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1. Introduction 
 

The process of extracting waste energy and converting it 

as usable electric energy is termed as energy harvesting or 

scavenging. In recent years, energy harvesting put a 

remarkable milestone in the field of micro electrical, 

mechanical system (MEMS) technology along with wireless 

technology due to a shortage of power consumption. In fact, 

energy harvesting is treated as the premium alternative 

sources of power for a longer period comparing to the 

conventional battery. Among several energy harvesting 

methodologies, piezoelectric is treated as the best 

alternative because of its ease of application and ability to 

cover a wide range of frequencies. In comparison to several 

piezoelectric energy harvesting structures, the cantilever 

type is best suitable due to its low resonance frequency and 

high average strain. However, the use of nonprismatic 

beams shows an effective improvement of output power due 

to uniform strain profiles compared to prismatic beams. 

These nonprismatic beams are not only selected to optimize 

the strength to weight ratio of the structure but also to meet 

the architectural and aesthetical needs. In addition to this, 

the geometric nonlinear effects due to large deformation of 

such structures cannot be overlooked. With the inclusion of 

geometric nonlinear effects, an accurate estimation of the 

voltage sensed by piezoelectric materials along with output 

power can be determined. 
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Further, the output power from the nonprismatic beam is 

greatly influenced by many design variables such as breadth 

taper, height taper, and thickness of PZT patch respectively. 

It is also perceived from the literature study, that the 

external resistance has a significant influence on the output 

power due to the presence of an electric circuit. These 

design variables may have different values to obtain output 

power which may cause the bending failure of the beam as 

well as PZT using the conventional trial and error method. 

Hence difficulty arises in getting the best possible set of 

design variables for maximizing the output power from the 

proposed beam. In this circumstance, optimization 

technique has a significant role to select the best possible 

design variables so as to operate the proposed beam within 

the safe design. Among several optimization techniques, 

GA is chosen because it is adaptive heuristic search 

algorithm based on natural selection and it doesn‟t require 

any auxiliary knowledge or derivatives of information. 

Moreover, unlike binary coded GA, real coded GA is more 

effective as design variables work directly instead of coding 

and decoding with less computational complexity. Based on 

the above scenario, the present work emphasized on the 

analysis of the proposed beam by selecting the best set of 

design variables to avoid the premature failure of the beam. 

Although several works related to piezoelectric energy 

harvesting are carried out, some of the recent works in this 

direction are discussed herewith. The piezoelectric based 

energy harvesting, with different mechanical structures to 

transfer the vibration energy into piezoelectric material 

were discussed by Mukherjee and Chaudhuri (2005), 

Roundy et al. (2005), Hong et al. (2006) and Xue et al. 

(2008). Among the mechanical structures, cantilever beam 

has put remarkable footstep because of its low resonant 

frequency and high average strain. However, less possibility 

of extracting the maximum amount of energy from the 

existing cantilever based energy harvesters. Therefore more 
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emphasis has been given towards the design of the beam so 

as to extract maximum output power. Some of the works 

were carried out to improve the harvested power using 

linear tapered cantilever beams by Benasciutti et al. (2010), 

Dietl and Garcia (2010) and Mehraeen et al. (2010). The 

energy harvesting from a bluff body subjected to transverse 

galloping oscillations with different cross-section 

geometries (such as square, D, and triangular) were 

investigated by Abdelkefi et al. (2013). The effect of shape 

variations (such as linear and quadratic) of a cantilever 

beam on the performance of energy harvester was examined 

by Ayed et al. (2013). Rosa and De Marqui Junior (2014) 

modelled an electromechanically coupled beam with 

varying cross-sectional area (trapezoidal taper and reversed 

trapezoidal taper) for energy harvesting. Biswal et al. 

(2015) established a finite element and genetic algorithm 

based vibration energy harvesting from a tapered 

piezolaminated cantilever beam. In their work, the effects 

of tapers (both in the width and height directions) on output 

power for three cases of shape profiles (such as linear, 

parabolic and cubic) were analysed.  

Some of the research work related to energy harvesting 

with geometric nonlinear effects based on classical 

solutions are focussed herewith. A multi layered cantilever 

energy harvester having a tip mass with geometric, inertia 

and piezoelectric nonlinearities was studied by Abdelkefi et 

al. (2012). The piezoelectric energy harvester subjected to 

both base excitation and vortex-induced vibration 

considering both linear and nonlinear analyses was 

investigated by Dai et al. (2014). An aero-

electromechanical model, in which nonlinear responses 

under the combined effect of galloping and base excitations 

was studied by Bibo et al. (2015). An enhanced broadband 

low-frequency piezo magnetoelastic energy harvester with 

nonlinear distributed parameter was examined by Abdelkefi 

and Barsallo (2016). Further, an elaborate study was carried 

out for energy harvesting from various nonlinear aeroelastic 

vibration mechanisms by Abdelkefi (2016). The effects of 

structural and aerodynamic nonlinearities on the 

performance of the harvester were deliberated by Javed et 

al. (2016). The behaviour of aeroelastic energy harvesters 

using the Hopf bifurcation was investigated by Bichiou et 

al. (2016).  

The works related to the direction real coded GA based 

optimization techniques are presented herewith. A GA based 

linear quadratic regulator (LQR) scheme for optimal 

vibration control of smart fiber reinforced composite 

structure was established by Roy and Chakraborty (2008). 

Later, an improved GA based LQR control scheme for 

vibration control of smart fiber reinforced polymer (FRP) 

composite shell structures under combined mechanical and 

thermal loading also was presented by Roy and Chakraborty 

(2009a). Further, an improved real coded GA was 

established, which was based on optimal vibration control 

of composite shell structures by Roy and Chakraborty 

(2009b). The binary and real-coded genetic algorithms were 

parallelized using „C‟ and the bottlenecks of the analysis 

were identified and modified appropriately by Arora et al. 

(2010). A simple and efficient real-coded GA for 

constrained real-parameter optimization were projected by 

Chuang et al. (2016).  

Even though several research works have been carried 

out for energy harvesting from piezolaminated beams, still 

some unfilled gaps in the direction of modelling and 

analysis of arbitrarily varying cross section profiles need to 

be highlighted. Moreover, FE based geometric nonlinear 

effects on the output power along with optimised design 

variables have yet to be discussed. In pertaining to these, 

the present work deals with a comparative study of cross 

section profiles of the modelled beams (such as linear, 

parabolic and cubic shape variations) with geometric 

nonlinear effects to analyse the responses such as output 

voltage and power. The present work also lay an emphasis 

on the determination of a best set of design variables for 

maximizing the output power incorporating a real coded GA 

based constrained (such as ultimate stress and breakdown 

voltage) optimization technique to avoid the 

underestimation and over estimation of power, and 

premature failure of the beam. 

 

 

2. Mathematical formulation for vibrational energy 
harvesting 

 

The mathematical formulations involve the modelling of 

three cross section profiles (such as linear, parabolic and 

cubic profiles) and an electric interface to obtain the output 

power with geometric nonlinear effects. Further, as the 

proposed model has several design variables which vary 

arbitrarily to obtain the maximum output power; it is 

difficult to get the best set of design variables satisfying the 

same. Therefore, a real coded GA based constrained 

optimization technique is developed to get the best set of 

design variables within the range of maximum output power 

to avoid the premature failure of the beam. The details of 

the formulations are articulated in the following 

subsections. 

 

2.1 Mathematical modeling of cross sections of the 
beam 

 

Three different cross section profiles (such as linear, 

parabolic and cubic shape variations) are modelled for 

energy harvesting as 
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The geometric profiles of the modelled beams are shown in 

Figs. 1(a)-(c). The length of the beam is represented as Lb. 

The breadth and height taper ratios of the beam are denoted  
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Fig. 1 Geometric profiles of (a) Linear profile (b) 

Parabolic profile(c) Cubic profile 

 

 

as cb and ch. which could vary in the range of 0≤cb≤1 and 

0≤ch≤1 respectively. When cb=ch=0, the beam will become a 

uniform one and when cb=ch=1 the beam would taper to a 

point at x=Lb, which is a theoretical limit and is not 

practical. The transverse cross sectional area of the beam 

near the clamped end is A0.which gradually decreases 

towards the free end as shown in Figs. 1(a)-(c). 

 

2.2 Finite element modelling and analysis of 
piezolaminated beam 
 

A nonprismatic piezolaminated cantilever beam is 

shown in Fig. 2. The piezoelectric patch is glued on one 

distinct section of the surface of the beam. The stiffness and 

mass of the bonding agent between the PZT and host 

structure are neglected. The piezolaminated cantilever beam 

is modelled using one piezoelectric patch, which includes 

sensor dynamics and the remaining beam elements as 

classical beam theory.  

 

2.2.1 Displacement field of the beam  
The displacement field of the beam along x, y and z 

direction can be written as 
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where u, v, w are the time dependent axial, lateral and 

transverse displacements along x, y, z axes respectively. The 

terms u0 and w0 are the axial and transverse displacement of 

any point in the mid plane (z=0). ϕ is the rotation of the mid 

plane about y axis and t denotes the time respectively. 

Consider a beam element with three degrees of freedom per 

node with varying cross sectional dimensions along the 

element axis shown in Fig. 3, where u1, v1, θ1 are the axial, 

transverse and rotation degrees of freedom at node 1 and  

 

 

 
Fig. 2 Cantilever beam with piezoelectric patch 

 

 
Fig. 3 Nodal degrees of freedom of nonprismatic 

beam element 

 

 

u2, v2, θ2 are the corresponding degrees of freedom at node 2 

respectively.   

 

2.2.2 Strain-displacement relations 
As the modelled beam length is too high as compared to 

the cross sectional dimensions of the beam, the shear strains 

are assumed to be zero. Moreover according to Von Karman 

hypothesis, omitting the large strain components but 

retaining the square of the rotation of normal transverse line 

in the beam, the modified strain becomes 
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The Eq. (5) can be represented in matrix form as  
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The first term of the Eq. (7) is the linear strain parameter 

and the second term is the geometric nonlinear strain 

parameters. The linear strain consists of both linear 

membrane strain and bending strain. 

 

2.2.3 Shape functions 
The displacement field could be interpolated in terms of 

degrees of freedom of nodes and shape functions based on 

the concept of FEM as 
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where Nu is the Lagrange and Nw is the Hermite cubic 

interpolation or shape functions and q is the elemental nodal 

degrees of freedoms respectively. The accuracy of the result 

depends on how well these shape functions are selected. 

These interpolation functions for a beam element can be 

written as  
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The elemental nodal displacement vector can be represented 

as  

       221121     and  θθ vvquuq wu 
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2.2.4 Coupled constitutive relationships 
The constitutive relationships of the piezolaminated 

beam are considered for the analysis. It has been assumed 

that the piezoelectric continuum is exposed to both elastic 

and electric field. The three dimensional linear constitutive 

equations considering the coupling between elastic and 

electric fields for piezoceramic can be expressed as 

(Moheimani and Fleming 2006) 
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where σ, ε, E, and D are the field variable terms signifying 

stress components, strain components, electric field 

components and the electric displacement components 

respectively. The terms S, d, ξ represents the matrix of 

compliance coefficients, piezoelectric strain constants, and 

permittivity respectively. The superscripts E, σ and T denote 

the constant electric field, stress and the transpose of the 

matrices respectively. The expanded form of the Eq. (11) 

can be written as  
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Assuming that the piezoceramic material is poled along the 

axis 3 and viewing it as transversely isotropic, many 

parameters in the above expression are either zero or can be 

expressed in terms of other parameters. Subsequently, the 

Eqs. (12) and (13) are simplified to  
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The piezoelastic behavior of the structure is modelled as a 

thin beam based on the Euler-Bernoulli beam theory, hence 

the stress components other than the one-dimensional 

bending stress σ1 are negligible, so that 

.065432  σσσσσ  (16) 

The Eqs. (14) and (15) can be reduced to 
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The Eqs. (17) and (18) can further be converted to 
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2.2.5 Electric potential in the piezoelectric patch 
The electric potential function v is assumed to vary 

linearly along the thickness direction and is constant in x 

and y direction in the piezoelectric layer. The difference in 

electric potential at the top and the bottom surface of the 

piezoelectric layer is constant, and thus they form 

equipotential surfaces. For a thin piezoelectric patch, the 

electric field in the thickness direction is dominant 

henceforth; it can be considered as a nonzero component 

only in the thickness direction. With this approximation, the 

electric field strength in terms of the electric potential for 

the piezoelectric patch can be represented as 

)}(]{[3 tvBE v  (22) 

where [Bv] is the electric field gradient, and v(t) is the 

electric potential. Due to the presence of a piezoelectric 

patch, an additional degree of freedom is introduced at the 

elemental level. 

 

 

 
Fig. 4 Piezolaminated cantilever beam with the classic 

electric interface 
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2.2.6 Governing equation 
Fig. 4 shows a piezolaminated cantilever beam with 

PZT patch near the clamped end. An electric interface is 

connected to both surfaces of the piezolaminated patch for 

power generation. The cantilever beam is subjected to an 

external excitation Q at its free end. Using Hamilton‟s 

principle, the dynamic equations of motion of the 

piezolaminated beam for energy harvesting system can be 

expressed as 

0)]([
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 (23) 

where Ek denotes the kinetic energy, Ep denotes the 

electromechanical enthalpy and W denotes the work done. 

The terms t1 and t2 represents the initial and final time. The 

expressions for Ek, Ep, and W of the piezolaminated beam 

can be obtained by the following expressions as 
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The terms Vb and Vp, denote the volume of beam and 

piezoelectric patch, nf and nq denote the number of 

externally applied load and piezoelectric patches over 

which the charge developed, and 𝐺̅𝑗  is the charge 

developed over the piezoelectric patch respectively. For 

open circuit condition, the differences of electrical potential 

between the electrodes are unknown considering charge 

equal to zero (𝐺̅𝑗 = 0). Now using Eqs. (19), (20), (22), 

(24), (25), (26), the Eq. (23) can be written as  
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(27) 

From the Eq. (27), the elemental mass matrices for both in 

plane and bending of the beam and the piezoelectric patch 

can be derived as 
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where ρ and A represents the mass density and transverse 

cross sectional area, the suffix b and p represents the beam 

and the piezoelectric patch respectively.The terms Mbu , Mpu, 

Mbw and Mpw are the linear element mass matrices for in 

plane (stretching) and out of plane (bending) displacements 

respectively. Similarly, the elemental stiffness matrices of 

the beam as well as the piezoelectric patch for in plane, 

bending and geometric nonlinear cases can be derived as 
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The terms Kbu, Kpu, Kbw, and Kpw, are the linear element 

stiffness matrices for in plane (stretching) and out of plane 

(bending) displacements, the terms Kb2, Kp2, Kb3, Kp3, Kb4, 

and Kp4  are the nonlinear elemental stiffness matrices for 

both beam and piezoelectric patch respectively. Similarly, 

the elemental electromechanical coupling matrices of beam 

and piezo-patch and the capacitance matrix can be obtained 

as 
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Where Kbpu and Kbpw are the element coupling matrices for 

in plane (stretching) and out of plane (bending) 

displacements, Kbp5 is the nonlinear coupling matrix, and 

Kpp is the capacitance matrix respectively. The elemental 

mass and stiffness of the agent used for bonding between 

the piezoelectric material and substrate are neglected. The 

stiffness, mass, and coupling matrices have been evaluated 

by numerical integration using two point Gauss quadrature 

method. After assembling the elemental matrices, the global 

set of equations are found. The governing equation in 

elemental matrix form of the piezolaminated beam can be 

written as  
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(33) 

The piezolaminated beam is modeled in two domains i.e. 

mechanical and electrical domain. In a mechanical domain, 

the beam is clamped at one end, and the other end is free. In 

electrical domain the piezoelectric element is open-

circuited; the differences of electric potentials between their 

electrodes are unknown and can be evaluated using the 

second line of Eq. (33), such that  
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Replacing Eq. (34) in the first line of Eq. (33) leads to the 

condensed equation of motion 

   Q
q

q

KK

K
K

KK

K

KKK

KK

KKK

KK

q

q

M

M

M

M

w

u

T

bpbpw

bpu

pp
bpbpw

bpu

ppwp

ppu

bbwb

bbu

w

u

pw

pu

bw

bu










































































































   

0

0

0

0

5

1

543

2

43

2



  

(35) 

From the Eq. (35), the generalised displacement can be 

evaluated. The electric potential generated across the 

electrodes can be found using Eq. (34). 

 
2.2.7 Determination of output power 
To incorporate the energy dissipation term into the 

equation, Ohm‟s law is used, and a resistive element is 

added between the top and bottom surface of the 

piezoelectric patch shown in Fig. 4. By incorporating the 

resistive element, the electrical boundary condition 

becomes  

)()( tRItv   (36) 

where I(t) is the current output of the piezoelectric element 

and R is the external load resistance. Now putting the Eq. 

(36) into Eq. (34), one can get  
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The output current of the piezoelectric element can be 

obtained using Eq. (37) which can be directly related to the 

power output through the external load resistance. Again for 

sensing purpose, the total charge on the electrode surface of 

the piezoelectric patch can be expressed as 
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A A

r dAEedADQ 3331313
εξε  (38) 

The current which is proportional to the charge on the 

electrode surface flowing out to the external resistance can 

be obtained as  

rQI ω  (39) 

where ω is the fundamental frequency of the 

piezolaminated beam. The Eq. (39) is valid for harmonic 

excitation only. From the values of current and external 

resistance the output power can be obtained as  

RIPout
2  (40) 

 
2.2.8 Nonlinear system of equations 
The non-linear Eq. (35) in time domain can be solved 

using Newmark method in conjunction with an iteration 

method i.e., Newton-Raphson method. By using such 

methods, the nonlinear differential equations of motion can 

be reduced to a set of non-linear algebraic equations (Reddy 

2014). The nonlinear equation of motion can be written 

after globalising the Eq. (35) which is in the form of  
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where [Keff] and [Qeff ] are the effective global stiffness 

matrix consisting of nonlinear terms and effective global 

load vector respectively which can be represented as  
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(42) 

The terms 𝐾  and 𝑀 ̅̅ ̅are the global stiffness and mass 

matrices of the modelled beam, respectively. The terms a0, 

a1, a2 given by Bathe (2006) as 
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Since the effective stiffness matrix is nonlinear, an iterative 

solution procedure i.e., Newton Raphson method has been 

adopted for any fixed time having s
th

 iteration. In Newton 

Raphson method, the linearized element equation is of the 

form 
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where R and T denote the residual and the tangent stiffness 

matrix and can be derived as  
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In Newton- Raphson method, the first iteration can be 

calculated using Eq. (44) considering linear stiffness matrix 

assuming {𝑞}𝑠−1 = 0. The residual is calculated in each 

iteration and the process repeated until the residual becomes 

zero. 

 
2.3 Electric interface 
 

Fig. 4 represents the piezoelectric energy harvesting 

circuit. The interface consists of a rectifier made up of 

diodes, an external load resistor, and a capacitor. The diodes 

D1, D2, D3, and D4 are connected in the circuit along with 

the capacitor C and resistor R. The voltage in the 

piezoelectric element and capacitor are V and Vdc 

respectively. When the absolute value of voltage in the 

piezoelectric element is lower than the voltage across the 

capacitor, the rectifier is in a blocked state, and the 

piezoelectric element is in an open circuit state. A current I 

flows through the diodes when the absolute value of voltage 

in the piezoelectric element is more than the voltage across 

the capacitor. The current divided into two parts, one to the 

capacitor and the other to the load, after passing through the 

rectifier. Due to the current flow through the external 

resistor, power is generated. 

 
2.4 Formulation for present optimization problem 
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From the present problem formulation, it is observed 

that the output power is mostly a function of certain design 

variables such as breadth taper (cb), height taper (ch), the 

thickness of PZT patch (tp) and external load resistance (R) 

respectively. These design variables have different values, 

and consequently, it is difficult to get the best set of 

variables to maximize the output power. To get the best 

combination of the above variables, a search algorithm is 

required within the safe design of beam and PZT patch, 

respectively. Hence the objective function of the present 

formulation is derived as 
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(46) 

Where the terms are denoted as 𝑧1 = 𝑏 × ℎ × 𝜔 × 𝑒̅31 and 

𝑧2 = 𝑏 × 𝑙𝑝 × 𝜔 × 𝜉3̅3, respectively. σinduced  and Vinduced 

are the stress and open circuit voltage of the PZT material. 

The allowable stress of beam and PZT material are 550 

MPa and 14 MPa, respectively specified by Flynn and 

Sanders (2002). The allowable voltage of piezo-ceramic 

material is around 500-1000 V per 1 mm piezo thickness 

stated by Bruch Jr et al. (2000). 

 

2.4.1 Real coded GA for optimal power 
A real coded GA has been implemented in the present 

formulation to obtain the best set of parameters to maximize 

the output power. The flowchart of the basic genetic 

procedure has been shown in Fig. 5. For this analysis, four 

parameters are chosen for the optimization process such as 

breadth taper (cb), height taper (ch), the thickness of PZT 

patch (tp) and external load resistance (R) respectively. The 

population size has been taken as one  

 

 

 
Fig. 5 Flowchart of the genetic algorithm used for the 

parameters optimization 

hundred. The fitness function for this problem is derived as  
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where H is the fitness function, u is the optimization 

parameters vector and P is the power harvested 

respectively. α denotes the penalty for this algorithm which 

is taken as 10
-8

 and which used in case of constrained 

violation. The ranges of cb, ch, tp and R, have been taken as 

0≤cb≤0.8, 0≤ch≤0.8, 0.0001≤tp≤0.0004 (Ayed et al. 2013) 

and 0≤R≤100000. The algorithm is sustained for some 

generations until the fitness reached the optimum value and 

there is also no change in fitness for a large number of 

generations. In the present work, the real coded genetic 

algorithm consists of the Roulette wheel selection, 

simulated binary crossover (SBX) and parameter based 

mutation operators. 

 

 

3. Result and discussion 
 

Various analyses have been performed for optimal 

vibration energy harvesting after validating the present 

formulation. The validated results are presented in the 

following subsections. 

 
3.1 Electromechanical validation 
 

For electromechanical validation, the obtained results 

are compared with already published results by Hwang and 

Park (1993). For this purpose, a bimorph cantilever beam is 

considered which is made up of two PVDF layers. The 

bimorph beam is subjected to an external voltage. Bending 

moment is caused due to the induced internal stresses which 

power the bimorph beam to bend. The dimensions of the 

beam are taken as (100×5×1) mm. The bimorph beam has 

been discretized into five equal finite elements. The found 

results with the percentage of deviation from existing 

results are presented in Table 1. 

 

3.2 Validation of static and dynamic sensing of 
piezoelectric bimorph 

 

Further, the large deformation effect in the bimorph 

cantilever beam due to transverse load at its tip is 

investigated. The deflection ratios (Δ/Lb) for different  

 

 

Table 1 Transverse deflection of piezoelectric bimorph 

actuator 

Distance(mm)from 

fixed end 

Deflection(µm) 

Hwang and Park 

(1993) 

Deflection(µm) 

present code 

% of 

deviation 

20 0.0131 0.0139 5.75 

40 0.0545 0.0554 1.62 

60 0.1200 0.1247 3.76 

80 0.2180 0.2218 1.71 

100 0.3400 0.3465 1.87 
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Table 2 Comparison of results for piezo bimorph cantilever 

beam 

QL2/EI 

(Δ/L)linear 

Mukherjee 
and 

Chaudhuri 

(2002) 

(Δ/L)linear 

(present) 

% of 

deviation 

(Δ/L)nonlinear 

Mukherjee 
and 

Chaudhuri 

(2002) 

(Δ/L)nonlinear 

(present) 

% of 

deviation 

1.11 0.37 0.36 2.70 0.35 0.337 3.71 

5.55 1.85 1.84 0.54 0.75 0.69 8 

13.88 4.63 4.6 0.64 0.87 0.88 1.14 

16.66 5.55 5.52 0.54 0.88 0.93 5.37 

27.77 9.25 9.2 0.54 0.91 1.01 9.9 

 

 
Fig. 6 Nonlinear dynamic response of piezoelectric bimorph 

 

 
Fig. 7 Comparison of (a) voltage FRF (b) current FRF 

with experimental measurements 

 

 

values of load ratios (QLb
2
/EI) are listed in Table 2. The 

results are corroborated by the available existing results by 

Mukherjee and Chaudhuri (2002). 

Further, the nonlinear dynamic effect on PVDF bimorph 

beam has been inspected. For this purpose, one tip ramp 

loading of 0.005N is applied along with an axial 

compressive load (Mukherjee and Chaudhuri 2005).  

From the Fig. 6 it has been observed that the results 

obtained for nonlinear response of the tip displacement of 

the bimorph cantilever beam for the axial loads 0.0Pcr and 

0.25Pcr (Pcr is the 1st Euler buckling load) also gives close 

agreement with the already published results (Mukherjee 

and Chaudhuri 2005) 

 

3.3 Experimental validation of the present formulation  

 

The present developed FE code has also been compared 

with the available experimental results (Erturk and Inman 

2009) for a rectangular cantilever bimorph energy harvester 

with a tip mass under base excitation. The Figs. 7(a) and 

7(b) show the compared results of the voltage frequency 

response function (FRF) and current FRF, and it has been 

observed that the present results are in close agreement with 

the already published experimental results by Erturk and 

Inman (2009). 

 

3.4 Variation of Output power with load resistance 
 

Figs. 8(a)-(d) show the variation of output power with 

external load resistance of Cases (A), (B) and (C) for 

cb=0.2, 0.3 and ch=0.2, 0.3 respectively. From the Figs. 

8(a)-(b) , it is observed that the output power of Case (C) is 

0.164 mW, correspondingly the values are 0.110 mW in 

Case (B) and 0.068 mW in Case (A) for taper values of 

cb=0.2 and ch=0.2. The optimum resistance of Case (C) has 

been found as 145.322 kΩ whereas, in Case (B) and (A) the 

values are found as 120.352 kΩ and 105.067 kΩ 

respectively. When the height taper changed to 0.3 the 

output power obtained as 0.232 mW with the optimum 

resistance of 197.783 kΩ in Case (C) whereas in Case (B) 

and Case (A) the output power obtained is 0.152 mW, 

146.824 kΩ and 0.083 mW, 112.716 kΩ respectively. It 

indicates with an increase in height taper the output power 

has been increased near about 43% in Case (C) whereas in 

Case (B) and (A), the values are 37% and 24% respectively. 

Similarly, there has been an increase in optimum resistance 

when the height taper changed from 0.2 to 0.3. Again from 

Figs. 8(c) and 8(d), it has been observed that for taper  

 

 

 
Fig. 8 Variation of output power with external load 

resistance of Case (A), (B) and (C) for (a) cb = 0.2, ch = 

0.2, (b) cb= 0.2, ch = 0.3, (c) cb = 0.3, ch = 0.2 and (d) cb 

= 0.3, ch = 0.3 
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values of cb=0.3 and ch=0.2 the output power along with 

optimum resistance of Case (C) is 0.208 mW, 154.01 kΩ 

whereas in Case (B) and (A) the values are 0.132 mW, 

127.025 kΩ, and 0.075 mW, 108.534 kΩ respectively. As 

the height taper changed to 0.3 the output power has been 

increased to 0.285 mW in Case (C) whereas in Case (B) and 

Case (A) the values are 0.178 mW and 0.093 mW, 

correspondingly the optimum resistances in Case (C), (B) 

and (A) are 211.845 kΩ, 149.515 kΩ, and 115.472 kΩ 

respectively. 

From this, it has been perceived that maximum output 

power obtained for an optimum resistance. Again it has 

been illustrated that increase in height taper more than 18% 

of power can be scavenged than the increase in breadth 

taper. 

 

3.5 Nonlinear tip displacement responses 
 

The tip responses of the piezolaminated cantilever beam 

for the modeled beams have been compared and shown in 

Figs. 9 (a)-(d). The responses have been found for cb = 0.2, 

0.3 and ch= 0.2, 0.3. The peak amplitude has been 

calculated for all cases considering the effects of geometric 

nonlinearity. From the Figs. 9(a)-(d) it has been perceived 

that the period of vibration of Case (C) is more than Case 

(B) and Case (A) for different taper values. The peak 

amplitude of prismatic beam has been found as 0.0694 mm. 

From Figs. 9(a) and 9(b) it has been observed that the peak 

amplitude of Case (C) is 0.158 mm whereas in Case (A) and 

Case (B) the magnitudes are 0.095 mm and 0.128 mm, for 

taper values of cb = 0.2 and ch = 0.2 respectively. When the 

height taper changed to 0.3, the peak amplitude of Case (C) 

has been shifted to 0.178 mm, whereas in Case (B) and 

Case (A) the values are obtained as 0.139 mm and 0.0982 

mm respectively. Similarly from Figs. 9(c) and 9(d), the 

peak amplitude of Case (C) has been found 0.1910 mm, 

whereas for Case (B) and (A) the values are 0.147 mm 

 

 

 
Fig. 9 Nonlinear tip displacement responses of Case 

(A), (B) and (C) for (a) cb = 0.2, ch = 0.2 (b) cb= 0.2, ch 

= 0.3 (c) cb = 0.3, ch = 0.2 (d) cb = 0.3, ch = 0.3 
 

 
Fig. 10 Nonlinear voltage response of Case (A), (B) 

and (C) for (a) cb = 0.2, ch = 0.2 (b) cb= 0.2, ch = 0.3 (c) 

cb = 0.3, ch = 0.2 (d) cb = 0.3, ch = 0.3 

 

 

and 0.108 mm for cb = 0.3 and ch = 0.2 respectively. When 

the height taper increased to 0.3, the peak amplitude of case 

(C), (B) and (A) have been shifted to 0.2104 mm, 0.162 mm 

and 0.1098 mm respectively. From this, the peak amplitudes 

obtained showing higher values in Case (C) than Case (B) 

and (A).  

 

3.6 Nonlinear voltage responses 
 

The voltage response from the piezolaminated cantilever 

beam has been shown in Figs.10 (a)-(d) for cb =0.2, 0.3 and 

ch = 0.2, 0.3 respectively. It has been observed that the peak 

voltage of Case (C) increased to 86% for cb = 0.3 and ch = 

0.3, whereas an increase in 50% in Case (B) and 32% in 

Case (A) compared to prismatic beams. From this, it has 

been concluded that more voltage can be scavenged from 

the nonprismatic beams than the prismatic beam. Moreover, 

the higher peak of voltage can be attained in Case (C) than 

Case (B) and (A).  

 
3.7 Nonlinear output power responses 
 

The output power responses from the piezolaminated 

cantilever beam have been presented in Figs. 11(a)-(d) for 

cb =0.2, 0.3 and ch = 0.2, 0.3 with the geometric nonlinear 

effects. The magnitude of external excitation has been 

calculated using the maximum principal stress theory of the 

beam. Based on this the output power responses have been 

found out. The external load resistance has been kept 

constant, i.e., 1 KΩ. From the Figs. 11(a)-(d) it has been 

observed that the amplitude of output power in Case (C) is 

more than the Case (B) and (A) in all cases of taper values 

taken arbitrarily. 

 

3.8 Optimal power harvesting by using real coded GA 
 

To obtain the best set of design parameters as well as 
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Fig. 11 Nonlinear output power response of Case (A), 

(B) and (C) for (a) cb = 0.2, ch = 0.2(b) cb = 0.2, ch = 

0.3(c) cb = 0.3, ch = 0.2(d) cb = 0.3, ch = 0.3 

 

 
Fig. 12 Comparison of fitness values of Case (A), 

(B) and (C) 

 

Table 3 Optimal parameters for Case (A),(B) and (C). 

Any arbitrary values of design variables (Trial and Error Method ) 

Cases cb ch tp(mm) R(Ω) Power(W) 

A 0.448 0.1129 0.192 8777.3 0.0024 

B 0.448 0.1129 0.192 8777.3 0.0033 

C 0.448 0.1129 0.192 8777.3 0.0042 

GA based optimised design variables 

Cases cb ch tp R Power(W) 

A 0.799 0.684 0.400 9999.56 0.0178 

B 0.741 0.255 0.399 9843.67 0.0214 

C 0.644 0.099 0.398 9304.47 0.0223 

 

 

fitness value using real coded GA, a MATLAB code has 

been developed. Fig. 12 compares fitness values with 

generation variation of Case (A), (B) and (C). The best 

fitnesses for above three cases have been obtained by taking 

one hundred population with five runs. The obtained  

 
Fig. 13 Optimal responses of (a) voltage (b) current and 

(c) output power of Case (C) 

 

 

optimal parameters along with the fitness values are 

presented in Table 3. Further a comparison of output powers 

has been made between the trial and error method and the 

developed real coded GA method which is also listed in 

Table 3. It is perceived from Table 3 that, more power can 

be obtained using the developed real coded GA method than 

trial and error method. 

Various responses (such as voltage, current and output 

power) have also been determined based on an optimal set 

of parameters of Case (C) represented in Figs. 13(a), (b) and 

(c). 

 

 

4. Conclusions 
 

The present work focusses on the FE based modelling 

and analysis of piezolaminated cantilever beam to study the 

effects of geometric nonlinearity and cross sectional 

profiles on vibration energy harvesting. A real coded GA-

based constrained optimization scheme has also been 

formulated for the harvesting of optimal output power in the 

allowable ranges of stresses and voltage of beam and PZT 

materials. From the study, it is observed that an 

enhancement of output power can be extracted from the 

system with an increase in height taper compared to the 

breadth taper. Furthermore, in Case (C) the output power is 

more compared to the Cases (A) and (B) for a given breadth 

and height taper. The geometric nonlinear effects on the 

output responses (such as voltage and power) have also 

been discussed to ensure the feasibility of the system in real 

world problem. Eventually from the proposed GA based 

constrained optimization scheme, it is perceived that more 

output power can be obtained compared to an arbitarily 

selection of design variables by trial and error method. 
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