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1. Introduction  
 

The stress analysis for the elliptic inclusions, the 

elliptic inhomogeneities, the elliptic confocal layers in 

plane elasticity or antiplane elasticity received much 

attention by many researchers (Gong 1995, Chen 2004, 

Chen 2013, Chen and Wu 2007, Zhu et al. 2013, Wu and 

Chen 1990, Wang and Gao 2011, Chen 2015a,b). In the 

case of plane elasticity, it is a general way to use the 

conformal mapping technique. The elliptic confocal layer 

is mapped into a ring region. The complex potentials are 

expanded into a Laurent series. However, the continuity 

conditions along the interface are the inherent difficulties 

in the analysis. This paper aims to overcome the mentioned 

difficulties.  

Several relevant references are introduced below. A 

generalized and unified treatment was presented for the 

antiplne problem of elastic elliptical inclusion undergoing 

uniform eigenstrains and subjected to arbitrary loading in 

the surrounding matrix (Gong 1995). The problem of a 

confocally multicoated elliptical inclusion in an unbounded 

matrix subjected to an antiplane shear was studied (Chen 

2004). A closed form solution was provided for the 

Eshelby’s elliptic inclusion in antiplane elasticity (Chen 

2013). In the formulation, the prescribed eigenstarins are 

not only for the uniform distribution, but also for the linear 

form. The null-field integral equation for an infinite 

medium containing circular holes and/or inclusions was 

derived (Chen and Wu 2007). A comprehensive survey of 

recent works on inclusion was provided (Zhu et al. 2013). 

The problems of multiple inclusions, dislocations and 

cracks as well as various methods used to study these 

problems were discussed.  
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The plane and antiplane problems associated with a 

crack in a confocal elliptic inhomogeneity embedded in an 

infinite medium was solved in detail (Wu and Chen 1990). 

Particularly, the dependence of the stress intensity on the 

size of the inhomogeneity was examined. The stress field 

inside a two-dimensional arbitrary-shape elastic inclusion 

bonded through an interphase layer to an infinite elastic 

matrix subjected to uniform stresses at infinity was 

analytically studied using the complex variable method in 

elasticity (Wang and Gao 2011).  
Previously, the problem for multiply confocal layers 

with dissimilar elastic properties were studied (Chen 

2015a). In that paper, the continuity conditions for the 

displacement and stress along interface were reduced to a 

relation between two sets of the coefficients in the Laurent 

series for the complex potentials for two adjacent layers of 

the interface. This relation can be expressed in the form of 

a transfer matrix. This method or the transfer matrix 

method can considerably reduce the work for derivation 

and computation. For example, this method can be used 

easily to the case of multiply confocal layers. The 

derivation and the formulation were based on the fact that 

all material property constants, or 
jG (shear modulus) 

j  ( j=1,2,..)  must not be equal to zero, or 0G j   

and 0j  (j=1,2,..). In the present paper, we assume G 

and  values to be equal to zero for the portion interior to 

the inner elliptic contour. It is seen that the problem studied 

in the present paper has some difference with the paper 

(Chen 2015a). 

Two and three-dimensional analytical solutions for an 

inhomogeneity annulus/ring with eigenstrain are presented 

(Markenscoff and Dundurs 2014). Since the shapes studied 

in this paper are the confocal elliptic layers, the technique 

used for the annular region in (Markenscoff and Dundurs 

2014) cannot be directly used to the present paper.  
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functionally graded materials (FGMs) was provided (Chen 

2015b). In the formulation, the cylinder is divided into N 

layers. On the individual layer, the Young’s modulus is 

assumed to be a constant. For an individual layer, two 

undetermined constants are involved in the elastic solution. 

Those undetermined coefficients can be evaluated from the 

continuation condition along interfaces of layers and the 

boundary conditions at the inner surface and outer surface 

of cylinder. The suggested method is similar to the transfer 

matrix method in this paper. 

This paper provides a stress analysis for multiple 

confocal elliptic dissimilar cylinders. In the problem, the 

inner elliptic notch is under the traction free condition. The 

medium is composed of many confocal elliptic dissimilar 

cylinders. The conformal mapping method is used in the 

paper thoroughly. The complex potentials are expressed in 

the form of the Laurent series in the ring region. The 

transfer matrix method is used to study the continuity 

condition for the stress and displacement along the 

interfaces. Two cases, or the infinite matrix and the finite 

matrix, are studied in this paper. In the former case, the 

remote tension is applied in y- direction. In the latter case, 

the normal loading is applied along the exterior elliptic 

contour. For two cases, several numerical results are 

provided.  

 

 

2. Analysis  
 

2.1 Some basic equations in complex variable 
method in plane elasticity  

 

The following analysis depends on the complex 

variable function method in plane elasticity 

(Muskhelishvili 1963). In the method, the stresses (

xyyx ,,  ), the resultant forces (X, Y) and the 

displacements (u, v) are expressed in terms of two complex 

potentials )z(* and )z(* such that 

)z(Re4 *yx 
 

)]z()z(z[2i2 **xyxy   
(1) 

 

)z()z(z)z(iXYF ***   (2) 

 

)z()z(z)z()ivu(G2 ***   (3) 

where z=x+iy denotes complex variable, G is the shear 

modulus of elasticity, )1/()3(   is for the 

plane stress problems,  43  is for the plane strain 

problems, and   is the Poisson’s ratio. In the present 

study, the plane strain condition is assumed thoroughly. In 

the following, we occasionally rewrite the displacements 

“u”, “v” as u , u , xyyx ,,   as  σ,σ,σ , 

and “x”, “y” as 21 x,x , respectively.  

In the analysis, we use the following conformal 

mapping (Muskhelishvili 1963) (Fig. 1) 
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In Eq. (4), R and m, or a and b, are given beforehand. 

The inversion of the mapping function )(z  is 

defined by 

R2

Rm4zz
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22 
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In the following analysis, we denote 
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Clearly, after using the mentioned conformal mapping, 

from Eqs. (1) to (3) we have 
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Fig. 1 Mapping relations:  (1) the elliptic layer bounded 

by two ellipses  
1  (with two semi-axes “

1a ” and 

“
1b ”),  and 

2  (with two semi-axes “
2a ” and “

2b ” 

and  
2

1

2

1

2

2

2

2 baba  ),  (in the z-plane) with 

elastic constants 
1G , 

1  mapped into ring region 

bounded by two circles 1 and 2 , or  21   

with 11   (in the  -plane), (2) the infinite matrix 

region exterior to the interface 2 (in the z-plane) with 

elastic constants 
2G , 2  mapped into the infinite 

region exterior to  circle 2 , or  2  (in the  -

plane) 
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From Eqs. (8) to (10) we see that, if one obtains the 

complex potentials )(  and )( in the mapping 

plane, one can get the stress and displacement in the 

physical plane. 

 

2.2 Formulation of the problem in the infinite matrix 
case 

 

In the study, the whole region is composed of two 

phase composites: (1) the elliptic layer bounded by the 

confocal elliptic layers 1 and 2 with the semi-axes (
1a ,

1b ),  and semi-axes (
2a ,

2b ), respectively and with the 

elastic constants 
1G , 

1 ,  (2) the infinite matrix 

exterior to the interface
2  with the elastic constants 

2G , 

2 (Fig. 1). The remote loading is denoted by py 
. 

In the formulation, we use the following mapping 

function (Muskhelishvili 1963) 

)
m
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
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In the mapping relation defined by Eq. (11), the elliptic 

contour 
1  (with two semi-axes “

1a ” and “
1b ”) maps 

into the unit circle 1 (with 
 i

1e , 11  ). In 

addition, the elliptic contour 2  (with two semi-axes “

2a ” and “
2b ”) maps into the circle 2 (with 

 i

2e , 

12  ). Clearly, it is easy to prove the following 

relation 
2

1

2

1

2

2

2

2 baba  . 

For the region bounded by elliptic contours 
1 and 

2 , we can define two complex potentials )z()1(

*  and 

)z()1(

*  (Fig. 1). After using conformal mapping shown 

by Eq. (11), we can define the relevant complex potentials 

in the mapping plane as follows 

)(z
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)(z

)1(

*

)1( )z()(


 ,  

( 21  , with 11  ) 

(12) 

In the case of symmetric loading, two complex 

potentials can be expressed in the following Laurent series 

form 
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(13) 

In Eq. (13), “N” denotes the number of terms truncated. 

Similarly, for the region exterior to the elliptic contour

2 , we can define two complex potentials )z(）2（
*  and 

)z(）2（
* . After using conformal mapping shown by Eq. 

(11), we can define the relevant complex potentials in the 

mapping plane as follows 

)(z
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In addition, two complex potentials can be expressed in 

the following Laurent series form 
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(15) 

It is known that, in the case of remote loading 
 y , 

two complex potentials )z(）2（
*  and )z(）2（

* can be 

expanded in the following series form (Muskhelishvili 

1963) 
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From Eqs. (11), (15) and (16), for the coefficients in 

Eq. (15) we have 

4
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From Eqs. (9) and (13), the traction free condition 

along the elliptic contour 1z  , or 1  (or 

 i

1e with 11  ), is as follows 
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The equality shown by Eq. (19) can be satisfied in a 

weaker form. To this end, we can perform the following 

operator 






 d[...]
i2

1 2j2

1

,   (j= -(N-1), …0,1…..N) (20) 

to both sides of Eq. (19). After taking this operation, we 

have 
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The detail of performing the operator shown by Eq. (20) 

to both sides of Eq. (19) can be referred to (Chen 2015a). 

In addition, the derivation for the matrix NNF 421][   can 

also be referred to some results in Appendix. 

Now we consider the continuity condition for traction 

and displacement along the interface 
2  (Fig. 1). Since 

the resultant force function and the displacement should be 

continuous along the interface, from Eqs. (9), (10), (13) 

and (15) we have 
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It is seen that the continuation conditions shown by 

Eqs. (23) and (24)  are expressed in the continuous form, 

which is formulated along the interface 
2 or 

 i

2e  (Fig. 1). Now we want to convert two 

conditions into a discrete form. To this end, we can 

perform the following operator 






 d[...]
i2

1 2j2

2

,   (j= -(N-1), …0,1…..N) (25) 

to both sides of  Eqs. (23) and (24). After making the 

mentioned operation, from Eqs. (23) and (24) we will 

obtain the following transfer matrix relation as follows 

(Chen 2015a) 

N41}A{ NNK 4412][  N42}A{  (26) 

where the  vector N42}A{  is defined by 
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The matrix NNK 4412][   is called the transfer matrix, 

which provides a relation between two vectors N41}A{  

and N42}A{ . For evaluating all elements in the matrix 

NNK 4412][  ,  we can refer to  (Chen 2015a). In addition, 

the derivation for the matrix NNK 4412][   can also be 

referred to some results in Appendix. The concept of the 

transfer matrix method can be referred to (Chen 2015a). 

Substituting Eq. (26) into Eq. (21), we will find 

NNF 422][  N2N42 }0{}A{   (28) 

where 

NNNNNN KFF 4412421422 ][][][    (29) 

Eq. (28) can be rewritten as 
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(30) 

where 
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Note that the two matrices NNpF 222 ][  and  

NNqF 222 ][  are some portion of the matrix NNF 422 ][  . 

From Eqs. (17) and (18) we see that, the vector 
T)2(

N

)2(

1

)2(

N

)2(

1N2q2 }b....ba....a{}A{   is known 

beforehand. Thus, from Eq. (30) we have 

NNpF 222 ][  N2N2p2 }g{}A{   (33) 

where 

N2}g{
NNqF 222 ][  N2q2 }A{  (34) 

Finally, from Eq. (33) we can get a solution for the 

vector N2p2 }A{ . Since the vector N2q2 }A{  (see Eqs. 

(17) and (18)) is known beforehand. Thus, we can obtain 

the vector N42}A{  (composed of the vector N2p2 }A{ . 

and N2q2 }A{ ) . In addition, from Eq. (26) we can obtain 

the vector N41}A{ . Finally, the assumed boundary value 

problem is solved. 

In fact, after two vectors N41}A{ and N42}A{  are 

obtained, we can evaluate the stress components at any 

point. 
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Table 1 The non-dimensional stress concentration factors 

),a/b(h 111   for the yc (stress at the crown point of the 

inner elliptic contour 
1 in Fig. 1) versus the remote 

loading py 
in the case of two phases with 

12 G/G  (see Fig. 1 and Eq. (35)) 

  10 2 1 0.5 0.1 

11 a/b       

0.25 1.362 5.466 9.000 13.884 32.294 

0.50 0.757 3.042 5.000 7.673 17.462 

0.75 0.558 2.239 3.667 5.585 12.363 

1.00 0.459 1.839 3.000 4.534 9.755 

 
 
2.3 Numerical examples in the infinite matrix case 
 

Two numerical examples are carried out for the infinite 

matrix case. In addition, the mapping function shown by 

Eq. (11) is used in all examples. 

Example 1 

In the example, the case for two phases is considered 

(Fig. 1). The elastic constants for the inner layer and the 

matrix are denoted by 
1G , 

1 and 
2G , 

2 , 

respectively. 8.121   is assumed in the example.  

The inner elliptic contour 
1  has a shape of ellipse 

with two semi-axes “
1a ” and “

1b ”, which is the mapping 

of  the function )(z  for 
1 (

 i

1e , 11    

in the  -plane). The interface 2 has a shape of ellipse 

with two semi-axes “
2a ” and “

2b ”, which is the mapping 

of  the function )(z  for 
2 (  i

2e   in the  -

plane). In computation, 5.12   is used. The remote 

loading is denoted by py 
. In addition, N=28 is 

adopted in the series expansion for the complex potentials 

shown by Eqs. (13) and (15).  

As stated previously, after two vectors 
N41}A{ and 

N42}A{  are obtained, we can evaluate the stress 

components at any point. For the limitation of space, we 

only compute a few of them. 

In computation, we assume the following conditions:(1) 

11 a/b =0.25, 0.5, 0.75,1 (2) 11  , 5.12  ,  (3) 

10G/G 12  , 2,1, 0.5  and 0.1, and (4) the remote 

loading py 
(Fig. 1) . The stress component yc   at 

the crown point (at the crown point x=a1, y=0
 
in Fig. 1) of 

the elliptic contour  1  can be expressed as 

p),a/b(h 111yc  ,   (with 12 G/G ) (35) 

The computed results for ),a/b(h1   are listed in Table 

1. 

The non-dimensional stress concentration factors 

(SCFs) ),a/b(h 111   represent the influence of the remote 

loading py 
 to 

yc  (stress at the crown point 

1ax  , 0y   in Fig. 1). From Table 1 we see that the 

ratio 
12 G/G  has a significant influence to the value 

of ),a/b(h 111  . For example, in the case 25.0a/b 11  , 

we have 362.1),a/b(h
10111 


, 

000.9),a/b(h
1111 


 and 294.32),a/b(h
1.0111 


, 

respectively. That is to say the SCF will be rather higher 

(=32.294) for the weaker matrix 1.0G/G 12  . 

Note that in the case of 1G/G 12  , we  have a 

closed form solution as follows (Muskhelishvili 1963) 

1
b

a2
),a/b(h

1

1

1111 


 (36) 

In addition, the computed results 

000.9),a/b(h
1111 


, 5.000, 3.667, 3.000 for 

25.0a/b 11  ,0.5, 0.75,1.0 coincide with the result from 

the closed form solution shown by Eq. (36). 

As stated previously, all the distributions of stresses can 

be found from the suggested technique. In the case of 

5.0a/b 11   and the remote loading py  , the 

computed  results for N , NT  and 
T in the interior 

side and the exterior side of the  interface 
2  (

2)(z  , 2

i

2e  
in Fig. 1) are denoted by 

p)(f in,NN  ,  p)(f in,NTNT  ,  p)(f in,TT  , 

 (at point  cos)/m(Rx 22
, 

 sin)/m(Ry 22  

in the interior side of the interface 
2 in Fig. 1) 

(37) 

 

p)(f ex,NN  , p)(f ex,NTNT  , p)(f ex,TT  , 

(at point  cos)/m(Rx 22
, 

 sin)/m(Ry 22
 

in the exterior side of the interface 2 in Fig. 1) 

(38) 

In the first part of computation, we assume : (1) 

5.0a/b 11  , (2) 11   , 5.12  , (3) 2G/G 12   

and  (4) the remote loading py  , the computed results 

for non-dimensional stresses )(f in,N  , )(f in,NT  , )(f in,T   
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and )(f ex,N  , )(f ex,NT  , )(f ex,T   along the interface 

2  are plotted in  Fig. 2. From Fig. 2 we see that 

)(f)(f ex,Nin,N  , )(f)(f ex,NTin,NT  . That is to say, 

the continuity conditions for the stress components N

and NT along the interface are satisfied with higher 

accuracy in the numerical example. In addition, we find 

that )(f)(f ex,Tin,T  . for example, 
o180in,T )(f


 =1.293, 

o180ex,T )(f


 =2.396, and 
oo 180ex,T180in,T )(f)(f


 . 

In the second  part of computation, we assume : (1) 

5.0a/b 11  , (2) 11   , 5.12  , (3) 5.0G/G 12   

and  (4) the remote loading py 
, the computed 

results for non-dimensional stresses )(f in,N  , )(f in,NT  , 

)(f in,T   and )(f ex,N  , )(f ex,NT  , )(f ex,T  along the 

interface 
2  are plotted in  Fig. 3. From Fig. 3 we see 

that )(f)(f ex,Nin,N  , )(f)(f ex,NTin,NT  . That 

is to say, the continuity conditions for the stress 

components N and NT along the interface are satisfied 

with higher accuracy in the numerical example. In addition, 

we find that )(f)(f ex,Tin,T  . for example, 

o180in,T )(f


 =1.776, o180ex,T )(f


 =1.069,  and 

oo 180ex,T180in,T )(f)(f


 . This result (for 

5.0G/G 12   with 
oo 180ex,T180in,T )()(f


 ) is 

contrary to the result in the first part of computation (for 

2G/G 12  with oo 180ex,T180in,T )(f)(f


 ). 

 

 
Fig. 2 Non-dimensional stresses )(f in,N  , )(f in,NT  , 

)(f in,T  (in the interior side of interface 2 ), )(f ex,N  ,

)(f ex,NT  , )(f ex,T  (in the exterior side of interface 2 )  

in the case of  (1) 
11 a/b =0.5 , (2) 11  , 5.12   (3) 

remote loading  
 y

 and (4) 2G/G 12   (see Fig. 

1 and Eqs. (37) and (38)) 

 
Fig. 3 Non-dimensional stresses )(f in,N  , )(f in,NT  , 

)(f in,T  (in the interior side of interface 
2 ), )(f ex,N  ,

)(f ex,NT  , )(f ex,T  (in the exterior side of interface

2 )  in the case of  (1) 
11 a/b =0.5 , (2) 11  , 

5.12   (3) remote loading  
 y  and   (4) 

5.0G/G 12   (see Fig. 1 and Eqs. (37) and (38)) 

 

 

Example 2 

In the second example, all the geometry and loading 

conditions are the same as indicated in the first example 

(Fig. 4). The two portions have the same elastic properties, 

or 
1G ,

2G (with
21 GG  ) and 8.121  . However, 

the thicknesses of two portions are different, or 
1t , 

2t

(with 
21 tt  ) (Fig. 4). A ratio is defined by 

21 t/t .  

Clearly, the proposed problem can be reduced to an 

alternative problem with different elastic properties, or 

1G  , 
2G (with  /GG 12

)  and 8.121   and 

1t , 
2t  (with 

21 tt  ). Therefore, this problem is 

reduced to the problem proposed in the first example. 

 

 

Fig. 4 A stiffening problem with thickness 1t and 2t  for 

two portions  (the elliptic layer bounded by  1 and 2

and the infinite matrix exterior to 2 ) 
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In computation, we assume  the following conditions: 

(1) 
11 a/b =0.25, 0.5, 0.75,1, (2) 11  , 5.12  , (3) 

21 t/t =1,2,… 10  and (4) the remote loading py 
. 

The stress component yc   at the crown point (at the 

point 
1ax  , 0y  in Fig. 4) of  the elliptic contour  

1  can be expressed as 

p),a/b(h 112yc   ,  (with 
21 t/t ) (39) 

The computed results for  ),a/b(h 112   are listed in 

Table 2. 

The non-dimensional stress concentration factors 

(SCFs) ),a/b(h 112   (with
21 t/t ) represent the 

influence of the remote loading py 
 to yc  (stress 

at the  crown point in Fig. 4). From Table 2 we see that 

the ratio 
21 t/t  has a significant influence to the 

value of ),a/b(h 112  . For example, in the case 

25.0a/b 11  , we have 
1112 ),a/b(h  =9.000,  

5112 ),a/b(h  =4.590 and 
10112 ),a/b(h  =3.229, 

respectively. That is to say the SCF will be rather lower 

(=3.229) for the thicker inner elliptic layer with 

21 t/t =10. 

 

 

3. Formulation of the problem in the finite matrix 
case 
 

3.1 Derivation for the finite matrix case 

It is assumed that the finite matrix layer is placed 

exterior to the contour 2  (Fig. 5). The normal loading 

“q” is applied along the boundary 3 , or the mapping of 

 i

3e  for )(z  . The conformal mapping shown 

by Eq. (11) is still used in the present case. From this 

loading condition and Eq. (9), the boundary condition  

 

 

 

 

along the elliptic contour 3 will be 

)
m

(qR)(q)()('
)(

)(
)( )2()2()2(







 ,   

(
 i

3e  ) 

(40) 

Note that, those equations, from Eqs. (11) to (29), are 

still valid in the present case.  

Now we want to convert the condition shown by Eq. 

(40) into a discrete form. To this end, we can perform the 

following operator 






 d[...]
i2

1 2j2

3

 ,   (j= -(N-1), …0,1…..N) (41) 

to both sides of Eq. (40). After taking this operation, we 

have 

N2N42N4N23 }g{}A{]F[   (42) 

where 

T

N2 }0...0mqRqR...00{}g{   (43) 

From Eqs. (28) and (42) we can get the following linear 

algebraic equation for the vector N42}A{  

NNsF 44][  N4N42 }h{}A{   (44) 

where 

 NNsF 44][
NN

NN

F

F

423

422

][

][




,  

N2

N2

N4
}g{

}0{
}h{   (45) 

Finally, from Eq. (44) we can get a solution for the 

vector N42}A{ . In addition, from Eq. (26) we can obtain 

the vector N41}A{ . Finally, the assumed boundary value 

problem for the case of finite matrix is solved (Fig. 5). 

 

3.2 Numerical example 
 

In computation, we assume  the following 

Table 2 The non-dimensional stress concentration factors ),a/b(h 112   for the yc (stress at the crown point 
1ax  ,

0y   of the inner elliptic contour 
1 ) versus the remote loading py  in the case of unequal thickness of two 

portions  with 
21 t/t  (see Fig. 4 and Eq. (39)) 

  1 2 3 4 5 6 7 8 9 10 

11 a/b            

0.25 9.000 6.942 5.826 5.104 4.590 4.198 3.886 3.630 3.415 3.229 

0.5 5.000 3.836 3.204 2.797 2.507 2.287 2.112 1.969 1.849 1.746 

0.75 3.667 2.792 2.317 2.013 1.797 1.634 1.505 1.400 1.312 1.236 

1.0 3.000 2.267 1.869 1.615 1.436 1.301 1.195 1.109 1.037 0.976 
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conditions:(1) 
11 a/b =0.25, 0.5, 0.75,1 (2), 11  , 

5.12  , 33  ,  (3) 10G/G 12  , 2,1, 0.5  and 

0.1, and (4) the normal  loading “q” is applied along the 

contour 3  (Fig. 5) . The stress component 
yc  at the 

crown point (at the point 
1ax  , 0y  in Fig. 5) of  the 

elliptic contour  
1  can be expressed as 

q),a/b(h 113yc       (with 
12 G/G ) (46) 

The computed results for ),a/b(h3   are listed in 

Table 3. 

 

 

 
Fig. 5  Mapping relations:  (1) the elliptic layer bounded 

by two ellipses  
1  (with two semi-axes “

1a ” and “
1b ”) 

and 
2  (with two semi-axes “

2a ” and “
2b ” and  

2

1

2

1

2

2

2

2 baba  ),  (in the z-plane) with elastic 

constants 
1G , 

1  mapped into ring region bounded by 

two circles 
1 and 

2 , or  21   with 11   

(in the  -plane), (2) the elliptic layer bounded by two 

ellipses  2  (with two semi-axes “
2a ” and “

2b ”) and 

3  (with two semi-axes “
3a ” and “

3b ” and  

2

3

2

3

2

2

2

2

2

1

2

1 bababa  ),  (in the z-plane) with 

elastic constants 
2G , 2  mapped into ring region 

bounded by two circles 2  and 3 , or  
32   (in 

the  -plane) 

Table 3 The non-dimensional stress concentration factors 

),a/b(h 113   for the yc (stress at the crown point of the 

inner elliptic contour 
1 ) versus the loading “q” in the 

case of two phases with 12 G/G , 11  , 5.12   

and 33   (see Fig. 5 and Eq. (46)) 

  10 2 1 0.5 0.1 

11 a/b       

0.25 2.375 8.314 12.705 18.229 35.699 

0.50 1.056 3.743 5.700 8.049 14.742 

0.75 0.621 2.240 3.396 4.690 7.695 

1.00 0.403 1.491 2.250 3.018 4.152 

 

 

The non-dimensional stress concentration factors 

(SCFs) ),a/b(h 113   represent the influence of the normal 

loading “q” along  3  to yc  (the stress at the crown 

point, 
1ax   y=0, in Fig. 5). From Table 3 we see that 

the ratio 
12 G/G  has a significant influence to the 

value of ),a/b(h 113  . For example, in the case 

25.0a/b 11  , we have 375.2),a/b(h
10113 


, 

705.12),a/b(h
1113 


 and 699.35),a/b(h
1.0113 


, 

respectively. That is to say the SCF will be rather higher 

(35.699) for the weaker matrix 1.0G/G 12  .  

 

 

4. Conclusions 
 

This paper provides an effective method to solve a 

rather complicated problem, or the problem for the stress 

analysis for multiple confocal elliptic dissimilar cylinders. 

It is an important step to satisfy the boundary condition 

and the continuity conditions shown by Eqs. (19), (23), 

(24) and (40) in a weaker form. 
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Appendix. Some integrations used in the 
derivation 

 

First of all, we define two particular integrals as 

follows 




 

 d
i2

1
I 1n

1 ,      (n- integer) (a1) 

 







  d

qi2

1
I

22

n

2 ,   (n- integer) (a2) 

where   denotes a circle with radius   and “q” is a 

positive real value with property q  (Fig. 6). 

Clearly, we have 

n

1n

1 d
i2

1
I

1




 

  (a3) 

where 

1n     for n=0,  and 0n   for 0n   (a4) 

In addition, we can obtain the following result (Chen 

2015a) 

nn

n

22

n

2 )q(sd)
q

1

q

1
(

q2

1

i2

1
d

qi2

1
I 












  

 
(a5) 

where 

1n
n

n q
2

)1(1
)q(s 

  (a6) 

 

1n    for 1n  ,   and  0n    for 

0n   
(a7) 

 

 

 

 
Fig. 6 A path  for integration 
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