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1. Introduction 

 
In recent years, a large amount of literature has been 

carried out to explore properties and behaviour of micro-

composite materials. Functionally graded carbon nanotube 

reinforced composite (FG-CNTRC) materials are a new 

breed of micro-composite materials with properties that 

vary spatially according to a certain non-uniform 

distribution of the reinforcement phase. Since the carbon 

nanotube is used as reinforcement in the composite, thus 

many researchers interested to investigate about this field. 

They have excellent characteristics such as high aspect 

ratio, low density, high strength and stiffness. These 

materials are used widely in various industries including 

aerospace, automobiles, electronics, optics, chemistry, 

biomedical engineering, nuclear engineering and 

mechanical engineering.  

Uniform and tapered beams have a wide range of 

applications from giant structures such as spacecraft’s, ships 

and submarines, micro- and nano-electro-mechanical 

system (MEMS and NEMS) devices, including biomedical 

applications, micro-sensors and micro-actuators.  

So many researches in the field of static, buckling, and  
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vibration analysis are done by researchers on them (Lau et 

al. 2004). To verify the performance of the numerical 

methods, numerical results of them are compared with those 

of the existing displacement based finite element models 

(Reddy 2004, 1987). For each beam bending model, three 

types of boundary conditions (clamped-clamped (CC), 

hinged-hinged (HH), and pined-pined (PP) boundary 

conditions) are examined and the results are compared with 

the other results. Vibrations of non-uniform functionally 

graded (FG) multi-walled carbon nanotubes (MWCNTs) -

polystyrene nano-composite beams under action of moving 

load are presented by Heshmati and Yas (2013). Their 

results illustrated that the symmetrical linear distribution of 

MWCNTs results with an increase in the fundamental 

natural frequency of nano-composite beams which are 

higher than those of beams with uniform and unsymmetrical 

MWCNTs distributions. In the other work, dynamic 

analysis of functionally graded multi-walled carbon 

nanotube-polystyrene nano-composite beams subjected to 

multi-moving loads is studied by Heshmati and Yas (2013). 

Sahmani and Ansari (2013) illustrated size-dependent 

buckling analysis of functionally graded third-order shear 

deformable micro-beams including thermal environment 

effect. They obtained that temperature change plays more 

important role in the buckling behavior of FG micro-beams 

with higher values of dimensionless length scale parameter. 

Zhang and co-workers (2014) studied non-classical 

Timoshenko beam element based on the strain gradient 
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theory (SGT). Their numerical results showed that small 

size effects are significant when the thickness of beam is 

small, but become negligible with increasing thickness of 

beam. Also, some results can be employed as a benchmark 

for further studies. Free vibration and buckling analysis of 

Timoshenko beams reinforced by single-walled carbon 

nanotubes (SWCNTs) is considered by Yas and Samadi 

(2012). Their results illustrated that several parameters such 

as various boundary conditions, the value of volume 

fraction of CNTs and the stiffness of elastic foundation are 

effective in free vibration and buckling characteristics of 

beam. Static and nonlinear vibration analysis of micro 

beams based on elastic foundation using Euler-Bernoulli 

beam theory is investigated by Simsek (2014). They 

considered the effects of the length scale parameter and the 

stiffness coefficients of the nonlinear foundation on the 

static deflection and the ratio of nonlinear frequency to 

linear frequency. Mohammadimehr and Rahmati (2013) 

presented the electro-thermo-mechanical nonlocal axial 

vibration analysis of single-walled boron-nitride nano-rods 

(SWBNRs) under electric excitation. They obtained the 

constitutive equation for the nano-rods under electro-

thermo-mechanical loadings, then they discussed about 

effects of the aspect ratio, small scale parameter, clamped-

clamped and clamped-free boundary conditions on the 

natural frequency. Strain gradient beam elements are 

illustrated by Kahrobaiyan and co-workers (2014). Their 

results observed that there is a good agreement between the 

experimental and the strain gradient based FEM results 

while the difference between the experimental and the 

classical FEM results is significant. In addition, it is 

indicated that the new beam element can successfully 

capture the size dependency and the structures modelled by 

this element show stiffer behavior than those modelled by 

the classical beam element. Ghiasian et al. (2014) studied 

non-linear rapid heating of FG beams. Ghorbanpour Arani 

et al. (2016) presented modelling and vibration control of 

axially moving laminated carbon nanotubes/fiber/polymer 

composite (CNTFPC) plate under initial tension. They 

obtained the governing equations of the laminated CNTFPC 

plates based on first-order shear deformation plate theory 

(FSDT). They obtained that, thermally induced vibrations 

indeed exist especially for the case of sufficiently thin 

beams. Sahmani et al. (2015) investigated the free vibration 

characteristics of post buckled third-order shear deformable 

functionally graded material (FGM) nano-beams including 

surface effects. Their obtained results revealed that the 

natural frequency of FGM nano-beam decreases by 

increasing the value of material property gradient index. 

Also, it is revealed that the surface effect plays more 

important role on the vibration characteristics of the 

buckled FGM nano-beams with lower thicknesses. Large-

amplitude free vibrations of FG beams by means of a finite 

element formulation are studied by Hemmatnezhad et al. 

(2013). Their results showed that the power exponent 

increases, both linear and nonlinear frequencies decrease. 

This is due to the deviation of the beam from pure alumina 

to steel as it grows up from zero to infinity. Zhang et al. 

(2016) investigated a two-level method for static and 

dynamic analysis of multi-layered composite beam and 

plate. Their obtained results indicated that the Misses stress 

contours and the maximum stress of the coarse element 

with the global-local higher-order theory are quite 

coincident with the traditional FEM. Ghorbanpour and co-

workers (2012) presented nonlinear vibration of SWBNNTs 

based on nonlocal Timoshenko beam theory using 

differential quadrature method (DQM). They concluded that 

imposing a direct electric potential in axially polarized 

direction causes decreasing fundamental frequency and 

applying it in reverse direction increases it. Vibration 

analysis of non-uniform and non-homogeneous boronnitride 

nanorods embedded in an elastic medium under combined 

loadings using DQM is studied by Rahmati and 

Mohammadimehr (2014). It is concluded that frequency 

ratio decreases considering electrothermal loadings are 

more effective in non-uniform nanorods, in comparison 

with uniform nanorod. Also, the natural frequency of boron 

nitride nanotube (BNNRs) can be varied using different 

cross section coefficient and non-homogeneity parameter. 

Mohammadimehr et al. (2016) investigated size dependent 

effect on the buckling and vibration analysis of double-

bonded nanocomposite piezoelectric plate reinforced by 

BNNT based on modified couple stress theory (MCST). 

The results of their research showed that the critical 

buckling load decreases with an increase in the 

dimensionless material length scale parameter. Thermal 

postbuckling behavior of size-dependent FG Timoshenko 

microbeams is taken into account by Ansari et al. (2013). 

Their numerical results presented with an increase in the 

values of material gradient index and dimensionless length 

scale parameter leads to larger thermal postbuckling 

deflections. Dynamic analysis of FG nano-composite beams 

reinforced by randomly oriented CNT under the action of 

moving load is studied by Yas and Heshmati (2012). Their 

obtained results indicated that a CNT-reinforced composite 

can possibly reach superior vibrational properties only if the 

CNTs are controlled to be aligned in the whole material. 

Chakraborty et al. (2002) investigated finite element 

analysis of free vibration and wave propagation in 

asymmetric composite beam with structural discontinuities. 

Their results from the analysis showed that the formulated 

element predicts response that compares very well with the 

available results. Taati and co-workers (2014) investigated 

size-dependent generalized thermo elasticity model for 

Timoshenko micro-beams based on strain gradient and non-

Fourier heat conduction theories. They compared the results 

for two cases including the modified couple stress and the 

classical continuum theories. The illustration of the 

existence of thermal damping in the coupled thermo elastic 

problem is another important contribution of their study. 

Mohammadimehr et al. (2015) investigated the free 

vibration of viscoelastic double-bonded polymeric nano-

composite plates reinforced by FG-SWCNTs using 

modified strain gradient theory (MSGT), sinusoidal shear 

deformation theory and meshless method. Their results 

showed that the elastic foundation, vdW interaction and 

magnetic field increase the dimensionless natural frequency 

of the double-bonded nano-composite plates for CT, MCST 

and MSGT. Also the material length scale parameter effects 

on the non-dimensional natural frequency of the double 
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bonded nano-composite plates are negligible at / 5h l   

for CT, and MCST and MSGT. Karimov et al. (2014) 

presented temperature gradient sensor based on CNT 

composite. They studied the thin film temperature gradient 

sensor using the composite of CNT and polymer adhesive. 

A new beam finite element for the analysis of functionally 

graded materials is studied by Chakraborty et al. (2003). 

Their results demonstrated that the static model is an 

effective way to smoothen stress jumps in bi-material 

beams. Ishaquddin et al. (2016) investigated efficient 

coupled polynomial interpolation scheme for out-of-plane 

free vibration analysis of curved beams. The results showed 

that the stiffness and consistent mass matrices generated 

from the coupled displacement models excellent 

convergence of natural frequencies. Giannopoulos et al. 

(2014) presented mechanical properties of graphene based 

nano-composites incorporating a hybrid interphase. Their 

numerical results showed that the linear enhancement of the 

reinforced component is observed as volume fraction 

increases.  

In this paper, the buckling, and free vibration analysis of 

tapered FG-CNTRC micro beam using FEM is investigated 

for various distributions of CNTs and different boundary 

conditions. Based on the Hamilton’s principle type, the 

governing equations of equilibrium are obtained. Also the 

influences of various parameters including α and β, three 

material length scale parameters, aspect ratio, different 

boundary conditions, and various distributions of CNT such 

as UD, USFG and SFG on the critical buckling load and 

non-dimensional natural frequency are illustrated. 

 

 

2. Material Properties of CNTRC Beams  
 

According to Fig. 1, the tapered micro-composite beam 

is considered with length L and thickness h(x) 

(Mohammadimehr et al. 2015). This micro-composite beam 

rested on Pasternak elastic foundation. The Pasternak 

foundation is described by a two-parameter model that the 

first parameter kw is the spring constant of the usual Winkler 

foundation and the second parameter kg represents the shear 

constant of Pasternak foundation.  

 

 

 
 

(a) (b) 

Fig. 1 An schematic view of geometry and coordinate 

system for tapered micro-composite beam rested on 

Pasternak foundation 

 

The rule of mixture is employed to estimate the effective 

properties of carbon nanotube reinforced composites 

(CNTRC) material. For FG micro-composite beam 

reinforced by SWCNT, one can be written the following 

equation (Yas and Samadi 2012, Shen 2009) 

1CNT mV V   (1) 

where VCNT and Vm are CNT and matrix volume fractions, 

respectively. VCNT is defined for different distribution of 

CNT. In this paper, three types of CNT distribution are 

assumed as follows (Yas and Samadi 2012, Shen 2009) 

Uniform distribution (UD) 

CNT CNTV V  (2) 

Unsymmetrical functionally graded distribution of CNT 

(USFG) 

2
( ) 1CNT CNT

z
V z V

h

 
  
 

 (3) 

Symmetrically linear distribution of CNT (SFG) 

2
(z) 2

CNT CNT

z
V V

h

 
   

 

 (4) 

where h is the thickness of micro-composite beam at 

x=0 and VCNT is considered as the following form (Heshmati 

and Yas 2013) 

( ) ( )

CNT

CNT

CNT CNT
CNT CNT

m m

W
V

W W
 

 



 

 
(5) 

WCNT, CNT and m are mass fraction of CNT, density of 

CNT and matrix, respectively. 

According to rule of mixture model, the effective 

Young’s modulus, shear modulus, Poisson’s ratio and mass 

density of CNTRC Reddy beams can be expressed as (Yas 

and Samadi 2012, Shen 2009) 

11 1 11

2

22 22

3

12 12

12

CNT

CNT m m

CNT m

CNT

m

CNT m

CNT

m

CNT CNT m m

CNT CNT m cn

E V E V E

V V

E E E

V V

G G G

V V

V V







  

  

 

 

 

 

 

 
(6) 

where, 
11

CNTE ,
22

CNTE ,
12

CNTG ,
CNT
 ,

CNT
  and 

m
E ,

m
G ,

m
 ,

m
  indicate the Young’s modulus, shear modulus, 

Poisson’s ratios and density of CNT and matrix, 

respectively. (i 1,2,3)
i

   denotes the size dependent 

material properties. 

Also thermal expansion coefficient is expressed as 

follows (Shen 2009) 

11

CNT

CNT m m
V V     (7) 
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where, 
11

CNT  and 
m

 , are thermal expansion coefficients 

of CNT and matrix, respectively that are obtained by the 

following form (Shen 2009) 

 

 

8

5

1.0777 10 ( 300) 3.4584

4.5 10 1 0.0005( 300)

CNT

m

T

T









    

    
 (8) 

 

 

3. Theory and formulations 
 
3.1 Maxwell’s relations 
 

The governing electrodynamics Maxwell equations are 

written as follows (Narendar et al. 2012) 

2
2 2

2

0
(U H) (0, ,0)

0 0
0 0

( ,0, ) (0,0, )

0 0
f (J ) ( )

0 0

x

x

x

x x x

x

x x

x

u w
x y zh Curl wH

H
wH

wH wH wH
z x x

wH w w
h H Hx x

x x x
H

   

  

         

  
 
  

  
    

        
  

 

(9) 

where ( ,0,0)xH H  is magnetic field vector and μ is the 

magnetic field permeability. 

Therefore the component of Lorentz forces along the x, 

y and z directions states as follows 

2
2

2
0, 0,x y z x

w
f f f H

x


 
    

 
 (10) 

 
3.2 The virtual form of motion equations for FG-

CNTRC micro-composite Reddy beam 

 

The displacement fields for FG-CNTRC micro-

composite beam are derived based on third- order shear 

deformation theory at any point of the beam can be written 

as (Sahmani et al. 2013, Sahmani and Ansari 2015): 

3

1 2 2

3 2

4 4
( , , ) ( , ) ( , ) ( ( , ) ) , c

3 3

( , , ) ( , ) , (x,z, t) 0

z w
u x z t u x t z x t x t

xh h

u x z t w x t u

 


    


 

 (11) 

In which the displacement fields u1, u2 and u3 represent 

components of displacement vector in x, y and z directions, 

respectively, and u and w denote the displacements on the 

mid-plane along x and z directions, respectively. 

Assuming small deformations, the strains in terms of 

displacements can be written as 

, ,

3 2

2 2

2

2

1
(u u )

2

4 w
( )

3

1 2 w
( ) ( )

2

ij i j j i

xx

xz

u z
z

x x xh x

w z

x xh



 


  


 


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   
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  
   
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 (12) 

Based on the SGT, the dilatation gradient, γi, deviatoric 

stretch gradient, (1)

ijk , and symmetric rotation gradient 

tensors, ij , are defined as (Lam et al. 2003) 

,

(1)

, , , , ,

, , , ,

1 1
( ) ( 2 )

3 15

1
[ ( 2 ) ( 2 )]

15

1
( ),       , 1, 2,3

2
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j i

i j
x x

 
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     





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 

 (13) 

where i is the components of the rotation vector that can be 

expressed as follows 

1
(curl(u))

2
i i   (14) 

also 

3 32 1 2 1

1 2 3

2 3 3 1 1 2

1 1 1
( ),     ( ),     ( )

2 2 2

u uu u u u

x x x x x x
  
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     

     
 (15) 

Substituting Eqs. (11) and (12) into Eq. (13) yields the 

following form 
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(16) 

Furthermore, for a linear orthotropic elastic material, the 

corresponding higher order stress can be obtained by the 

following constitutive relations: 
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(17) 

where l0, l1 and l2 are three material length scale parameters 

denote the dilatation gradients, deviatoric stretch gradients 

and rotation gradients, respectively. Also cij and μ denote 

components of elastic stiffness coefficient and shear 

modulus, respectively. 
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Moreover, the parameters pi, 
(1)

ijk , and mij represent the 

higher-order stresses; also ij and εij are normal stress and 

strain, respectively. 

The strain, kinetic energy, the virtual work done by the 

external forces and the work done by the axial force PM of 

the FG micro-composite beam reinforced by CNTs are 

written as follows 
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(18) 

Finally, Lorentz work is written as 

Lorentz zf w dA    (19) 

where 
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(20) 

where c11 and c55 are elastic stiffness coefficients which are 

defined as 
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11 55 122
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E
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 (21) 

According to Hamilton’s principle, the variation form of 

the motion equation can be considered as: 

( ) 0p LorentzS T R              (22) 

According to the strain gradient theory, the variation 

form of strain energy and virtual work done by the external 

forces are expressed as follows (Reddy 2004) 
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(23) 

 

3.3 Finite Element Method (FEM) 

In this paper, FEM is used to solve the governing 

equations of FG-CNTRC micro-composite Reddy beams. 

According to FEM, the axial displacement u, transverse 

deflection w and rotation ψx are interpolated as follows 

(Reddy 2004) 
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(24) 

where Ni (i=1,…,14) are the associated shape functions for 

axial, transverse and rotational degrees of freedom, 

respectively, that step calculation of expression as follows: 

The interpolation functions of displacement fields for 

the finite-element formulation are considered as follows 

(Heshmati and Yas 2013, Chakraborty et al. 2002) 
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Eq. (25) has ten constants and only six boundary 

conditions (three degrees of freedom at each node of the 

element). The four additional dependent constants can be 

expressed in terms of six other independent constants by 

substituting Eq. (25) into the governing equations of 

motion, so we have 
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(26) 

By substituting Eq. (26) into Eq. (25), the displacement 

fields are derived as the following form 
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(27) 

The equations of FEM displacements for an element of 

FG-CNRTC micro-composite Reddy beam can be 

expressed as follows (Heshmati and Yas 2013, Chakraborty 

et al. 2002) 
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(28) 

where [N1(x)] is the matrix containing functions of x and it 

is of size 3*6. The column vector {a} of independent 

constants can be expressed in terms of nodal displacements 

by substituting six displacement boundary conditions into 

Eq. (28). For x=0 (node 1) and x=le (node 2) we obtain 

(Heshmati and Yas 2013, Chakraborty et al. 2002) 

 
(29) 

Finally, we have 
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(30) 

Finally, the shape functions are obtained as follows 

 

(31) 

where  

 

(32) 

By substituting Eq. (30) into Eqs. (12) and (16), the 

components of strain, the dilatation gradients, deviatoric 

stretch gradients and rotation gradient are shown in 

Appendix A. 

Also by substituting Eq. (24) into Eq. (18) and the 

variation form of the kinematic energy is written as 

3

2

3

2

0

4
{ } [N ] { } [N ] ({ } [N ] { } [N ] )

3

4
( ) [N ]{ } [N ]{ } ([N ]{ } [N ] { })

3

{ } [N ] [N ]{ }

T T T T T T T T

u u w w

L

T

u u w w

A

T T

w w w w

z d
q z q q q

dxh

z d
T z q z q q q dAdx

dxh

q q

   

   

   

 



  
     

  
  
      
  
 
 
 
 

 

 

(33) 

Substituting Eqs. (23) and (33) into Eq. (22), the 

equations of motion can be derived as follows 
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where the elements of stiffness and mass matrices are 

written as follows 
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*Element mass matrices:
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(36) 

Also, the coefficients of stiffness matrix and mass 

moment of inertia for each element are considered as 

2 2

11

2 2

, b (z)

i i

i i

he he

i i

i i

he he

A b z c dz B z G dz

 

    (37a) 

0

2

2

(z) , 0,1,2,3,...

i

i

he

i i

he

I b z p d z i



   (37b) 

where i

eh  is the thickness for each element, α and β are the 

constant coefficients to control the thickness variations of 

FG-CNRTC micro-composite tapered Reddy beam 

(Heshmati and Yas 2013) 
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The coefficient of stability matrix can be written as 

[N ] [N ]
[G]

xb T

w w

M

xa

d d
P dx

dx dx
   (39) 

So the motion equations of FG-CNRTC micro-

composite Reddy beam can be obtained as the following 

matrix form 

     2( ) 0K M q   (40-a) 

      0
M

K P G q   (40-b) 

The element stiffness matrix in Eq. (40) is defined by 

sub-matrices 
11

ij
[k ] , 

12

ij
[k ] , 

13

ij
[k ]

 
and 

21

ij
[k ] , 

22

ij
[k ] , 

23

ij
[k ]

and 
31

ij
[k ] , 

32

ij
[k ] , 

33

ij
[k ] ; which are defined in Appendix B. 

The various boundary conditions of the micro-

composite beams such as Simply-Simply (S-S), clamped-

clamped (C-C), clamped-free (C-F) are considered that are 

described as follows 

Clamped (C): 0
dw

u w
dx

    

Free (F): 0, 0
x x

N Q   

Simply Support (S): 0, 0
x

u w M    

 

 

4. Numerical results and discussions  
 

In this article, the buckling and free vibration analysis of 

tapered FG-CNTRC micro Reddy beam based on SGT 

under longitudinal magnetic field using FEM is 

investigated. The physical, geometrical and mechanical 

parameters of FG-CNTRC micro-composite Reddy beam 

are considered in Table 1. 

 

4.1 Free vibration and buckling analysis of micro-
composite reddy beam model 

 
In this part, the effects of the various distributions of 

CNTs, variation boundary conditions and longitudinal 

magnetic field changes on non-dimensional natural 

frequency and critical buckling load are discussed. Also the 

influence of various β and α for different dimensionless 

material length scale parameters on the dimensionless 

natural frequency and critical buckling load is presented. 

The dimensionless natural frequency is considered as 

follows (Yas and Samadi 2012) 

10

110

I
L

A
   (41) 

where A110 and I10 are the values of A1 and I0 of a 

homogeneous beam made of pure matrix material, 

respectively. 

In Table 2, the dimensionless natural frequencies of 

 

 

Table 1 The geometrical, mechanical and physical 

parameters of FG-CNTRC micro-composite Reddy beam 

(Yas and Samadi 2012) 

parameter value parameter value parameter value 

 0.12 1


 1.2833 2


 1.0556 

Pm 1900
3

kg

m
 PCNT 1400

3

kg

m
 vm 0.3 

vCNT 0.19 ECNT 600 GPa Em 2.5 GPa 

μ 74 10
H

m
   kg 

510
N

m



 
kw 

12

3
10

N

m  
b/h0 2 l/h0 1 L/h0 10 

*

CNTV
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Table 2 Comparison between the results of present work 

(FEM) and the obtained results by Yas and Samadi (2012) 

(L/h=15) 

=0.12 

UD FG-USFG FG-SFG 

Present 

work 

Yas and 

Samadi 

Present 

work 

Yas and 

Samadi 

Present 

work 

Yas and 

Samadi 

C-F 0.37668 0.3764 0.31991 0.3193 0.44158 0.4416 

C-C 1.50603 1.5085 1.40609 1.4068 1.59564 1.6000 

 

 

CNT Timoshenko beam is calculated using present FEM 

method with various boundary conditions and compared 

with the obtained results by (Yas and Samadi 2012) for the 

following mechanical properties 

11 12

3 3

600 2.5 0.19 0.3 17.2

1400 1900 0 c 0

CNT CNT

m CNT m

CNT m w g

E GPa E GPa G GPa

kg kg
k k

m m

 

 

    

    
 

From Table 2, one can be observed that the results of 

present work are in good agreement with the obtained 

results by (Yas and Samadi 2012) for various boundary 

conditions. 

The effect of aspect ratio (L/h) on the value of non-

dimensional natural frequency and critical buckling load for 

micro-composite USFG and UD beam with Simply-Simply 

(S-S) boundary conditions without considering longitudinal 

magnetic field is shown in Fig. 2. Moreover, comparison 

between the classical and non-classical beam models is 

depicted in this figure. Also, the results show that the 

dimensionless natural frequency and critical buckling load 

decrease with an increase in the aspect ratio. Also, among 

the various size-dependent effect, SGT and CT predict the 

highest and lowest values of non-dimensional fundamental 

frequency and critical buckling load for all values of L/h, 

respectively. So it reveals that the model based on SGT 

predicts the more value of stiffness among various types of 

size-dependent effect and this pattern is the same for all 

values of dimensionless three material length scale 

parameter. It is noted that with increasing of three material 

length scale parameter, the stiffness of tapered micro Reddy 

beam increases that this point leads to enhance the 

dimensionless natural frequency and critical buckling load 

and vice versa for aspect ratio. 

The effect of aspect ratio (L/h) and various distribution 

of CNT including UD, USFG and SFG on the 

dimensionless natural frequency and critical buckling load 

for S-S boundary conditions micro-composite beam based 

on SGT are shown in Figs. 3. According to these Figs., the 

dimensionless natural frequency and critical buckling load 

decreases for all types of distribution with increasing of the 

aspect ratio. Also it can be inferred that non-dimensional 

natural frequency and critical buckling load of FGX-

CNTRC micro-composite beams are higher than those of 

beams with other CNTs distributions. The CNT 

distributions for SFG have most distant with respect to the 

neutral axis in comparison with other states such as USFG 

and UD-CNTRC, therefore, it is due to that its bending 

stiffness is larger than USFG and UD-CNTRC. 

 

 
(a) 

 
(b) 

Fig. 2 The effect of various types of size-dependent 

effect on the (a) dimensionless natural frequency, 

(b) critical buckling for α=1, β=0.5, Hx=0 and l/h=1 
 

 
(a) 

Fig. 3 The effect of various distribution of CNT on the 

(a) dimensionless natural frequency, (b) critical 

buckling load for α=1, β=0.5, Hx=0 and l/h=1 
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(b) 

Fig. 3 Continued 

 

 
(a) 

 
(b) 

Fig. 4 Effect of length to thickness ratio (L/h) on the (a) 

natural frequency and (b) critical buckling load of micro-

composite beam for various l/h, α=1, β=0.5 and Hx=0 
 

 

The influences of aspect ratio (L/h) on the dimensionless 

natural frequency and critical buckling load for different 

dimensionless material length scale parameters (l/h) based 

on SGT are shown in Fig. 4, respectively. It is shown from 

the results that with increasing the dimensionless material 

length scale parameter, the non-dimensional natural 

frequency and critical buckling load increases for different 

aspect ratio (L/h). Moreover, it is observed that the value of 

dimensionless length scale parameter plays more important 

role in the stiffness behaviour of FG-CNTRC micro-

composite beam. On the other hands, employing the size 

dependent effect leads to enhance the stiffness of tapered 

micro Reddy beam and then increases the dimensionless 

natural frequency and critical buckling load. 

Fig. 5 show the effects of magnetic fields on the non-

dimensional natural frequency and critical buckling load. It 

can be observed that employing magnetic field in 

longitudinal direction of the micro-composite beam 

increases the natural frequency and critical buckling load 

while the longitudinal magnetic field has little influence on 

stiffer when its magnitude is small (<104 A/m) over the  

 

 

 
(a) 

 
(b) 

Fig. 5 Influence of the magnetic field Hx on the 

dimensionless natural frequency and critical buckling load 

for α=1, β=0.5 and l/h=1 
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entire frequency range. It means that the application of 

magnetic field leads to increase the SWCNT stiffer. So by 

increasing the imposed magnetic field significantly 

increases the stability of the system that can behave as an 

actuator. In this case, the stability of the system can be 

controlled by imposing magnetic field. 

Fig. 6 show the effect of Winkler modulus on the non-

dimensional natural frequency and critical buckling load of 

micro-composite USFG and UD beam based on SGT. The 

effect of Winkler foundation will appear in the stiffness 

matrix, therefore the non-dimensional natural frequency and 

critical buckling load will increase by increasing Winkler 

modulus for UD, USFG and SFG-CNTRC micro-composite 

beams. Also these changes in the non-dimensional natural 

frequency with the aspect ratio are found to be almost 

dependent on the change of the value of the Winkler 

modulus especially at higher values. At lower values of the 

elastic layer stiffness, this effect is found to be 

insignificantly dependent. It is stated that with an increase 

in the coefficient of elastic foundation, the stiffness of 

micro Reddy beam increases and then there is a direct 

relation between the stiffness of micro structures and non-

dimensional natural frequency. 

 

 

 
(a) 

 
(b) 

Fig. 6 Influence of the elastic parameter kw on the 

dimensionless natural frequency and critical buckling 

load for α=1, β=0.5, Hx=0 and l/h=1 
 

 
(a) 

 
(b) 

Fig. 7 Influence of the elastic parameter kg on the 

dimensionless natural frequency and critical buckling 

load for α=1, β=0.5, Hx=0 and l/h=1 
 

 

Fig. 7 illustrate that the non-dimensional natural 

frequency and critical buckling load by SGT will increase 

by increasing Pasternak shear modulus. The effect of 

Pasternak foundation will appear in the stiffness matrix, 

therefore the natural frequency and critical buckling load 

will increase by increasing shear Pasternak modulus. It 

should be mentioned that the effects of kg on the non-

dimensional natural frequency and critical buckling load are 

more significant than those of kw, and then the stability of 

system enhances. 

Fig. 8 show the non-dimensional natural frequency and 

critical buckling load of C-C, S-S and C-F micro-composite 

UD and USFG beam for different aspect ratio. It can be 

seen that among the three boundary conditions considered, 

the C-F beam has the minimum values while the C-C beam 

has the maximum values of dimensionless natural 

frequency and critical buckling load. It is shown that the 

critical buckling load of FG-X CNTRC micro-composite 

beam is larger among these three types of beams. On the 

other hand, the FG-CNTRC micro beam becomes stiffer, 

then the stability of system enhances. 
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(a) 

 
(b) 

Fig. 8 The effect of various boundary conditions on the 

dimensionless natural frequency and critical buckling 

load of micro-composite beam for α=1, β=0.5, Hx=0 

and l/h=1 
 

 

Fig. 9 indicate the non-dimensional natural frequency 

and critical buckling load versus variation value of β and 

α=1 for UD, USFG and SGF-CNTRC micro-composite 

beam. According to these Figs, increasing the tapered 

parameter leads to decrease the dimensionless natural 

frequency and critical buckling load for UD, USFG and 

SFG beam. Also at the specified value of β, the 

dimensionless natural frequency for SFG beam is more than 

for other state. It means that the USFG micro-composite 

beam causes to decrease the first natural frequency. 

Moreover, it is seen that for higher values of β, especially 

for β>0.5, the difference of non-dimensional natural 

frequency and critical buckling load between three cases 

decreases and it is not noticeable. 

Fig. 10 show the non-dimensional natural frequency and 

critical buckling load versus variation value of α and β=0.5 

for UD, USFG and SFG micro-composite beam. As it can 

be seen by an increase in α, the non-dimensional natural 

frequency and critical buckling load increase but in the 

same value of α, the value of natural frequency for SFG  

 
(a) 

 
(b) 

Fig. 9 The non-dimensional natural frequency and 

critical buckling load versus β for UD, USFG and SFG 

micro-composite beam 
 

 
(a) 

Fig. 10 The non-dimensional natural frequency and 

critical buckling load versus α for UD, USFG and SFG 

beam 
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(b) 

Fig. 10 Continued 
 
 

beam is more than other state. Also, it is seen the 

frequencies of SFG-CNTRCs beam are higher than USFG 

and UD-CNTRC beams and this differences become larger 

with an increase in this parameter. Also, it is concluded that 

the effect of parameter α on the non-dimensional natural 

frequency is less than the effect of tapered parameter β. 
 
 

5. Conclusions 
 

In this paper, the buckling and free vibration analysis of 

FG-CNTRC Reddy beam based on the strain gradient 

theory under longitudinal magnetic field using FEM is 

studied. In this research, the material property of matrix is 

considered as Poly methyl methacrylate (PMMA). Also, the 

effects of variation values of β and α; UD, USFG and SFG 

distributions of CNT on the critical buckling load and 

natural frequency are illustrated. Moreover, the influence of 

various boundary conditions on the dimensional natural 

frequency and critical buckling load is studied. The results 

of this research can be listed as follows: 

1. With increasing β, the non-dimensional natural 

frequency and critical buckling load increase for UD, USFG 

and SFG beam and vice versa for α. The parameter of α has 

significant effect on the mode shapes of the micro-

composite beams. Also it is concluded that the effect of 

non-uniformity parameter α on the mode shapes is less than 

the effect of tapered parameter β. 

2. For the tapered parameter β>0.5, the FG-CNTRC 

distribution has insignificant effect on the non-dimensional 

frequency and critical buckling load and all micro-

composite beams with different CNTs distributions are very 

close to each other. 

3. At the specified value of α and β, the dimensionless 

natural frequency and critical buckling load for SFG beam 

is more than the other state. The CNT distributions for SFG 

have most distant with respect to the neutral axis in 

comparison with other states such as USFG and UD-

CNTRC, therefore, it is due to that its bending stiffness is 

larger than USFG and UD-CNTRC. 

4. The effect of parameter α on the non-dimensional 

natural frequency is less than the effect of tapered parameter 

β. 

5. With an increase in Winkler modulus or Pasternak 

modulus is accompanied by increasing the non-dimensional 

natural frequency and critical buckling load. On the other 

hands, the employing the elastic foundation leads to 

enhance the stiffness of micro Reddy beam and then there is 

a direct relation between the stiffness of micro structures 

and non-dimensional natural frequency. 

6. Reddy beam becomes stiffer with decreasing of 

aspect ratio. 

7. The non-dimensional frequency and critical buckling 

load of micro-composite beam increases with an increase in 

the material length scale parameters. On the other hands, 

considering the size dependent effect leads to enhance the 

stiffness of tapered micro Reddy beam and then increases 

the dimensionless natural frequency and critical buckling 

load. 

8. The non-dimensional natural frequency and critical 

buckling load of micro-composite beam increases with an 

increase in the magnetic field. Also, by increasing the 

imposed magnetic field significantly increases the stability 

of the system that can behave as an actuator. In this case, 

the stability of the system can be controlled by imposing 

magnetic field. 
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Appendix A 
 

The components of strain, the dilatation gradients, 

deviatoric stretch gradients and rotation gradient are defined 

as the following forms 
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