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1. Introduction  
 

Natural hazards mitigation in a smart way has drawn the 

attention of many researchers over decades. Various control 

systems have been developed as smart methods to alleviate 

the dynamic quantities of structures subjected to earthquake 

load and other dynamic loads (He et al. 2003, Hechmi and 

Kahla 2014, Kerber et al. 2007, Loh and Chang 2008).  

Control schemes like active, semi-active and hybrid 

contain control algorithms as a processor makes them able 

to adapt to structural changes and changing environment. 

However, the selected algorithm could strongly affect the 

performance of these control systems. Since the earthquake 

is not known a prior and uncertainty in parameters is 

possible, linear feedback theories are not suitable to control 

the response of structures against earthquakes. Alternate 

nonlinear control algorithms including sliding mode control 

(Yang and Wu 1995), adaptive control (Wada and Das 

1991) and fuzzy sliding (Alli and Yakut 2005) can be 

considered. 

Since SMC method is insensitive against changes and 

external excitations, it has become a superior choice among 

the other control methods. The ability of switching between 

different control laws has made SMC a flexible method 

capable to change its structure which is also known as 

variable structure method. Moreover, since 1980, 

developments in sliding mode control have made this 

method more attractive in the field of active control (Hung 

et al. 1993). Previous studies in structural vibration control  
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which have been done by Yang and his co-authors showed 

the advantages of SMC (Yang et al. 1995, Agrawal et al. 

1998, Hsu 1996). Beside the advantages of SMC, switching 

between two values may cause chattering phenomenon 

where too many switches happen in the control bounds and 

time history of control force becomes incapable for real 

control actuators. To improve the control performance of 

conventional SMC, discontinuous part generating switching 

is approximated by a fuzzy system to attenuate chattering. 

Over past two decades researchers have focused on real 

modeled systems with probable uncertainties and parameter 

changes. In spite of Conventional formulated control 

methods requiring precise mathematical model, smart 

control methods have been utilized in complex or ill-

modeled control systems (Hsu 1996, Mamdani 1974). 

Fuzzy controllers, founded on human knowledge, are based 

on conditional linguistic statements and approximation 

reasoning. The expert control rules of conditional linguistic 

statements are applied on the relationship of system 

variables in fuzzy controllers (Van der Wal 1995, Procyk 

and Mamdani 1979). Guclu and Yazici (2008) applied fuzzy 

logic controller to a 15-story building equipped with 

ATMD. Li et al. (2010) developed FLC algorithm to control 

a nonlinear high-rise structure under earthquake. However, 

in some situations, it is not easy to acquire the knowledge 

from a skilled operator. Suitable parameters determination 

demands time-consuming trial and error, so properly 

regulation of fuzzy rules and membership functions become 

the key point. Integrating SMC and Fuzzy Logic controller 

(FLC) by applying sliding mode concept on fuzzy control 

and fuzzifying the sliding surface lead to fuzzy sliding 

mode control, i.e., FSMC benefits the advantages of both 

SMC and FLC by avoiding chattering and the mentioned 

problems in FLC. Many control efforts have been made in 

various fields of engineering by FSMC. Alli and Yakut 

(2005) applied FSMC for isolation of earthquake-excited 
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structures.Wang and Lee (2002) designed a FSMC based on 

generic algorithms for a building structure. In order to 

reduce the vibration of large structures, Kim and Yun (2000) 

verified the FSMC algorithm on a benchmark structure 

initiated by ASCE. A fuzzy-sliding mode controller is 

presented to control the dynamics of semi-active suspension 

systems of vehicles using magneto-rheological fluid 

dampers by Zheng and Li (2009). Control algorithm for 

seismic protection of building structures based on sliding 

mode control is presented by Nikos et al. (2009) focusing 

on sliding surface design by pole assignment algorithm 

where the poles of the system in the sliding surface are 

obtained. Results showed that by using sliding mode control 

the response of a structure is reduced significantly 

compared to the response of the uncontrolled structure. 

Byeongil et al. (2013) investigate application of a control 

algorithm called model predictive sliding mode control to 

active vibration suppression of a cantilevered aluminum 

beam. The results showed significant reduction of vibration 

when model predictive sliding mode control is used. 

Generally, in the systems with uncertainties where the 

upper bound of uncertain parameters are known, sliding 

mode control may be useful to guarantee the stability and 

consistent performance. However, the upper bound increase 

of uncertainty raises the control effort. Obtaining an optimal 

value of uncertainty and hence minimizing the control cost 

is possible by proposing an adaptive law to the FSMC 

Algorithm directing us to adaptive fuzzy sliding mode 

control. The adaptive law is used to tune the centers of 

membership functions in the consequent part of fuzzy rules 

and simplifies the establishment of fuzzy rule bases.  

The purpose of this paper is to develop the AFSMC 

method to prevent the conventional drawbacks in SMC and 

FLC methods. Free-chattering control law is achieved by 

smoothing the control discontinuity in a thin boundary layer 

neighboring the sliding surface using fuzzy inference 

mechanism to approximate discontinuity. The effectiveness 

of the method is illustrated by applying on a linear scaled 

building studied by Kobori and Kamagata (1992) which is 

excited by El Centro earthquake scaled to a maximum 

acceleration of 0.112 g. 

 
 
2. Conventional SMC 
 

The equation of motion in classical form for a dynamic 

system subjected to active control force, )(tu  and system 

disturbance, )),(( ttxd  is presented by 
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Where, )(,....),(),( 21 txtxtx n  are state variables. The 

upper bound for system disturbance is considered as 

)),(()),(( ttxδttxd ≤ . The control task is to find a suitable 

control law )(tu to force the system move toward the 

equilibrium point. Based on sliding mode theory, switching 

control law drives the nonlinear system-state trajectory on a 

specified and user-chosen surface in the state-space. The 

system state trajectory is forced by controller to remain on 

the surface for all subsequent time, and slides towards the 

origin. The sliding surface is chosen to be a linear function 

of the system-states 

)(....)()()( 2211 txctxctxccxxS nn  (2) 

By choosing a suitable sliding surface equation S(x), 

system reaches the surface in a limited time and slides on it 

towards the x=0. We suppose the sliding surface as 

0)(0)(  xSandxS   (3) 

These conditions force the trajectory to reach the sliding 

surface and stays on it. By differentiation of sliding surface 

with respect, t and substituting from Eq. (1) an equivalent 

control force, )(tueq  can be obtained while neglecting 

d(x(t),t). 

0)()()(....)()()(|)( 121211   tutxcatxcatxaxS eqnnnuu eq

  (4) 

 

)()(....)()()()( 121211 txcatxcatxatu nnneq   (5) 

Further, it is shown that while state trajectory slides on 

the surface S(x)=0, the following (n-1)th- order equation is 

obtained. 

0)()(....)()( 1122111   txctxctxctxc nnnn
  (6) 

The coefficients 
ic , i=1,2,…,n can be chosen properly 

by designer such that all the roots in the Eq. (6) are in the 

open left-half of the complex plane. However, in order to 

account for the presence of disturbances, the control law has 

to be discontinuous (Slotine and Li 1991). In this case, the 

control law can be obtained satisfying  

SσxSxS <)()( 
    

when     0)( ≠xS  (7) 

Where σ is a strictly positive constant. Substituting 

)(tu as 

)(])),(([)()(....)()()()( 121211 Ssignttxtxcatxcatxatu nnn   
 (8) 

 

)(])),(([)()( Ssignttxtutu eq    (9) 

The Eq. (4) can be re-written as  

)),(()(])),(([)( ttxdSsignttxxS    (10) 

Multiplying both sides of Eq. (10) to S(x), it becomes 
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Therefore, Eq. (7) to be satisfied by Eq. (8). The term 

sign(S) in Eqs. (8) and (9) causes high frequency switches 

which is unable to be modeled in real systems. This 
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phenomenon is named chattering. Free-chattering control 

law can be achieved by smoothing the control discontinuity 

in a thin boundary layer neighboring the sliding surface. 

The mathematical form of this solution is to replace the 

“sign” term with unit step function (Kobori and Kamagata 

1992) and saturation function (Slotine and Li 1991) inside 

the boundary layer to alleviate chattering. In the present 

paper, fuzzy inference mechanism is suggested to 

approximate the discontinuous part of Eqs. (8) and (9). 

 

 
3. Fuzzy sliding mode control 

 
In this section the structure of a fuzzy logic controller 

will be drawn. A FLC system consists of a fuzzifier, a 

knowledge base, an inference system and a defuzzifier. The 

basic structure of a FLC is illustrated in Fig. 1. Various 

units of a fuzzy logic controller are defined as follows 

(Aldawod et al. 2001): 

Fuzzifier: The fuzzifier maps the crisp inputs into fuzzy 

linguistic values using fuzzy reasoning mechanism. 

Knowledge base: This unit is a collection of IF-THEN 

rules created by an expert to achieve the control goals. A 

fuzzy IF-THEN rule based on sliding mode theory is as 

follows 

jth rule: IF )(xS  is jA1
  and )(xS is jA2

 THEN 
fu  

is 
jB . 

Where the switching variable )(xS  and the variation of 

)(xS  as )(xS  represent the input variables. The control 

variable 
fu  represents the fuzzy output variable. j

iA and 

jB  are the fuzzy variables and j is the number of control 

rules. 

Inference engine: This unit performs various fuzzy 

logic operations to infer the control action from a given 

fuzzy input.        

Difuzzifier: The defizzifier maps fuzzy control action to 

a crisp control value. 

The magnitude of the control output not only depends 

on )(xS  but also is influenced by )(xS , hence fuzzy rule 

base can be set according to the condition of the trajectory 

in the neighborhood of sliding surface, e.g., if the trajectory 

in the phase plane leaves the sliding surface with a large 

angle ( )(xS is big) and )(xS  is large, then the control value 

will be large in value with opposite direction to drive the 

trajectory toward the sliding surface. Specifically, a fuzzy 

system as an estimator is achieved using the singleton 

fuzzification, product inference and center-average 

defuzzification. The corresponding output of the fuzzy 

system is obtained as (Hsiao et al. 2005), 

T
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Fig. 1 Basic structure of a FLC 
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Where m is the number of fuzzy rules; jc represents the 

center of the membership function in the consequent part of 

the jth rule. 
T

mccv ],...,[ 1 denotes vector of adjustable 

parameter. jw  represents the firing strength of the jth rule 

and then  , named as firing strength vector, is used for the 

remaining part of equation as 
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Following, a specific fuzzy inference system is used to 

approximate the discontinuous part of Eqs. (8) and (9). 

Ultimately, the sign function is replaced with the fuzzy 

control output of Eq. (12)  

 
 
4. Adaptive law design  
 

The main task of this section is to derive an adaptive law 

to adjust the centers of the membership functions such that 

the estimated fuzzy output can be optimally approximated 

to achieve the minimum control cost under the situation of 

uncertainties in the external excitation. From Eq. (9), it is 

obvious that the upper bound of the uncertainty is required. 

Moreover, the increase in control cost due to the rise of the 

upper bound makes it necessary to set an adaptive law to 

obtain an optimum output with minimum control cost. 

Let 
fû be a reasonable approximation by fuzzy logic 

system which minimizes the control cost and allows 

attenuating the discontinuous control law in conventional 

sliding mode. From Eq. (12), 
fû can be written as follows 

Tf vu ˆˆ   (15) 

Where,  
Tv̂  is an optimal vector which minimizes the 

control cost. Define the approximation error vector as 

vvv ˆ~   (16) 

We consider the Lyapunov‟s function candidate for the 

problem as 
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(18) 

in which  vv  ~ . 

The adaptive law is designed as follows 

Sv   (19) 

Where α is a positive constant. Substituting Eq. (19) into 

Eq. (18) leads to 

||)),((ˆ SttxSduSV f   (20) 

The adaptive law is derived from Lyapunov‟s theory and 

0V   is obtained. This means that V converges to zero. 

Thus, V
~

 converges to zero and the optimal control output 

fû leading to minimum control cost. This adaptive law 

adjusts the centers of the membership functions in THEN-

part. 

 

 

5. AFSMC formulation of control problem 
 

The equation of motion for a structural system subjected 

to ground acceleration, )(txg
  and active control force, 

)(tu  is described in the matrix form as the following 

)()()()()( tButxMRtKxtxCtxM g    (21) 

Where M, C and K are (N×N) dimensional mass, 

damping and stiffness matrices, respectively. )(tx , )(tx  

and )(tx  are (N×1) dimensional relative acceleration, 

velocity and displacement vectors, respectively. Further, R 

and B are earthquake influence (with terms of equal to one) 

and control location vectors of size (N×1), respectively. 

The Eq. (21) can also be expressed in the state space 

form as follows 

)()()()( 21 txBtuBtzAtz g
   (22) 

Where 

 

 

The SMC law with sliding surface equation as S=PZ 

while satisfying the condition in Eq. (7) can be written as 

)(])),(([)()( PBSsignttxtutu T

eq    (23) 

In which 

PAZPBtueq

1)()(   (24) 

and P is the coefficient vector of sliding surface. The theory 

of sliding mode control requires designing a sliding surface, 

whereas the motion on it is stable. The method of optimal 

sliding mode described in (Yang et al. 1995) is used to 

design the sliding surface, where the integral of the 

quadratic function of the state vector is minimized to derive 

the sliding surface. 





0

)()( dttQZtZJ T  (25) 

Where, Q denotes a 2n×2n positive definite weighting 

matrix. 

As mentioned above, direct application of Eq. (9) 

generates chattering. Fuzzy inference system is applied to 

reduce chattering. The triangular membership function is 

used for each fuzzy member in this paper and the fuzzy rule 

base to obtain 
fu  is presented in Table 1. The definitions 

of the fuzzy variables of input and output membership 

function are as follows: NB = Negative Big, NM = 

Negative Medium, NS = Negative Small, Z =Zero, PS = 

Positive Small, PM = Positive Medium and PB = Positive 

Big, and S  represents PBS T
.  

The initial value of v  used in the adaptive law 

presented in the Eq. (12) is a 49×1 vector which is specified 

according to the initial fuzzy control rules in Table 1. 

According to section 3, the values of v  are the points at 

which the membership functions of the corresponding part 

of the rules achieve their maximum value. For example, for 

the first fuzzy rule in Table 1:  IF S  is NB and S is PB 

THEN fu  is PM. So the value of )1(v is the point at 

which the membership function of PM achieves its 

maximum value. Therefore, the control law becomes 

 

 

Table 1 Initial fuzzy control rules of uf 
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feq ututu  )()(  (26) 

and the block diagram of AFSMC is shown in Fig. 2. 

 

 

6. Numerical study 
 

To demonstrate the application of AFSMC scheme and 

its effectiveness in relation to control of structural response, 

a 3-story scaled building equipped with active bracing 

system in the first story is studied. The model is firstly 

studied by Kobori and Kamagata (1992). The performance 

of the model structure is evaluated and compared with 

conventional SMC and fuzzy control results. Fig. 3 

illustrates the schematic view of the structural model chosen 

for this study. Every story unit is identically constructed and 

the mass, stiffness and damping coefficients have been 

shown in Table 2. 

In order to time history analysis of the structure, the NS 

component of El Centro earthquake is selected and scaled to 

a maximum acceleration of 0.112 g as the input excitation. 

The time history of the scaled acceleration of the 

earthquake was drawn in Fig. 4. 

 

 

 
 

Fig. 2 Block diagram of AFSMC 

 

 

 
Fig. 3 Building model with active bracing system 

 

 

 

Table 2 Mass, stiffness and damping values of structure 

story Mass (kg) Stiffness 

(N/m) 

Damping 

(N.s/m) 

1 

2 

3 

1000 

1000 

1000 

980000 

980000 

980000 

1407 

1407 

1407 

 

 

 

Fig. 4 Time history of El Centro earthquake scaled to 

0.112 g 

 

 

Since a controller is installed in the first story as shown 

in Fig. 3, there is one sliding surface. For full-state feedback, 

while using LQR method to design the sliding surface, the 

diagonal weighting matrix, Q in Eq. (25), is considered as 

)1,1,1,10,10,10(= 345diagQ  and this results the sliding 

surface equation as 

)(01.1)(68.2)(68.3)(01.6)(32.17)(6.223)( 321321 txtxtxtxtxtxxS    (27) 

Fig. 5 shows uncontrolled and controlled displacements 

of the first floor using discontinuous SMC. Displacement 

and acceleration time histories of the second and third 

floors are illustrated in Figs. 6 and 7, respectively. Applied 

control force for SMC is illustrated in Fig. 8. It can be seen 

that high-frequency chattering in the time history of control 

force is occurred due to using discontinuous sliding mode 

controller. 

 

 

 

Fig. 5 Time histories of displacement 
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Fig. 6 Second floor time histories of response 

 

 

 

Fig. 7 Third floor time histories of response 

 

 

 

Fig. 8 Time history of sliding mode control force 

 

 

As explained in previous section, the effectiveness of 

using a fuzzy approximator is to reduce chattering. The 

results of implementation of Fuzzy rules in controller are 

compared in Fig. 9. Fig. 9(a) represents the time history of 

the control force resulted from the discontinuous part of the 

Eq. (9) containing chattering. As it is shown in Fig. 9(b), the 

chattering has been removed when the Fuzzy approximation 

is implemented. Ultimately, in Fig. 9(c) the time history of 

AFSMC control force is presented. Fig. 10 indicates the 

time history of uncontrolled and controlled displacements 

of the first floor using AFSMC. Moreover, dynamic 

responses of the second and third floors regarding the 

application of AFSMC are shown in Figs. 11 and 12. 

 

Fig. 9 Time history of control force: (a) Discontinuous part 

of SMC, (b) Fuzzy approximation and (c) AFSMC 

 

 

Fig. 10 Time histories of displacement at first floor 

 

 

Fig. 11 Second floor time histories of response 

 

For the comparison purpose, a FLC method is 

performed. Fig. 13 represents the block diagram of a 

fuzzy controller. As it is obvious, fuzzy block has 2 

inputs as displacement and velocity of the first floor and 

an output as the control force. Se, dSe and Su are factors 

used to scale the inputs and output which are obtained 

by trial and error. Five membership functions for 

displacement, three membership functions for velocity 

and seven membership functions for control output are 

suggested in triangular shapes. Table 3 indicates the 

fuzzy rule base, where X , X , N, Z and P represent 

displacement, velocity, Negative, Zero and Positive, 

respectively. 
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Fig. 12 Third floor time histories of response 

 

 

 

Fig. 13 Block diagram of FLC 

 

 

Table 3 Fuzzy rule basis For FLC 

X \ X  N Z P 

NB NB NM NS 

NS NM NS Z 

Z NS Z PS 

PS Z PS PM 

PB PS PM PB 

 

 

Choosing Se=42, dSe=1 and Su=10
4
 leads to Fig. 14 

representing the controlled displacement and control 

force time history of the first floor for El Centro 

earthquake. Displacement and acceleration time 

histories of the second and third floors while applying 

FLC are illustrated in Figs. 15 and 16. 

Furthermore, to assess the performance of control 

systems, five evaluation criteria are proposed. The first 

criterion evaluates the ability of the proposed method to 

reduce inter-story drift. The second and third criteria relate 

to the ability of the method to reduce the maximum 

displacement and acceleration. The forth one assesses the 

ability to reduce the maximum force of the floor and the last 

one relates to the control devices. 

 

 

 

Fig. 14 Time histories of displacement and control force 

using FLC 

 

 

Fig. 15 Second floor time histories of response 

 

 

Fig. 16 Third floor time histories of response 
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Table 4 Evaluation criteria of El Centro earthquake 

Evaluation 

criteria 
AFSMC FLC SMC 

J1 0.1549 0.3461 0.2195 

J2 0.1670 0.2971 0.2265 

J3 0.4737 0.5588 0.3158 

J4 0.3651 0.4298 0.3219 

J5 0.1244 0.1452 0.1311 
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Where, 
id , 

ix  and 
ix are the drift, displacement and 

acceleration of the ith story, respectively. 
LF is the control 

force produced by Lth device. 
im  and 

ih   is mass and 

height of the ith story. W  is seismic weight of building. 

The superscript terms „c‟ and „u‟ refer to the controlled and 

uncontrolled system. 

Table 4 indicates a competent control performance 

based on evaluation criteria. By comparison between the 

results of evaluation criteria for El Centro ground motion, it 

can be concluded that the proposed control method leads to 

satisfactory level of performance. 

 

 

7. Conclusions 
 

In this study, dynamic responses of a linear structure are 

evaluated and controlled by Sliding mode control (SMC), 

Fuzzy logic control (FLC) and adaptive fuzzy sliding mode 

control (AFSMC) algorithms. The robustness of SMC-

based algorithm against uncertainties and disturbances has 

made us to propose AFSMC method. The simulation results 

indicate chattering-free time history of outputs which are 

gained by relating the algorithms of adaptive fuzzy control 

and SMC. Hence, the resultant method takes advantages of 

both methods by using S and S as fuzzy inputs which 

represent displacements and velocities of all stories. It 

removes chattering by replacing the discontinuous part with 

the fuzzy inference system and adapting its membership 

functions to minimize control costs due to earthquake 

uncertainty. Also, the trial and error process of obtaining 

fuzzy rule basis in the fuzzy logic control is avoided by 

applying the condition of the trajectory in the neighborhood 

of the sliding surface to construct the fuzzy rules. Moreover, 

the results reveal reasonable performance of the AFSMC 

method in dissipating the responses as satisfactorily as two 

other methods. Consequently, the results indicate that 

AFSMC is an effective method for seismic dissipation of 

structures. 
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