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1. Introduction 

 
Vibration-based techniques that detect damage in a 

structure from changes in global dynamic properties are part 

of a promising field in structural damage detection. Related 

structural damage detection researches have attracted much 

attention in recent years and many approaches have been 

developed (Johnson et al. 2004). Toksoy and Aktan (1994) 

first tried to detect damage locations based on structural 

flexibility matrices of a beam structure; however, their 

damage detection algorithm lacks a solid theoretical 

background. Bernal (2002) developed the damage location 

vector method with a solid theoretical background to 

determine damage locations of a structure. Reynders and De 

Roeck (2010) further developed the Local Flexibility 

Method (LFM) with a robust theoretical background to not 

only detect damage locations but also the extent of damage. 

The LFM utilizes flexibility matrices constructed based on 

mode shapes in the lateral degree of freedom (DOF) before 

and after damage of a beam structure. Combined with 

corresponding lateral load configurations that cause strain  
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and stress fields within a local region of a beam structure, 

the extent of damage of the local region can be estimated. 

Recently, Abdo and Hori (2002) demonstrated the 

usefulness of the rotation of mode shape as a more sensitive 

diagnostic parameter than the displacement mode shape for 

damage localization in flexural structures. However, the 

application of the rotation of mode shape is restricted to 

only numerical cases, possibly due to the difficulty in 

measuring dynamic rotary vibration signals. On the other 

hand, although most FBG sensors act as localized gauge for 

point strain measurements (Wan et al. 2002, Yung et al. 

2004, Matthys and Taerwe 2005, Cardini and DeWolf 2009, 

Wang and Yim 2010, Ni et al. 2012, Wang et al. 2014), 

long-gauge strain sensors (Fan et al. 1998, Ansari 2005) has 

illustrated the accuracy and advantage to measure structural 

response for application to structural health monitoring. Li 

and Wu (2007) further illustrated the feasibility of damage 

detection algorithms on the basis of dynamic macro-strain 

measurements from long-gauge Fiber Bragg grating (FBG) 

sensors. They also performed parametric estimation of 

reinforced concrete flexural members using distributed 

long-gauge FBG sensors (Li and Wu 2010). Therefore, if 

the mode shapes in the rotary DOF can be obtained from 

macro-strain mode shapes, the experimental application of 

the rotation of mode shapes for damage detection becomes 

possible. Furthermore,  

This study proposes the concept of utilizing mode 

shapes in the rotary DOF with the LFM to perform damage 

localization and quantification of a beam. The proposed 

approach only applies to change of stiffness. The macro-
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Abstract.  Many vibration-based global damage detection methods attempt to extract modal parameters from vibration signals 

as the main structural features to detect damage. The local flexibility method is one promising method that requires only the first 

few fundamental modes to detect not only the location but also the extent of damage. Generally, the mode shapes in the lateral 

degree of freedom are extracted from lateral vibration signals and then used to detect damage for a beam structure. In this study, 

a new approach which employs the mode shapes in the rotary degree of freedom obtained from the macro-strain vibration 

signals to detect damage of a beam structure is proposed. In order to facilitate the application of mode shapes in the rotary 

degree of freedom for beam structures, the local flexibility method is modified and utilized. The proposed rotary approach is 

verified by numerical and experimental studies of simply supported beams. The results illustrate potential feasibility of the 

proposed new idea. Compared to the method that uses lateral measurements, the proposed rotary approach seems more robust to 

noise in the numerical cases considered. The sensor configuration could also be more flexible and customized for a beam 

structure. Primarily, the proposed approach seems more sensitive to damage when the damage is close to the supports of simply 

supported beams. 
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strain mode shapes are obtained by measurement of 

dynamic vibration signals using long-gauge FBG sensors. 

The mode shapes in the rotary DOF are then calculated 

using macro-strain mode shapes. The mode shapes in the 

rotary DOF and corresponding virtual load configurations 

are used in the LFM to detect damages of simply supported 

beams. Numerical studies and experimental studies are 

performed to verify the proposed rotary approach. The 

results are also compared to the approach that utilizes the 

LFM based on measurement of lateral vibration signals.  

 

 

2. Methodology 
 

The LFM, which not only localizes but also quantifies 

the damage of a structure, was developed by Reynders and 

De Roeck (2010) based on virtual work principle. It 

requires a first load system 𝑓1 carefully chosen such that: 

(1) the induced stress field σ1 can be calculated from the 

loading without knowledge of the structure’s stiffness and 

(2) consists of nonzero stresses in a small local volume 

only. The subscript “1” represents the number of the load 

system. Then, it has been derived that the stiffness ratio of 

the local volume with nonzero stresses can be estimated 

using the virtual displacement 𝑥1 induced by the first force 

configuration 𝑓1 and a second force configuration 𝑓2 that 

obeys the boundary condition of the system for both intact 

and damaged systems using 

∑ 𝑓 2𝑥 1
 
  1

∑ 𝑓 2𝑥 1
  

  1

 
    

 
 (1) 

where  K denotes the change in the stiffness parameter in 

the local volume due to damage. The subscript “j” 

represents the number of the DOF. It is assumed that  K 

remains constant within the local volume. 

In the original paper, for application to a beam structure, 

the LFM utilizes mode shapes in the lateral DOF identified 

using lateral vibration signals measured with accelerometers 

and the corresponding virtual forces composed of lateral 

forces. In this study, we propose to utilize mode shapes in 

the rotary DOF identified using dynamic macro-strain 

signals measured with long-gauge FBG sensors. 

Accordingly, the virtual force configuration for the mode 

shapes in the rotary DOF should also be adjusted to be 

composed of moments. Consider a beam structure under the 

force configuration 𝑓1 as shown in Fig. 1. Other than a 

lateral force, a moment is applied to the beam. If shear 

deformation can be neglected and the flexural rigidity (EI) 

remains constant between equidistant points j-1 and j+2, the 

force configuration of Fig. 1 causes nonzero stresses 

between points j-1 and j+2 only, regardless of whether the 

beam is isostatic or hyperstatic. This can be proved to be 

true if all the following three conditions are satisfied: 

(1) The vector sum of all forces of Fig. 1 is zero. 

(2) The resulting moment of all forces of Fig. 1 at points 

j-1 and j+2 is zero. 

(3) The relative rotation between points j-1 and j+2, due 

to the force configuration, is zero. 

Checking the first two conditions is trivial. The third 

condition can also be easily checked by means of the virtual 

 
Fig. 1 A force configuration that causes virtual stresses and 

strains in the local region of a hyperstatic beam structure for 

the rotary approach. The numbers “3/2” and “1/2” are the 

magnitude of the components of the virtual force configuration 

 

 
Fig. 2 A force configuration that causes virtual stresses and 

strains in the local region of an isostatic beam structure for the 

rotary approach. The numbers “1” are the magnitude of the 

components of the virtual force configuration 

 

 

work principle by applying a virtual unit moment pair at 

points j-1 and j+2.  

The second force configuration can be chosen as any 

configuration that obeys the boundary conditions. An 

example configuration is shown in Fig. 2. 

Following Eq. (1), by applying force configuration 𝑓1 

as shown in Fig. 1 and applying force configuration 𝑓2 as 

shown in Fig. 2, one can estimate rigidity ratio within the 

region with nonzero stress field using 

1 1

1

1 1

1,

Δj j

jd j d

x x EI EI

x x EI





 



. (2) 

It should be noted that for isostatic beams, as an 

alternative to the force configuration 𝑓1 of Fig. 1, the force 

configuration of Fig. 2 can be applied. The proof is trivial 

since for isostatic structures, the relative rotation between 

points j and j+1 does not have to be zero in order to obtain a 

nonzero stress only between these points.  

The displacement vector 𝑥1 under the first load system 

𝑓1 can be obtained using the following equation 

𝑥1   𝑓1 (3) 

where   represents the flexibility matrix, which can be 

estimated using the identified modal parameters as follows 

  ∑ ̂   
 2

 

  1

 ̂ 
  ∑ ̂   

 2

 

  1

 ̂ 
  ∑    

 2

 

  1

  
  (4) 

where  ̂  denotes the mass-normalized mode shape of the 

r
th

 mode;    indicates the mode shape of the r
th

 mode 

normalized to unit norm;    represents the eigenfrequency 

of the r
th

 mode. If only the first n modes of all the N modes 

are available, then the flexibility matrix is truncated. Note 

that contrary to the stiffness matrix, the contribution of the 

modes in the flexibility matrix is proportional to the inverse 

of the square of the eigenfrequencies. The influence of the 

higher modes is much smaller than that of the lower modes. 

As a result, the number of truncated modes needed to 

approximate a non-truncated flexibility matrix is much 

smaller than that needed to approximate a non-truncated 

3 / 2 3 / 2

j-2 j-1 j j+1 j+2 j+3

1/ 2 1/ 2

1 1

j-2 j-1 j j+1 j+2 j+3
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stiffness matrix. This benefits practical cases where only 

lower modes can be identified with good accuracy. 

The mode shapes in the rotary DOF can be obtained by 

measuring the macro-strain mode shapes. By attaching a 

long-gauge FBG sensor onto the surface of a beam element 

between node j and node j+1, the macro-strain measured by 

the k
th

 FBG sensor of gauge length l
k
 can be expressed as 

1ε ( )
k

k j j

k

h
θ

l
    (5) 

where h
k
 represents the distance between the neutral axis of 

the k
th

 FBG sensor and the neutral axis of the beam and 

θ
j
indicates the rotary displacement at node j. Therefore, the 

difference in the rotary displacement between any two 

nodes can be obtained if the macro-strain between these two 

nodes is measured. Similarly, the difference in the mode 

shape in the rotary DOF between any two nodes can be 

obtained if the macro-strain mode shapes are identified 

from the measured macro-strain signals. The mode shape in 

the rotary DOF can be finally obtained if enough boundary 

conditions of the rotary DOF or the lateral DOF are known. 

For instance, the mode shape in the rotary DOF of the fixed 

end is zero for a cantilever beam; hence, the mode shapes in 

the rotary DOF at every node can be calculated. Similarly, 

for a simply supported beam, the relative lateral 

displacement of the two supports is zero if no settlement of 

these two supports takes place, hence the mode shapes in 

 

 

 
Fig. 3 A force configuration that causes virtual stresses and 

strains in the local region of an isostatic beam structure for the 

lateral approach. The numbers “1/2” and “1” are the 

magnitude of the components of the virtual force configuration 

 

 
Fig. 4 A procedure diagram of both the proposed “rotary 

approach” and the original “lateral approach” 

the rotary DOF at every node can also be calculated using 

these known boundary conditions.  

In this study, in order to compare the performance using 

the rotary approach to that from using the lateral approach, 

the load configuration using lateral forces in the original 

paper are also applied in the case studies (Reynders and De 

Roeck, 2010). The lateral load configuration utilized for the 

simply supported beam in this paper is shown in Fig. 3. Eq. 

(6) describes the method of estimating rigidity reduction 

ratios using the lateral approach. 

1 1 1
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(6) 

The procedures of the proposed “rotary approach” and 

the original “lateral approach” are summarized in Fig. 4 

 

 

3. Numerical studies 
 

A numerical simply supported beam was constructed via 

ANSYS software to verify the proposed idea. The 

dimensions of the beam were 0.03 m×0.01 m×1.5 m, and 

the number of elements was 6, 4, and 300 along each of 

these respective dimensions. The element type was a three-

dimensional (3D) elastic solid element with 8 nodes. The 

elastic modulus, the Poisson ratio, and the density of the 

finite element model were 2.0×10
11 

N/m
2
, 0.33 and 7.8×10

3
 

kg/m
3
, respectively. Ten long-gauge FBG sensors were 

designated to be installed on the bottom of the beam to 

monitor the beam segments labeled S1 to S10 as shown in 

Fig. 5. Therefore, the mode shape in the longitudinal DOF 

at the ends of each sensor on the bottom of the beam was 

utilized to calculate the macro-strain mode shapes. 

Four different damage cases were considered in this 

study as shown in Fig. 5. The damage was simulated by 

reducing width of some length of a beam to consider 

rigidity reduction due to cracks within some range of a 

beam. Damage Case 1 is a symmetrical single location 

damage case where the width of the beam within the S5 and 

S6 sensor range is reduced to 20 mm. Such damage will 

 

 

 
Fig. 5 A simply supported beam model for numerical studies. 

The first figure is the side view of the beam. The other five 

figures below are the top views of the beam 

1/ 2

j-2 j-1 j j+1 j+2

1

1/ 2

(1) Measure time history of response of acceleration in 
the lateral DOFs of the beam using accelerometers.

(2) Identify modal frequencies and mode shapes of the 
lateral DOF of both intact and damaged systems using 
stochastic subspace identification algorithm. 

(3) Construct approximated flexibility matrix of the 
lateral DOF of both intact and damaged systems.

(4) Calculate virtual displacement by multiplying virtual 
force configuration composed of lateral forces by the 
flexibility matrix of both intact and damaged systems.

(5) Calculate virtual work by multiplying virtual force 
configuration composed of lateral forces by the virtual 
displacement of both intact and damaged systems.

(7) Shift the virtual force configuration and repeat step (4) 
to step (6) to estimate rigidity ratio of the other local 
part .

(6) Estimate rigidity ratio of only the local part with non-
zero virtual stress centered at measurement point j 
using virtual work of both intact and damaged systems.

(1) Measure time history of response of macro-strain of 
the beam segments using long-gauge sensors. 

(2) Identify modal frequencies and mode shapes of the 
macro-strain of both intact and damaged systems using 
stochastic subspace identification algorithm. The mode 

shapes of the rotary DOF are calculated using Eq. (5) 
with known boundary conditions.

(3) Construct approximated flexibility matrix of the 
rotary DOF of both intact and damaged systems.

(4) Calculate virtual displacement by multiplying virtual 
force configuration composed of moments by the 
flexibility matrix of both intact and damaged systems.

(5) Calculate virtual work by multiplying virtual force 
configuration composed of moments by the virtual 
displacement of both intact and damaged systems.

(7) Shift the virtual force configuration and repeat step (4) 
to step (6) to estimate rigidity ratio of the other local 
part .

(6) Estimate rigidity ratio of only the local part with non-
zero virtual stress numbered as segment j using virtual 
work of both intact and damaged systems.

Lateral Approach Rotary Approach
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cause 33.3% of flexural stiffness reduction of the damaged 

beam segments; Damage Case 2 is an unsymmetrical single 

damage case where the width within the S3 range is reduced 

to 20 mm; Damage Case 3 is a multi-damage-location case 

mixed by the first 2 damage cases; and Damage Case 4 is a 

continuous damage case where the width within the S1 to 

S8 range is reduced to 20 mm. Note that if no change in 

stiffness is present, the rigidity ratio will be estimated as close 

to 1.0. 

The flexibility matrices of different cases were 

calculated utilizing the mode shapes in the rotary DOF and 

the natural frequencies obtained from the numerical model. 

In practice, the number of qualified fundamental modes 

identified from measured vibration signals is limited. 

Therefore, in this study, the numbers of the lowest 

fundamental modes n considered were 1, 2, 3, 5, and 10 in 

order to view the effects on damage detection results caused 

by the truncation of modes when constructing the flexibility 

matrices. For each segment, the force configuration of Fig. 

2 was utilized as both the first load configuration 𝑓1 and 

the second load configuration 𝑓2 . The flexural rigidity 

ratios (EI+ΔEI)/EI at every segment of the different damage 

cases utilizing different numbers of modes as well as the 

designated flexural rigidity ratios for reference are 

illustrated in Fig. 6.  

 

 

 
(a) 

 
(b) 

Fig. 6 Estimated flexural rigidity ratio utilizing a different 

number of non-mass-normalized modes for (a) Damage Case 

1; (b) Damage Case 2; (c) Damage Case 3; (d) Damage Case 

4; and (e) the mass-normalized modes for Damage Case 4 

 
(c) 

 
(d) 

 
(e) 

Fig. 6 Continued 

 

 

It can be seen from Fig. 6 that, in general, the flexural 

rigidity ratios estimated utilizing the first few modes can 

not only locate the damage locations but can also quantify 

the damage with an acceptable accuracy, except for Damage 

Case 4. It is worth noting that even if only the first mode 

was utilized, the flexural rigidity ratios within the damage 

zones were estimated quite close to the reference value for 

the first three damage cases. The methodology seems 

effective for either symmetrical or unsymmetrical damage 

or single/multiple damage cases. For Damage Case 4 where 

most of the segments are damaged continuously, the extents 

of estimated rigidity ratio of the damaged segments are 

close to 1.0 while those of the intact segments are much 

higher than 1.0. In this continuously damaged case, 

although the error of the damage extent is large, the damage 

locations may still be observed since the change in the  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 7 Estimated flexural rigidity ratio utilizing the first three 

modal parameters with a 2% noise level using the rotary 

approach for different damage cases: (a) Damage Case 1; (b) 

Damage Case 2; (c) Damage Case 3; and (d) Damage Case 4 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 8 Estimated flexural rigidity ratio utilizing the first three 

modal parameters with a 2% noise level using the lateral 

approach for different damage cases: (a) Damage Case 1; (b) 

Damage Case 2; (c) Damage Case 3; and (d) Damage Case 4 
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rigidity ratios is large and the difference between the intact 

and damaged segments is also great. In other words, when 

the abnormally high rigidity ratios of only some segments 

are observed, it is probably not the increase of rigidity of 

these segments with abnormally high rigidity ratios but 

rather the decrease of rigidity of the other segments. The 

estimated error is possibly due to the approximation of the 

flexibility matrix using non-mass-normalized mode shapes. 

If the mass-normalized mode shapes were used to estimate 

the flexibility matrix, then the error becomes much smaller 

as shown in Fig. 6(e). 

The natural frequencies and mode shapes identified 

from the measured vibration signals may contain errors and 

the flexibility matrix is constructed utilizing these modal 

parameters. Therefore, the estimated flexural rigidity ratio 

could be altered by these errors in the identified modal 

parameters. In this study, the noise effect of the modal 

parameters was investigated. Random noise of Gaussian 

distribution with a standard deviation of 2% was added 

directly to the natural frequencies and the macro-strain 

mode shapes for both the intact and damaged cases. That is, 

the magnitude of the standard deviation of the added 

random noise was 2% of the magnitude of the original 

parameters. The first three lowest fundamental modes were 

utilized to construct the flexibility matrix (i.e., n=3), which 

is realistic for most of the practical cases. The flexural 

rigidity ratio was estimated 1000 times for each case and 

then the mean and standard deviation of the estimated 

flexural rigidity ratio were calculated. Fig. 7(a) to 7(d) 

illustrate the estimated flexural rigidity ratio of the four 

damage cases considering noise effects. It can be observed 

that although the 2% noise level induced some estimation 

error, damage localization and quantification was still quite 

successful. Moreover, the standard deviation of the error 

caused by the noise at the damaged segments is slightly 

smaller than the one at the intact segments. 

In addition, random noise of Gaussian distribution with 

a noise level with a standard deviation of 2% was added 

directly to the natural frequencies and mode shapes in the 

lateral DOF for both the intact and damaged cases. The 

mode shapes were assumed to be measured at the eleven 

nodes as shown in Fig. 5. Similar to the original paper, the 

load configuration as shown in Fig. 3 was used as both the 

first and second load configurations. The flexural rigidity 

ratio was estimated using the first three lowest fundamental 

modes 1000 times. In Fig. 8, the estimated flexural rigidity 

ratio at each measurement point represents the estimated 

rigidity ratio using the load configuration centered at each 

corresponding measurement point. The mean and standard 

deviation of the estimated flexural rigidity ratio at each 

measurement point were calculated and are shown in Fig. 8 

for the same four damage cases. It is evident that the effect 

of noise increases the difficulty in damage localization and 

quantification. Note that the error caused by the 2% noise 

level in the displacement mode shapes in the lateral DOF is 

much higher than the one caused by the 2% noise level in 

the macro-strain mode shapes.  

 

 

4. Experimental studies 

For the traditional LFM using lateral measurements 

such as acceleration responses of a beam element, in order 

to ensure that the stress induced by virtual forces only exists 

within a local region, the distance of each successive 

section of the beam element must be identical. This 

becomes a restriction for employing the LFM. On the other 

hand, based on the methodology derived in the previous 

section, a potential merit of the proposed approach using the 

macro-strain measurement is that the distance between each 

pair of joints can be different. This release of the restriction 

of equal distance between adjacent measurement joints 

could benefit the damage detection of beam structures using 

the LFM since the setup of macro-strain measurements can 

be easily adjusted according to demand. For example, for a 

cantilever beam structure, the beam elements that 

experience the largest moment are the ones that are close to 

the fixed end if a concerned lateral load is applied at the 

free end of the beam. Hence, these elements may deserve a 

denser arrangement of sensors for health monitoring under 

this load pattern during operation. Another example is that 

if more attention is desired for certain beam elements (for 

e.g., the elements that are close to the support of a simply 

supported beam), the sensor can also be arranged to be 

concentrated on that region. For the other beam elements 

that are of lower concern, fewer sensors can be arranged to 

be installed within these elements to reduce effort and cost 

of both installation and maintenance for structural health 

monitoring.  

Since this paper aims to prove the feasibility of the 

proposed new approach using rotary DOF with macro-strain 

measurement, unlike the numerical study, only limited 

number of sensors were employed in this experimental 

study. The number of long-gauge sensors was determined by 

the length of available shortest commercial long-gauge macro 

sensors and the length of the beam. A simply supported steel 

beam with dimensions 0.05 m×0.008 m×1.95 m was 

constructed as shown in Fig. 9. The shortest length of the 

packaged long-gauge FBG sensor was 40 cm, which means 

only a few long-gauge FBG sensors could be installed onto 

the beam specimen within the limited length. In order to 

demonstrate the ability of length customization of the long- 

gauge FBG sensors, two different lengths of the long-gauge 

 

 

 
Fig. 9 A simply supported beam specimen for experimental 

studies. The first figure is the side view of the whole setup of 

the beam specimen. The other three figures below are the top 

views of the steel beam 
 

Damage Case 3
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Fig. 10 A simply supported beam specimen with long-gauge 

FBG sensors and accelerometers: overview (left); and close 

view (right) 

 

 
Fig. 11 A schematic diagram of a typical long-gauge FBG 

holder 

 

 

FBG sensors were employed. As a results, totally only two 

40 cm long-gauge FBG sensors and one 100 cm long-gauge 

FBG sensor were installed. Although high modes of the beam 

will be difficult to be identified using only these three long-

gauge sensors, actually, only the first mode can be enough to 

construct a flexibility matrix with acceptable accuracy to 

estimate rigidity ratios using LFM as illustrated in the 

original paper (Reynders and De Roeck 2010). This is the 

merit of LFM because a monitoring system with dense FBG 

sensors are costly mainly because expensive sensing 

interrogators are required. Although more sensors usually 

lead to better damage identification results, a monitoring 

system with less FBG sensors is more practical in the financial 

aspect when acceptable damage identification results can be 

obtained. 

These FBG sensors composed of thin plastic tube and 

slim optical fiber in the core were connected in series to the 

MOI SI-425 sensing interrogator. To achieve the same 

density of the accelerometers, three Setra141 

accelerometers were attached to the bottom of the beam and 

the vertical acceleration response was recorded by the NI-

9205 data acquisition module. Note that these 

accelerometers had to be installed with equal spacing if the 

mode shapes in the lateral DOF were used. Because an 

interval between the ends of each long-gauge FBG sensor 

was required to connect each sensor, the long-gauge FBG 

holder made by aluminum was designed as shown in Fig. 

10 and Fig. 11. The screws “A” of the holders were 

designed to provide small pre-tension of the FBG sensors so 

that the both compression and tension vibrating signals of 

the FBG sensors could be measured, while the screws “B” 

was for fixing after screws “A” was set. The holder was 

attached to the steel beam only via a small steel patch. 

Because the Young’s modulus and dimension of the FBG 

sensor was much smaller than the ones of the beam 

specimen, the flexural stiffness contribution of the FBG 

sensor was actually less than 5% and hence can be 

neglected. Besides, since the stiffness of the aluminum 

holder was much higher than the stiffness of the long-gauge 

FBG sensor, the holder showed similar behavior to a rigid 

body when the beam was vibrating. As a result, the 

measured dynamic macro-strain signals of the long-gauge 

FBG sensors were mainly contributed from the flexural 

deformation of the beam. 

The macro-strain mode shapes identified from the 

dynamic macro-strain signals could be used to calculate the 

mode shape in the rotary DOF using the following equation 

1( )
k k

k ki
i ik

l

h


     (7) 

where 
k

i  is the macro-strain mode shape of the i
th

 mode of 

the k
th

 long-gauge FBG sensor; and l
k
 represents the length 

of the k
th

 long-gauge FBG sensor. The distance between the 

central axis of the sensors and the central axis of the beam 

was 60 mm. For this simply supported beam, as the relative 

lateral displacement of the two supports was zero since no 

settlement of these two supports took place, the initial mode 

shapes in the rotary DOF at the boundaries could be easily 

estimated. 

Three different damage cases were considered in this 

study as shown in Fig. 9. Damage Case 1 simulates a single 

damage close to the left support where the width of the 

damaged range with a length of 50 mm is reduced to 20 

mm. Such damage will cause 60% of flexural stiffness 

reduction of the beam element within the 50 mm range. 

Damage Case 2 simulates another single damage close to 

the middle of the beam where the width of the damaged 

range with a length of 100 mm is reduced to 20 mm. Such 

damage will cause 60% of flexural stiffness reduction of the 

beam element within the 100 mm range. Finally, Damage 

Case 3 is a multi-damage-location case mixed by the first 2 

damage cases.  

As the size of the beam specimen was quite small, the 

beam was excited by impact forces simulated by a human 

finger tapping at several different points. For each test, both 

the vertical acceleration at node 2 to node 4 and macro-

strain vibration signals of the three long-gauge FBG sensors 

were collected for 60 seconds at a sampling rate of 250 Hz. 

The modal parameters, i.e., modal frequencies, modal 

damping and mode shapes, were identified from the output-

only acceleration measurement or macro-strain 

measurement using the stochastic subspace identification 

algorithm (Van Overschee and De Moor 1996). The rigidity 

ratio was estimated following similar procedure in the 

numerical study using these identified modal parameters 

and the same virtual forces as in the numerical studies. The 

reference value of the rigidity ratio was calculated using the 

corresponding virtual force configurations and the 

flexibility matrix constructed using modal parameters 

obtained from finite element beam models. Note that the 

DOFs of the mode shapes of “rotary approach” and “lateral 

A 

B A 

B 
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approach” were different. The virtual force configurations 

of these two approaches were also different. Therefore, the 

reference value of these two approaches were different. 

Besides, the holders were considered in the finite element 

model constructed using ANSYS software and the effect of 

mass and stiffness of the holder was found very small, as 

can be observed in the reference value of rigidity ratios in 

Fig. 12 to Fig. 14. 

In Fig. 12(a), the estimated and reference rigidity ratio 

of the first damage case using the modal parameters in the 

lateral DOF are plotted. Since the damage location is 

between node 1 and node 3, the reference value at 

measurement point 2, which represents the rigidity ratio 

between these regions, is expected to be less than 1.0. 

However, observation of the reference value indicates that 

theoretically it is not easy to detect the damage close to the 

support in this case since the reference value at 

measurement point 2 almost equals 1.0. Moreover, the error 

of the estimated rigidity ratio using the modal parameters in 

the lateral DOF may make the damage localization and 

quantification results quite confusing, especially for the 

case using only the first mode. On the other hand, the 

reference rigidity ratio at the 1
st
 segment is 0.83 in Fig. 

12(b) using the mode shapes in the rotary DOF. The 

estimated rigidity ratio using the first modal parameters in 

the rotary DOF clearly identifies the damage location at the 

first segment with acceptable estimation of the damage 

extent. However, the error of the estimated rigidity ratios 

using the first two modal parameters in the rotary DOF 

becomes even larger at both the first segment and the third 

segment. 

For the second damage case, the estimated and reference 

rigidity ratio using the modal parameters in the lateral DOF 

are shown in Fig. 13(a). The reference value indicates that 

the theoretical value at measurement point 2 approximates 

to 0.79, while the one at measurement point 3 approximates 

to 0.96. The estimated rigidity ratios using the first modal 

parameters in the lateral DOF are quite close to the 

 

 

 
Fig. 12 Estimated rigidity ratio for the first damage case 

using the (a) modal parameters in the lateral DOF; and (b) 

modal parameters in the rotary DOF 

 

 
Fig. 13 Estimated rigidity ratio for the second damage case 

using the (a) modal parameters in the lateral DOF; and (b) 

modal parameters in the rotary DOF 

reference value at these two points. However, the error of 

the estimated rigidity ratio using the first two modal 

parameters in the lateral DOF becomes even larger. On the 

other hand, the estimated and reference rigidity ratio using 

the modal parameters in the rotary DOF are shown in Fig. 

13(b). The reference value indicates that the theoretical 

value at measurement point 2 approximates to 0.87. The 

estimated rigidity ratio using the first rotary modal 

parameters is quite close to the reference value at this point. 

The estimated rigidity ratio using the first two modal 

parameters in the rotary DOF is also quite close to the 

reference value at this point. However, the error of the 

estimated rigidity ratios using the first two modal 

parameters in the rotary DOF is even smaller at the other 

points compared to the ones using only the first modal 

parameters in this case. 

For the third damage case with a mixed damage of the 

first two damage cases, the reference value and estimated 

value of the rigidity ratios using modal parameters in the 

lateral DOF and in the rotary DOF are shown in Fig. 14(a) 

and Fig. 14(b), respectively. It is evident that the error of the 

estimated rigidity ratios using the modal parameters in the 

lateral DOF is quite large; thus, damage localization is 

somewhat difficult. On the other hand, the estimated 

rigidity ratios using the modal parameters in the rotary DOF 

are much more acceptable. The two damage locations are 

clearly identified with an acceptable damage extent 

estimation using the first modal parameters in the rotary 

DOF. However, the error of the estimated rigidity ratio at 

the first segment increases if the first two modal parameters 

in the rotary DOF are used. The values of the rigidity ratios 

using the “lateral approach” and the “rotary approach” in 

Fig. 12 to Fig. 14 are summarized in Table 1 and Table 2, 

respectively. 

The holder of the long-gauge FBG sensor is designed to 

have less effect on the beam (i.e., less weight, higher 

stiffness comparing to the long-gauge FBG sensor, and 

attached to the beam via a small point). In practical, for 

such a small holder installed in a real bridge, no effects are  

 

 

 
Fig. 14 Estimated rigidity ratio for the third damage case 

using the (a) modal parameters in the lateral DOF; and (b) 

modal parameters in the rotary DOF 

 

Table 1 The rigidity ratios using the “lateral approach” in 

Fig. 12 to Fig. 14 

Measurement 

point 

Case 1 Case 2 Case 3 

1 

Mode 

2 

Modes 
Reference 

1 

Mode 

2 

Modes 
Reference 

1 

Mode 

2 

Modes 
Reference 

2 1.04 0.95 1.00 1.09 0.93 1.00 1.31 1.02 1.00 

3 1.29 1.06 1.00 0.78 0.82 0.79 0.94 0.93 0.79 

4 0.92 1.02 1.00 0.93 1.08 0.96 0.99 1.04 0.96 
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Table 2 The rigidity ratios using the “rotary approach” in Fig. 

12 to Fig. 14 

Segment 

point 

Case 1 Case 2 Case 3 

1 

Mode 

2 

Modes 
Reference 

1 

Mode 

2 

Modes 
Reference 

1 

Mode 

2 

Modes 
Reference 

1 0.83 0.93 0.83 0.95 1.00 1.00 0.83 0.97 0.83 

2 0.97 0.96 1.00 0.84 0.83 0.87 0.83 0.82 0.87 

3 1.00 1.08 1.00 1.11 0.99 1.00 1.11 1.03 1.00 

 

 

required to be considered because the mass, stiffness, and 

size are very small comparing to a real bridge. Actually, 

these holders are already considered in the finite element 

model constructed using ANSYS software and the effect of 

mass and stiffness of the holder is very small, as can be 

observed in the reference value of EI ratios in Fig. 12 to 

Fig. 14. 

Based on the comparison of the estimated rigidity ratios 

of these three damage cases using the modal parameters in 

the lateral DOF and in the rotary DOF, in general, the 

damage locations are identified more clearly and the 

estimated damage extents are closer to the reference values 

using the modal parameters in the rotary DOF with the 

LFM. In fact, the local region with a non-zero stress using 

the rotary approach is smaller than the one using the lateral 

approach. For the lateral approach, the local region is 

between three nodes whereas the local region for the rotary 

approach is only between two. Since only the average 

rigidity ratio can be estimated within the local region, the 

same extent of damage induces a higher reduction ratio if a 

smaller local region is valid. That is, the rotary approach is 

more sensitive to damage, especially when the size or extent 

of the damage is smaller. Furthermore, if the virtual forces 

of the lateral approach are used, the induced moment closer 

to the center of the virtual forces is higher than the one at 

the other parts in the local region. Therefore, when the 

damage is not close to the center of the local region, the 

average reduction ratio will be very small. As a result, when 

the damage is closer to a support, it is not easily detected 

using the lateral approach. On the other hand, since the 

induced moment is uniform within a local region if the 

virtual forces of the rotary approach are used, it is still 

possible to identify damage even if it is very close to the 

support. 

 

 

5. Conclusions 
 

This study proposes the new concept of utilizing macro-

strain measurements via the Local Flexibility Method 

(LFM) to perform damage localization and quantification of 

a beam structure. The macro-strain mode shapes are 

obtained by the measurement of dynamic vibration signals 

using long-gauge Fiber Bragg grating (FBG) sensors and 

then the mode shapes in a rotary degree of freedom (DOF) 

are calculated using the macro-strain measurements. The 

mode shapes in the rotary DOF and the eigenfrequencies 

are used to estimate the flexibility matrices of a beam 

structure both before and after damage. Based on the LFM 

algorithm and the modified visual force configurations, the 

location and extent of the damage of beam segments can be 

estimated. Note that compared to static measurement using 

FBG sensors whose signals may be significantly affected by 

temperature, the signals of dynamic vibration signals of 

FBG sensors may not be directly affected by temperature 

and are mainly correlated to the properties of the structure, 

e.g., the rigidity. 

The results of the proposed rotary approach were 

compared to those obtained using the traditional lateral 

approach via both numerical and experimental studies. 

From the numerical studies, it was found that the rotary 

approach is more robust to noise in the measurement if the 

same level of noise exists in the modal parameters. 

However, note that in real applications, the noise level of 

macro-strain mode shapes and displacement mode shapes in 

the lateral DOF depends on the measurement methodology 

and measurement conditions. The noise level of these two 

measurements could be quite different, which is beyond the 

scope of this study. From the experimental studies it was 

found that the proposed rotary approach has two other 

advantages. The first advantage is that the sensor 

configuration can be flexible. That is, the length of the long-

gauge FBG sensor can be different for each adjacent 

segment. Therefore, sensor deployment can be customized 

for different applications and hence a more cost-effective 

arrangement of sensors could be achieved. Furthermore, 

when the damage is close to the supports of a simply 

supported beam, the damage is more likely to be discovered 

using the rotary approach, outlining another significant 

advantage of using the proposed method. 
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