀𝜃𝜃 , 𝑀𝑟𝜃+ = ∫ 휁{𝜍𝜃𝜃
𝑝

, 𝜍𝑟𝜃
𝑝

}d휁
;

ℎ𝑒
2

;
ℎ𝑒
2

;ℎ𝑝

+ ∫ 휁*𝜍𝜃𝜃
𝑐 , 𝜍𝑟𝜃

𝑐 +d휁
:

ℎ𝑒
2

;
ℎ𝑒
2

+ ∫ 휁{𝜍𝜃𝜃
𝑝

, 𝜍𝑟𝜃
𝑝

}d휁

ℎ𝑒
2

:ℎ𝑝

ℎ𝑒
2

, 

*�̅�𝑟 , �̅�𝑟+ = ∫ (𝑅 + 휁)
𝜋

ℎ𝑝
sin (

𝜋

ℎ𝑝
𝜌) *𝐷𝑟 , 𝐵𝑟+d휁

;
ℎ𝑒
2

;
ℎ𝑒
2

;ℎ𝑝

+ ∫ (𝑅 + 휁)
𝜋

ℎ𝑝
sin (

𝜋

ℎ𝑝
𝜌) *𝐷𝑟 , 𝐵𝑟+d휁

ℎ𝑒
2

:ℎ𝑝

ℎ𝑒
2

 

*�̅�𝜃 , �̅�𝜃+ = ∫ cos (
𝜋

ℎ𝑝
𝜌) *𝐷𝜃 , 𝐵𝜃+d휁

;
ℎ𝑒
2

;
ℎ𝑒
2

;ℎ𝑝

+ ∫ cos (
𝜋

ℎ𝑝
𝜌) *𝐷𝜃 , 𝐵𝜃+d휁

ℎ𝑒
2

:ℎ𝑝

ℎ𝑒
2

 

(13) 

Applying the integration by part on Eq. (12) yields 

𝛿𝑈 = ∭ [𝑁𝜃𝜃𝛿𝑢𝑟 −
d𝑁𝜃𝜃

d𝜃
𝛿𝑢𝜃 −

d𝑀𝜃𝜃

d𝜃
𝛿𝜒 −

d𝑁𝑟𝜃

d𝜃
𝛿𝑢𝑟

𝑣

+ (𝑅𝑁𝑟𝜃 + 𝑀𝑟𝜃)𝛿𝜒 − 𝑁𝑟𝜃𝛿𝑢𝜃 

 −𝑀𝑟𝜃𝛿𝜒 + �̅�𝑟𝛿𝜓 − �̅�𝜃
𝜕𝛿𝜓

𝜕𝜃
+ �̅�𝑟𝛿𝜙 − �̅�𝜃

𝜕𝛿𝜙

𝜕𝜃
] d𝜃 

(14) 

In addition, the variation of energy due to external 

works is given by 

𝛿𝑉 = ∬ (𝑅𝑓 − 𝑞)𝛿𝑢𝑟d𝐴,
𝐴

 (15) 

in which 𝑅𝑓  is reaction of Pasternak's foundation. This 

reaction is defined by 

𝑅𝑓 = 𝐾1𝑢𝑟 − 𝐾2𝛻2𝑢𝑟 , (16) 

where ∇2 is Laplace operator in polar coordinate system, 

𝐾1 and 𝐾2 are spring and shear parameters of foundation. 

By substitution of ∇2=
1

𝑟2

𝜕2

𝜕𝜃2 into above equation, we will 

have the reaction of foundation as follows 
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𝑅𝑓 = 𝐾1𝑢𝑟 − 𝐾2

1

𝑟2

𝜕2𝑢𝑟

𝜕𝜃2
. (17) 

Variation of kinetic energy is defined as 

𝛿𝑇 = ∬ 𝜌,�̇�𝑟𝛿�̇�𝑟 + (�̇�𝜃 + 휁�̇�)(𝛿�̇�𝜃 + 휁𝛿�̇�)-𝑏(𝑅 + 휁)d휁d𝜃.
𝐴

 (18) 

Integration by part yields 

𝛿𝑇 = − ∬ (𝐴1�̈�𝑟𝛿𝑢𝑟 + 𝐴1�̈�𝜃𝛿𝑢𝜃 + 𝐴2�̈�𝛿𝑢𝜃 + 𝐴2�̈�𝜃𝛿𝜒
𝐴

+ 𝐴3�̈�𝛿𝜒)d𝜃, 
(19) 

in which the integration constants 𝐴1 , 𝐴2  and 𝐴3  are 

expressed in Appendix. Substitution of variations of strain 

energy, kinetic energy and energy due to external works into 

Hamilton's principle leads to the following five governing 

equations of motion 

𝛿𝑢𝑟 :  − 𝑁𝜃𝜃 +
d𝑁𝑟𝜃

d𝜃
+ (𝐾1𝑢𝑟 − 𝐾2

1

.𝑅 −
ℎ𝑒

2
− ℎ𝑝/

2

d2𝑢𝑟

d𝜃2
− 𝑞) = 𝐴1�̈�𝑟 , 

𝛿𝑢𝜃 :  
d𝑁𝜃𝜃

d𝜃
+ 𝑁𝑟𝜃 = 𝐴1�̈�𝜃 + 𝐴2�̈�, 

𝛿𝜒:  
d𝑀𝜃𝜃

d𝜃
− 𝑅𝑁𝑟𝜃 = 𝐴2�̈�𝜃 + 𝐴3�̈�, 

𝛿𝜓:  �̅�𝑟 +
d�̅�𝜃

d𝜃
= 0, 

𝛿𝜙:  �̅�𝑟 +
d�̅�𝜃

d𝜃
= 0. 

(20) 

In this stage, we can calculate the resultant components 

in terms of displacement and rotation components and 

electric and magnetic potentials. These resultants are 

defined as 

𝑁𝜃𝜃 = 𝐴4 (𝑢𝑟 +
d𝑢𝜃

d𝜃
* + 𝐴5

d𝜒

d𝜃
+ 𝐴6𝜓 + 𝐴7𝜙 + 𝑁𝜓 + 𝑁𝜙, 

𝑀𝜃𝜃 = 𝐴5 (𝑢𝑟 +
d𝑢𝜃

d𝜃
* + 𝐴8

d𝜒

d𝜃
+ 𝐴9𝜓 + 𝐴10𝜙 + 𝑀𝜓 + 𝑀𝜙, 

𝑁𝑟𝜃 = 𝐴11 (
d𝑢𝑟

d𝜃
− 𝑢𝜃* + (𝐴12 − 𝐴13)𝜒 − 𝐴14

𝜕𝜓

𝜕𝜃
− 𝐴15

𝜕𝜙

𝜕𝜃
, 

�̅�𝑟 = 𝐴16 (𝑢𝑟 +
d𝑢𝜃

d𝜃
* + 𝐴17

d𝜒

d𝜃
− 𝐴18𝜓 − 𝐴19𝜙 − 𝐷𝜓 − 𝐷𝜙 , 

�̅�𝑟 = 𝐴20 (𝑢𝑟 +
d𝑢𝜃

d𝜃
* + 𝐴21

d𝜒

d𝜃
− 𝐴19𝜓 − 𝐴22𝜙 − 𝐵𝜓 − 𝐵𝜙, 

�̅�𝜃 = 𝐴23 (
d𝑢𝑟

d𝜃
− 𝑢𝜃* + (𝐴24 − 𝐴25)𝜒 + 𝐴29

𝜕𝜓

𝜕𝜃
+ 𝐴30

𝜕𝜙

𝜕𝜃
 

�̅�𝜃 = 𝐴26 (
d𝑢𝑟

d𝜃
− 𝑢𝜃* + (𝐴27 − 𝐴28)𝜒 + 𝐴30

𝜕𝜓

𝜕𝜃
+ 𝐴31

𝜕𝜙

𝜕𝜃
 

(21) 

in which the integration constants are expressed in 

Appendix. Substitution of above resultant components into 

five governing equations of motion leads to 

𝛿𝑢𝑟:  𝐴11

d2𝑢𝑟

d𝜃2
− 𝐴4𝑢𝑟 − (𝐴4 + 𝐴11)

d𝑢𝜃

d𝜃
+ (𝐴12 − 𝐴13 − 𝐴5)

d𝜒

d𝜃
− 𝐴14

d2𝜓

d𝜃2

− 𝐴15

d2𝜙

d𝜃2
 

−𝐴6𝜓 − 𝐴7𝜙 + 𝐾1𝑢𝑟 − 𝐾2

1

𝑟2

d2𝑢𝑟

d𝜃2
− 𝑞 = 𝐴1�̈�𝑟 + 𝑁𝜓 + 𝑁𝜙 , 

𝛿𝑢𝜃:  (𝐴4 + 𝐴11)
d𝑢𝑟

d𝜃
+ 𝐴4

d2𝑢𝜃

d𝜃2
− 𝐴11𝑢𝜃 + 𝐴5

d2𝜒

d𝜃2
+ (𝐴12 − 𝐴13)𝜒

+ (𝐴6 − 𝐴14)
d𝜓

d𝜃
 

(22) 

+(𝐴7 − 𝐴15)
d𝜙

d𝜃
= 𝐴1�̈�𝜃 + 𝐴2�̈� −

d𝑁𝜓

d𝜃
−

d𝑁𝜙

d𝜃
, 

𝛿𝜒:  (𝐴5 − 𝑅𝐴11)
d𝑢𝑟

d𝜃
+ 𝐴5

d2𝑢𝜃

d𝜃2
+ 𝑅𝐴11𝑢𝜃 + 𝐴8

d2𝜒

d𝜃2
− 𝑅(𝐴12 − 𝐴13)𝜒

+ (𝐴9 + 𝑅𝐴14)
d𝜓

d𝜃
 

+(𝐴10 + 𝑅𝐴15)
d𝜙

d𝜃
= 𝐴2�̈�𝜃 + 𝐴3�̈� −

d𝑀𝜓

d𝜃
−

d𝑀𝜙

d𝜃
, 

𝛿𝜓:  𝐴23

d2𝑢𝑟

d𝜃2
+ 𝐴16𝑢𝑟 + (𝐴16 − 𝐴23)

d𝑢𝜃

d𝜃
+ (𝐴17 + 𝐴24 − 𝐴25)

d𝜒

d𝜃
+ 𝐴29

d2𝜓

d𝜃2
 

+𝐴30

d2𝜙

d𝜃2
− 𝐴18𝜓 − 𝐴19𝜙 = 𝐷𝜓 + 𝐷𝜙 , 

𝐴26

d2𝑢𝑟

d𝜃2
− 𝐴20𝑢𝑟 + (𝐴20 − 𝐴26)

d𝑢𝜃

d𝜃
+ (𝐴21 + 𝐴27 − 𝐴28)

d𝜒

d𝜃
− 𝐴30

d2𝜓

d𝜃2

− 𝐴31

d2𝜙

d𝜃2
 

−𝐴19𝜓 − 𝐴22𝜙 = 𝐵𝜓 + 𝐵𝜙. 

 

 

3. Solution procedure 
 

In this section, the solution procedure for free vibration 

and electro-magneto-mechanical bending results are 

developed. Before presentation of solution procedure, the 

required mechanical, electrical and magnetic boundary 

conditions must be expressed. These boundary conditions 

are mentioned as 

𝜃 = 0, 𝐿/𝑅 → 𝑢𝑟 = 𝜓 = 𝜙 = 0,      𝑁𝜃 = 𝑀𝜃 = 0    *𝑢𝜃 , 𝜒 ≠ 0+. (23) 

The proposed solutions for a simply-supported curved 

sandwich beam are expressed as (Arefi and Zenkour 2016 a, 

b, c, d) 

{
,𝑢𝜃 , 𝜒-

,𝑢𝑟 , 𝜓, 𝜙-
} = e𝑖𝜔𝑡 ∑ {

,𝑈𝜃 , 𝛸- cos(𝛽𝑚𝜃)

,𝑈𝑟 , Ψ, Φ- sin(𝛽𝑚𝜃)
}

𝑚<1,3,5

 (24) 

in which 𝛽𝑚 = 𝑚𝜋𝑅/𝐿. Substitution of proposed solution 

into governing equations of motion leads to below equation 

,𝐾-*𝑋+ = *𝐹+ + 𝜔2,𝑀-*𝑋+ (25) 

in which  *𝑋+ = *𝑈𝑟 , 𝑈𝜃 , Χ, Ψ, Φ+  is an unknown vector 

corresponding to five unknown functions. The symmetric 

elements of the matrix ,𝐾- and ,𝑀- are expressed as 

𝐾11 = −𝐴11𝛽𝑚
2 − 𝐴4 + 𝐾1 + 𝐾2

1

(𝑅 −
ℎ
2

−
ℎ𝑝

2 *
2 𝛽𝑚

2 ,     𝐾12 = (𝐴4 + 𝐴11)𝛽1, 

𝐾13 = (𝐴5 − 𝐴12 + 𝐴13)𝛽𝑚,    𝐾14 = 𝐴14𝛽𝑚
2 − 𝐴6,     𝐾15

= 𝐴15𝛽𝑚
2 − 𝐴7,     𝑀11 = 𝐴1, 

𝐾21 = (𝐴4 + 𝐴11)𝛽𝑚,     𝐾22 = −𝐴4𝛽𝑚
2 − 𝐴11,     𝐾23 = −𝐴5𝛽𝑚

2 + 𝐴12 − 𝐴13 

𝐾24 = (𝐴6 − 𝐴14)𝛽𝑚,     𝐾25 = (𝐴7 − 𝐴15)𝛽𝑚,     𝑀22 = 𝐴1,     𝑀23 = 𝐴2 

𝐾31 = (𝐴5 − 𝑅𝐴11)𝛽𝑚,     𝐾32 = −𝐴5𝛽𝑚
2 + 𝑅𝐴11,     𝐾33

= −𝐴8𝛽𝑚
2 − 𝑅(𝐴12 − 𝐴13)𝜒, 

𝐾34 = (𝐴9 + 𝑅𝐴14)𝛽𝑚,     𝐾35 = (𝐴10 + 𝑅𝐴15)𝛽𝑚,     𝑀32 = 𝐴2,     𝑀33 = 𝐴3 

𝐾41 = 𝐴23𝛽𝑚
2 − 𝐴16,     𝐾42 = (𝐴16 − 𝐴23)𝛽𝑚,     𝐾43 = (𝐴17 + 𝐴24 − 𝐴25)𝛽𝑚 

𝐾44 = 𝐴29𝛽𝑚
2 + 𝐴18,     𝐾45 = 𝐴30𝛽𝑚

2 + 𝐴19 

𝐾51 = 𝐴26𝛽𝑚
2 − 𝐴20𝑢𝑟 ,    𝐾52 = (𝐴20 − 𝐴26)𝛽1,     𝐾53

= (𝐴21 + 𝐴27 − 𝐴28)𝛽𝑚 

𝐾54 = 𝐴30𝛽𝑚
2 + 𝐴19,     𝐾55 = 𝐴31𝛽𝑚

2 + 𝐴22 

(26) 
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In addition, the elements of the force vector *𝐹+ are 

expressed as 

𝐹1 = 𝑁𝜓 + 𝑁𝜙 − 𝑅𝑓 + 𝑞,     𝐹2 = −
d𝑁𝜓

d𝜃
−

d𝑁𝜙

d𝜃
,     𝐹3 = −

d𝑀𝜓

d𝜃
−

d𝑀𝜙

d𝜃
,

𝐹4 = −𝐷𝜓 − 𝐷𝜙,     𝐹5 = −𝐵𝜓 − 𝐵𝜙.
 (27) 

 

 

4. Results and discussions 
 

In this section, the numerical results of the problem are 

presented. Before presentation of numerical results, the 

material properties of elastic core and piezomagnetic layers 

must be introduced (Hou and Leung 2004) 

Core 

𝐸 = 210 GPa,     𝑣 = 0.3. 
Piezomagnetic face-sheets (Arefi and Zenkour 2017 a, b) 

𝐶𝜃𝜃𝜃𝜃
𝑝

= 286 GPa,     𝐶𝑟𝜃𝑟𝜃
𝑝

= 45.3 GPa, 

𝑒𝜃𝜃𝑟
𝑝

= 𝑒𝑟𝜃𝜃
𝑝

= −4.4 (C/m2),     𝑒𝜃𝑟𝜃
𝑝

= 11.6 (C/m2), 

𝑞𝜃𝜃𝑟
𝑝

= 𝑞𝑟𝜃𝜃
𝑝

= 580.3 (N/Am),      𝑞𝜃𝑟𝜃
𝑝

= 550 (N/Am), 

𝜖𝑟𝑟
𝑝

= 9.3 × 10;11 (C/mV),     𝜖𝜃𝜃
𝑝

= 8 × 10;11 (C/mV), 

𝑚𝑟𝑟
𝑝

= 3 × 10;12 (Ns/CV),      𝑚𝜃𝜃
𝑝

= 5 × 10;12 (Ns/CV), 

𝜇𝑟𝑟
𝑝

= 1.57 × 10;4 (Ns2/C2),     𝜇𝜃𝜃
𝑝

= −5.9 × 10;4 (Ns2/C2). 

 

Comparison and validation 

To validate the present formulation and corresponding 

analytical and numerical results, comparison between 

results of our formulation with a valid reference (Shi and 

Zhong 2008) is performed. For this comparison, radial 

displacement 𝑢𝑟  is selected to plot in terms of applied 

electric potential Ψ0 and angle of curved beam 𝜃. Shown 

in Fig. 2 is influence of applied electric potential on the 

variation of radial displacement 𝑢𝑟  based on present 

formulation and results of Shi and Zhong (2008). 

In addition, comparison between current and previous 

results (Shi and Zhang 2008) for radial displacement 𝑢𝑟 in 

terms of angle of curved beam 𝜃  for Ψ0 = 100 V  is 

presented in Fig. 3. One can conclude that our numerical 

results in this paper are in good agreement with reference. 

 

 

Fig. 2 Variation of radial displacement 𝑢𝑟(μm) in terms of 

applied electric potential Ψ0(V) 

 

Fig. 3 Variation of radial displacement 𝑢𝑟(μm) in terms 

of angle of beam 𝜃(Rad) 

 

 

 

Fig. 4 The non-dimensional value of radial displacement �̅�𝑟 

in terms of applied electric and magnetic potential Ψ0 and 

Φ0 

 

 

 

Fig. 5 The non-dimensional value of radial displacement �̅�𝑟 

in terms of two parameters of Pasternak's foundation 𝐾1 

and 𝐾2 
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Shown in Fig. 4 is the non-dimensional value of radial 

displacement �̅�𝑟 = 𝑈𝑟/ℎ in terms of applied electric and 

magnetic potential Ψ0 and Φ0. The numerical results in 

this figure indicates that increase of applied electric 

potential Ψ0 leads to decrease of radial displacement while 

increase of applied magnetic potential Φ0 leads to increase 

of radial displacement. Figure 5 shows the variation of non-

dimensional value of radial displacement �̅�𝑟 in terms of 

two parameters of Pasternak's foundation 𝐾1 and 𝐾2. It is 

observed that the radial displacement is decreased 

uniformly with increase of both parameters. This decrease 

is due to increase of stiffness of foundation. 

The influences of applied electric and magnetic 

potentials Ψ0  and Φ0  on the non-dimensional value of 

circumferential displacement �̅�𝜃  are depicted in Fig. 6. 

The same behavior expressed for Fig. 2 can be presented in 

this figure. Fig. 7 shows the variation of non-dimensional 

value of �̅�𝜃  in terms of two parameters of Pasternak's 

foundation 𝐾1 and 𝐾2. 

Fig. 8 shows the variation of rotation of sandwich 

curved beam in terms of applied electric and magnetic 

potential Ψ0 and Φ0. This figure shows that increase of 

applied electric potential leads to decrease of rotation, while 

increase of applied magnetic potential leads to increase of 

rotation of sandwich curved beam. Figure 9 shows the 

influence of two parameters of foundation on the rotation of 

curved beam. 

 

 

Fig. 6 The non-dimensional value of circumferential 

displacement �̅�𝜃 in terms of applied electric and magnetic 

potential Ψ0 and Φ0 

 

 

Fig. 7 The non-dimensional value of circumferential 

displacement �̅�𝜃 in terms of two parameters of Pasternak's 

foundation 𝐾1 and 𝐾2 

 

Fig. 8 Maximum beam rotation 𝑋 in terms of applied 

electric and magnetic potential Ψ0 and Φ0 

 

 

Fig. 9 Maximum beam rotation 𝑋  in terms of two 

parameters of Pasternak's foundation 𝐾1 and 𝐾2 

 

 

The influence of important parameters of the problem 

can be studied on the magneto-electric results of the 

sandwich curved beam in Figs. 10-13. Fig. 10 present 

interesting results on the effect of electro-magnetic coupling 

loads. One can conclude that increase of applied electric 

potential leads to decrease of maximum electric potential 

through thickness direction. Furthermore, it can be 

discussed that increase of applied magnetic potential 

significantly increases maximum electric potential. Fig. 11 

shows that increase of two parameters of foundation 

decreases maximum electric potential. 

The maximum value of magnetic potential through 

thickness direction in terms of applied electric and magnetic 

potentials is presented in Fig. 12. It can be concluded that 

decrease of applied electric potential and increase of applied 

magnetic potential increases maximum magnetic potential 

of curved piezo-magnetic face-sheets. Fig. 13 shows the 

variation of maximum magnetic potential in terms of two 

parameters of foundation. 

The non-dimensional fundamental natural frequencies 

�̅� = 𝜔𝐿2√𝜌/𝐸𝐼 of sandwich curved beam in terms of two 

non-dimensional parameters of foundation 𝐾1 = 𝐾1𝐿3/𝐸𝐼 

and 𝐾2 = 𝐾2𝐿/𝐸𝐼 are presented in Fig. 14. It is observed 

that the natural frequencies are increased with increase of 

two parameters of foundation. This increase is due to 

increase of stiffness of foundation. 
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Fig. 10 The maximum value of electric potential Ψ 

through thickness direction in terms of applied electric and 

magnetic potential Ψ0 and Φ0 

 

 

 

Fig. 11 The maximum value of electric potential Ψ 

through thickness direction in terms of two parameters of 

Pasternak's foundation 𝐾1 and 𝐾2 

 

 

Fig. 12 The maximum value of magnetic potential Φ 

through thickness direction in terms of applied electric and 

magnetic potential Ψ0 and Φ0 

 

 

Fig. 13 The maximum value of magnetic potential Φ 

through thickness direction in terms of two parameters of 

Pasternak's foundation 𝐾1 and 𝐾2 

 

 

 

Fig. 14 The fundamental natural frequencies �̅�  of 

sandwich curved beam in terms of two parameters of 

Pasternak's foundation 𝐾1 and 𝐾2 

 

 

5. Conclusions 
 

Electro-magneto-elastic bending and free vibration 

analysis of a sandwich curved beam including an elastic 

core and two curved piezo-magnetic face-sheets was 

presented in this paper. The model was subjected to applied 

electric and magnetic potentials resting on Pasternak's 

foundation. Hamilton's principle was employed to derive 

five governing equations of motion in terms of two 

displacement components, one rotation component and two 

electric and magnetic potentials. The influences of 

important parameters of loading and electro-magnetic 

loadings were studied and discussed on the bending and 

vibration results of the problem as: 

 The influence of spring and shear parameters of 

foundation was discussed on the fundamental 

frequencies of curved beam. The numerical results 

indicate that fundamental frequencies are increased 
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with increase of both parameters of foundation due 

to increase of foundation stiffness. 

 Piezomagnetic face-sheets can be subjected to 

applied electric and magnetic potentials. These 

parameters of loading can control the 

displacements or stresses in curved beam. The 

numerical results indicate that increase of applied 

electric potential decrease all mechanical, electrical 

and magnetic components. Furthermore, it can be 

concluded that increase of magnetic potential 

increases electro-magneto-mechanical components.  

 Pasternak's foundation with two parameters can 

strongly change the behavior of curved sandwich 

beam. The results indicate that increase of spring 

and shear parameters of foundation decreases radial 

and circumferential displacements, rotation and 

electric and magnetic potentials. 
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