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Abstract.    In this manuscript, the small scale and thermal effects on vibration behavior of preloaded 
nanobeams with non-ideal boundary conditions are investigated. The boundary conditions are assumed to 
allow small deflections and moments and the concept of non-ideal boundary conditions is applied to the 
nonlocal beam problem. Governing equations are derived through Hamilton’s principle and then are solved 
applying Lindstedt-Poincare technique to derive fundamental natural frequencies. The good agreement 
between the results of this research and those available in literature validated the presented approach. The 
influence of various parameters including nonlocal parameter, thermal effect, perturbation parameter, aspect 
ratio and pre-stress load on free vibration behavior of the nanobeams are discussed in details. 
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1. Introduction 
 

In the problems of mechanical systems the boundary conditions (B.Cs) of the structures play a 
very important role and are usually represented in an idealized form such as clamped, simply 
supported and free boundary conditions. It is always assumed that those ideal B.Cs are satisfied 
exactly in the process of the problem solution. Indeed, however small, deviations from the ideal 
B.Cs may exist and the ideal B.C assumptions sometimes lead to unsatisfactory solutions 
especially in micro/nano-electro-mechanical systems (MEMs/NEMs). The types of B.Cs with 
small deviations from the ideal B.Cs are referred as the non-ideal B.Cs which can be modeled via 
perturbation theory.  

The linear vibration problem of a beam for different B.Cs and also an axially moving string 
problem with simply supported B.Cs have been investigated by Pakdemirli and Boyac (2003). The 
Euler–Bernoulli beam theory (EBT) with simply supported stable-end conditions and a non-ideal 
simple support in between was investigated by multiple scales method and perturbation theory. 
They also studied the nonlinear vibration problem of a beam subjected to tensile loading with 
non-ideal B.Cs (Pakdemirli and Boyac 2001). Peddieson, Buchanan et al. (2003) employed 
nonlocal elasticity theory and EBT to illustrate the magnitude of predicted nonlocal effects. In 
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other work the problem of damped forced nonlinear vibration of an Euler-Bernoulli beam with 
non-ideal B.Cs was studied using the method of multiple scales (Ekici and Boyaci 2007). Next, 
buckling and vibration analysis of a rectangular isotropic plate with non-ideal simply supported 
B.Cs along one of its edges was investigated by Aydogdu and Ece (2006). They also investigated 
the effects of non-ideal B.Cs on the vibrations of microbeams while considering the stretching 
effect as well as axial forces (Ekici and Boyaci, 2007). The effect of non-ideal B.Cs and initial 
stresses on the vibration of laminated plates resting on Pasternak foundation was studied by 
Malekzadeh, Khalili et al. (2010). Eigoli and Ahmadian (2011) investigated the influence of 
non-ideal B.Cs on the nonlinear vibration of damped beams subjected to harmonic loads. Sari and 
Pakdemirli (2012) proposed a new numerical technique for the free vibration analysis of 
non-rotating and rotating Timoshenko beams with damaged boundaries. For this purpose, the 
Chebyshev collocation method is applied to obtain the natural frequencies and mode shapes and 
the damaged boundaries of the Timoshenko beam were represented by distributed translational and 
torsional springs. Recently Wattanasakulpong and Mao (2015) investigated the dynamic response 
of Timoshenko beams made of functionally graded materials (FGMs). The beams were supported 
by various classical and non-classical B.Cs. 

Furthermore, in recent years due to superior properties, nanostructures have attracted much 
attention. Multiple recent experimental results have shown that as the size of the structures reduces 
to micro/nanoscale, the influences of atomic forces and small scale play a significant role in 
mechanical properties of these nanostructures (Ebrahimi and Salari 2015 a, b). Thus, neglecting 
these effects in some cases may result in completely incorrect solutions and hence wrong designs. 
The classical continuum theories do not include any internal length scale. Consequently, these 
theories are expected to fail when the size of the structure becomes comparable with the internal 
length scale. Eringen nonlocal theory is one of the well-known continuum mechanics theories that 
include small scale effects with good accuracy to model micro/nanoscale devises (Eringen 1972). 
The nonlocal elasticity theory assumes that the stress at a point is a function of the strain at all 
neighbor points of the body, hence, this theory could take into account the effects of small scales. 

The studies of nanostructures using the nonlocal elasticity theory have been an area of active 
research. Based on this theory, wave propagation in carbon nanotubes (CNTs) is studied based on  
nonlocal EBT and Timoshenko beam theories by Wang ( 2005). In similar work, the scale effects 
on transverse wave propagation in double-walled carbon nanotubes is studied via nonlocal 
elasticity theory (Wang, Zhou et al. 2006). Also Zhang, Liu et al. (2004) studied thermal effect on 
vibration of double-walled CNTs based on thermal elasticity mechanics and nonlocal elasticity 
theory. Wang, Ni et al. (2008) exploited the thermal effect on vibration and instability of 
conveying fluid CNTs based on Euler-Bernoulli beam theory. Zhang and Shen (2007) reported the 
buckling and post buckling behavior of CNTs in thermal environment by using molecular 
dynamics simulations. Next, bending, buckling and free vibration of nanobeams including 
different beam theories is investigated by Aydogdu (2009). Murmu and Pradhan (2009) analyzed 
the thermal vibration of CNTs based on thermal elasticity and nonlocal elasticity theory. Also 
Benzair, Tounsi et al. (2008) employed nonlocal Timoshenko beam model for free vibration 
analysis of CNTs including thermal effects. Civalek and Demir (2011a) used nonlocal theory for 
bending analysis of microtubules based on Euler-Bernoulli beam theory. Vibration and bending 
analysis of cantilever microtubules is studied by Civalek, Demir et al. (2010). In similar work, 
buckling analysis of cantilever CNT is investigated by Civalek and Demir (2011b).  

Also, based on nonlocal elasticity theory an elastic Bernoulli–Euler beam model is developed 
for thermal–mechanical vibration and buckling instability of a single-walled CNT conveying fluid 
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and resting on an elastic medium (Chang 2012). Ansari and Sahmani (2012) studied the nonlinear 
vibration behavior of CNTs using various beam theories. Thai (2012) studied bending, buckling 
and vibration of nanobeams.  

Size-effects on torsional and axial response of microtubules by using the nonlocal continuum 
rod model is investigated via finite element method (Demir and Civalek 2013). Bending and 
buckling behavior of size-dependent nanobeams made of FGMs including the thickness stretching 
effect has been studied by Mahmoud, Chaht et al. (2015). Zemri, Houari et al. (2015) presented a 
nonlocal shear deformation beam theory for bending, buckling, and vibration of functionally 
graded (FG) nanobeams using the nonlocal differential constitutive relations of Eringen. The 
nonlinear vibration properties of an embedded zigzag CNT on Winkler foundation are investigated 
by Besseghier, Heireche et al. (2015). Recently Bounouara, Benrahou et al. (2016) presented a 
zeroth-order shear deformation theory for free vibration analysis of FGM nanoscale plates resting 
on elastic foundation. A refined trigonometric shear deformation theory taking into account the 
transverse shear deformation effects is presented by Tounsi (2013) for thermoelastic bending 
analysis of FG sandwich plates. Bouderba, Houari et al. (2013) investigated the thermomechanical 
bending response of FG plates resting on Winkler-Pasternak elastic foundations. The bending 
response of FG plate resting on elastic foundation and subjected to hygro-thermo-mechanical 
loading is studied by Zidi et al (2014). It is worth mentioning that in most of the published papers 
the boundary conditions has been assumed to be ideal (Belabed, Houari et al. 2014, Bennoun, 
Houari et al. 2016, Hamidi, Houari et al. 2015, Hebali, Tounsi et al. 2014, Tounsi, Bourada et al. 
2015, Yahia, Atmane et al. 2015) and to the best knowledge of the authors, no research effort has 
been devoted so far to find the solution of thermo-mechanical vibration behavior of nanobeams 
with non-ideal boundary conditions. In the present study, the EBT is employed based on Eringen’s 
nonlocal elasticity theory to consider the size-effect and thermal effect on free vibration behavior 
of nanobeams subjected to a pre-stress load. Lindstedt–Poincare technique is utilized to determine 
natural frequencies of nanobeams and the influences of the nonlocal parameter, perturbation 
parameter, thermal effect, aspect ratio and pre-stress load on the free vibration characteristics of 
the nanobeams are discussed in details. 
 
 

2. Basic formulation 
 
2.1 Nonlocal elasticity theory  
 
The constitutive equation of classical elasticity is an algebraic relationship between the stress 

and strain tensors while that of Eringen’s nonlocal elasticity involves spatial integrals which 
represent weighted averages of the contributions of strain tensors of all points in the body to the 
stress tensor at the given point (Eringen 1972). Though it is difficult mathematically to obtain the 
solution of nonlocal elasticity problems due to the spatial integrals in constitutive equations, these 
integro-partial constitutive differential equations can be converted to equivalent differential 
constitutive equations under certain conditions. 

The theory of nonlocal elasticity, developed by Eringen and Edelen (1972) states that the 

nonlocal stress-tensor components ij at any point x in a body can be expressed as 
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              ( ) ( , ) ( ) ( )ij ijx x x t x d x  


                                            (1) 

where ( )ijt x   are the components of the classical local stress tensor at point x, which are related 

to the components of the linear strain tensor kl  by the conventional constitutive relations for a 

Hookean material, i.e. 

ij ijkl klt C                                  (2) 

The meaning of Eq. (1) is that the nonlocal stress at point x is the weighted average of the local 
stress of all points in the neighborhood of x, the size of which is related to the nonlocal Kernel 

),(  xx   . Here xx  is the Euclidean distance and  is a constant given by 

0e a

l
                                   (3) 

which represents the ratio between a characteristic internal length, a (such as lattice parameter, C–
C bond length and granular distance) and a characteristic external one, l (e.g., crack length, 
wavelength) through an adjusting constant, 0e , dependent on each material. The magnitude of 0e  
is determined experimentally or approximated by matching the dispersion curves of plane waves 
with those of atomic lattice dynamics. According to Ref. (Eringen and Edelen 1972) for a class of 

physically admissible kernel ( , )x x  it is possible to represent the integral constitutive 

relations given by Eq. (1) in an equivalent differential form as 

  2
0(1 ( ) ) kl kle a t                             (4) 

where 2 is the Laplacian operator. Thus, the scale length 0e a  takes into account the size effect 

on the response of nanostructures. For an elastic material in the one dimensional case, the nonlocal 
constitutive relations may be simplified as (Eringen 2002) 

2

2
xx

xx xxE
x

  
 


                             (5) 

where  and are the nonlocal stress and strain respectively, 2
0( )e a  is nonlocal parameter, E 

is the elasticity modulus. 
 

2.2 The Euler-Bernoulli beam theory 
 

EBT assumes that the straight lines will remain straight and vertical to the mid-plane after 
deformation and this is based on the following displacement field (Reddy 2007) 

1 2 3( , ) , 0 , ( , )
w

u u x t z u u w x t
x


   


                              (6) 

where ( , )u w  are the axial and transverse displacements of the point on the mid-plane of the 
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beam. The axial strain xx of EBT is obtained as 

2
1 2

2
, 0xx xz

u uu w
z

x x x x
    

    
   

                 (7) 

The governing equations of motion and the boundary conditions for EBT can be derived by 
Hamilton’s principles as follows 

0
( ) 0

t
T U V dt                               (8) 

where U is the strain energy, T is the kinetic energy and V is the work done by external forces. 
The first variation of the strain energy can be calculated as 

( )ij ij xx xxv v
U dV dV                            (9) 

Substituting Eq. (7) into Eq. (9) yields 

2

20

L u w
U N

x x
M dx  

       
    

 
                    (10) 

where N , M are the axial force and bending moment, respectively. The stress resultants used 
in Eq. (10) are defined as 

,xx xxA A
N dA M zdA                         (11) 

And the kinetic energy for Euler-Bernoulli beam can be written as 

2 231

0

1
( ) ( )

2

L

A

uu
T dAdx

t t
                          (12) 

The first variation of the Eq. (12) can be obtained as 

   
2 2

0
( ) ( )) ( )

L u u w w w w
T A A I dx

t t t t t x t x
      

      
           
            (13) 

where , ,I A  are the mass density, rotational inertia and cross-sectional area of the nanobeams, 
respectively. The first variation of the work of external forces can be written in the following form 

 
0

L
V f u q w dx                            (14) 

In which f and q are external axial and transverse load distribution along the length of beam, 
respectively. Substituting Eqs. (10), (13) and (14) into Eq. (8) and setting the coefficients of 

,u w  and ( )
w

x
 


 to zero, leads to the following motion equations 
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2

2

N u
f A

x t
 

 
 

                          (15a) 

2 2 4

2 2 2 2

M w w w
N q A I

x x x t t x
                

             (15b) 

Integrating Eq. (5) over the beam’s cross-section area, the force-strain and the moment-strain of 
the nonlocal EBT can be obtained as follows 

2

2

N u
N EA

x x
  

 
 

                        (16a) 

2 2

2 2

M w
M EI

x x
  

  
 

                      (16b) 

The explicit relation of the nonlocal normal force and bending moment can be derived by 
substituting the second derivative of M from Eq. (15) into Eq. (16) as follows 

3

2

u u f
N EA

x x t x

   

       
                      (17a) 

2 2 4

2 2 2 2

w w w w
M EI N q A I

x x x t t x
  
                    

               (17b) 

The nonlocal governing equations of Euler-Bernoulli nanobeams in terms of displacements can 
be derived by substituting N and M from Eq. (17) into Eq. (15) as follows 

2 2 4

2 2 2 2

u f u u
EA f A A

x x x t t x
                  

              (18a) 

2 2 2 2 2

2 2 2 2 4

2

4

2

2

2 2

w w w w
EI N A I

x x x x x t t x

w w w
N A I

x x t

q

x

q

t

  

 

                               
            

            (18b) 

 

 

3. Problem statement 
 

3.1 Brief statement of problem 
 

A nanobeam with simply-supported boundary condition is presented in Fig. 1. As described in 
previous section, the governing equation for vibration of an Euler–Bernoulli nanobeam subjected 
to pre-stress load can be obtained by setting 0, 0f q   and neglecting the rotational inertia 

( I ) in Eq. (18(b)) as follows 
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where 2121 ,,, bbaa  are constant amplitudes with the following values: 

 
1 2 1 21, 0a a b b     :for non-ideal B.Cs at one end,  

 1 2 1 2 1a a b b     : for non-ideal B.Cs at the both ends 

 
3.1 Solution procedure 
 
The solution of the Eq. (19) is considered as 

     , cos sinW x t A t B t Y x                      (24) 

By substituting the above relation into Eq. (19) and the B.Cs (23), one may obtain 

2 2 24) 2(( ) ( ) 0Y Y YEI N N A A                   (25a) 

       1 1 2 20 , 0 , 1 , 1Y a Y b Y a Y b                     (25b) 

Using Lindstedt-Poincare technique, the frequencies and mode shapes in the perturbation series 
are expanded as 

0 1 0 1,Y Y Y                           (26) 

Now substituting the above relations into Eq. (25) and separating the coefficients with the same 
order gives 

 
       

2 2 2 2

0

(4)

0 0 0

0 0 0 0

0 ;
1 :

0 0 1

( ) ( )

1 0

EI N N A AY Y Y
O

Y Y Y Y

        
   



 




        (27) 

 
       

(4)2 2 2 2 2

1 1 1 0 1 0 0

1 1 1 1 1

0

2 1 2

0 2 ( )
:

0 , 0 , 1

( )

1 ;

( )

,

Y Y Y YEI N N A Y
O

Y a Y b Y b

A A A

a Y

          


     
  



  




(28) 

Considering a solution with the form of   xkexY 0 and substituting it into Eq. (27) yields to 

the following characteristic equation: 

2 4 2 22 2

00( ) ( ) 0EI N N A Ak k                    (29) 

while the roots characteristic Eq. (29) can be obtained as 

22

2

2 2 2 2 2

0 0 0

2

( ) ( ) (

( )

4

2

)N A N A EI N A

EI N
k

        


  


 



       (30) 

Since: 2 2 2 2

0 0

2( ) (4 ) 0N A EI N A         and  :

2 2 2 2

0 0

2( ) (4 )N pA EI N A        , the following relations can be written 
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2 2 2 2

1

22 2 2
0 0 0

2

2 2 2 2 2 2
0 0 0

2

22

1 1

1

2

2

4( ) ( ) ( )

( )

( ) ( ) ( )

,
2

4

2( )

k s

k

N A N A EI N A

EI N

N A N A EI N A

E
i s

I N
i

        


        


 
    
 
 

  
    







  








 




 (31) 

In view of the above relations, the solution of the Eq. (27) can be written as 

 0 1 1 2 2cosh sinh sin cosY x A s x B s x C s x D s x                 (32) 

Prescribing the B.Cs given in relation (27), the coefficients of the Eq. (32) are obtained as 

 
 
 
 

0

0

0

1 2

0

0 0
0

0 0

1 0
2sinh sin 0

1 0

Y
A D

Y

Y
s s

Y

     
  

  

                      (33) 

In above relation, as 0sinh 1 s , so 0B   and the following expression is obtained 

2 2 2sin 0 sin sins s n s n                      (34) 

Considering the above relation, 0 can be written as 

 
2 2 2 2 2 2

0 0 0

2

2 2

1

2

4 2 2

2 2 2 2

2

0 2

2 4( ) ( ) ( )

( )

( )

( )

2

N A N A EI N A

EI N

L n N n EI N

AL n

n

L

        


 
 






  
  
 
 

  


 







   (35) 

Now with the determined coefficients, the solution of the Eq. (27) can be written as 

 0 2sinY x C s x                            (36) 

Normalizing  0Y x by relation
1

2
0

0

1Y dx  , one may obtain: 2C  So 

 0 22 sinY x s x                         (37) 

The solution of the Eq. (28), noting the relevant B.C.’s, is considered as 

     1 1 1h pY x Y x Y x                            (38) 
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where  1hY x  and  1pY x  are the homogenous and the particular solutions of the Eq. (28) 

respectively, which are as follows 

 1 1 1 2 2sinh cosh sin coshY x A s x B s x C s x D s x              (39) 

   1 1 2 2 2sin cospY x x N s x N s x                     (40) 

Inserting  1pY x  in Eq. (28), in order to obtain the constants 1 2,N N , the following relation is 

obtained:  

   
   

 

3 4 4

2 1 2 2 2 1 2 2 2 2 2

2

2 1 2 2 2 2 1 2 2 2

2

1 2 2

2 2

2 2

0

2

0 2 0 1 2 2

(4 cos sin sin cos

2 cos sin sin cos

sin co

) ( )

(

s 2 2 s

)

(1 ) in

s N s x N s x x N s s x N s s x

s N s x N s x s x N s x N s x

x N s x

EI N

N s x

EI N

N A

A s s x

 

 

   



   

    



 

 









(41) 

It can be shown that the sum of the coefficients of the expression  1 2 2 2sin cosx N s x N s x  

related to the second, fourth and fifth terms of the left hand side of the above equation equals to 
zero, so, rewriting Eq. (41) in view of the above relations, one may obtain 

 
 

3

2 1 2 2 2

2

2 1 2 2 2 0 1

0

2

2 2 2

2

4 cos sin

2 cos sin 2

(

2 (1 )s

) )

in

(s N s x N s x

s N s x N

EI N N

s

A

x s s x 

     

     

 
         (42) 

Equating the coefficients of the terms xs2sin  and xs2cos  of the both sides of Eq. (41) to 

obtain constants 1N  and 2N  may be resulted in the following 

 2 2 2

0

2

2

1 2 2

3 2

2 2 2 2 2 0 1

2 2

0

2 2 0

4

( ) ( )

( ) (2 2 2(1) )

N s s

N

EI N N A

s N s sEI N N A

   

     

  

  

 

 
        (43) 

Since 2
2 2 2

0
2( ) ( )2 0EI N N As      , from the first equation of Eq. (43), it is 

obtained that 01 N  and from the second equation of Eq. (43), 2N is obtained as 

2

0 1 2
2 3

2 2

2 2 2

0

2 (1 )

2( ) ( )

s
N

sEI sN N A 








 
                   (44) 

Substituting the coefficients 1N  and 2N  in Eq. (40), the particular solution of Eq. (26) is 
obtained as 

 
2

0 1 2
1 23 2 2

02

2

2( ) ( )

2 (1 )
cos

2p EI N N

s
Y x x s

s A
x

s 
 

  





           (45) 

Hence the sum of the particular and the homogenous solutions of the differential Eq. (28), can 
be written as 
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 1 1 1 2 2

2

0 1 2
232 2 2

02 2

sinh cosh sin cos

2 (1 )
cos

( ) ( )2

Y x A s x B s x C s x D s x

s
x s x

s sEI N N A

 
     

   




              (46) 

Prescribing the B.C.’s related to the Eq. (28), the constants of the above relation are obtained as 

 
 
 
   

1 1

2 2

1 1 2 1

1 1 1 2 2 2 2 2

2 2 2 2 2 2

1 1 1 1 1 2 2 2 2 2 1 1 2 2 2

0

0

1 sinh cosh sin cos cos

1 sinh cosh sin cos 2 cos cos

Y B D a

Y Bs Ds b

Y A s B s C s D s N s a

Y As s Bs s Cs s Ds s N s s s s b

  
   

     
       

(47) 

According to Eq. (34), the term 2sin s  is equal to zero. By setting 0sin 2 s  in above 

relations, it is seen that the coefficient C  vanishes, so it is assumed that the coefficient C  is 
zero. From the two first Eq. (47) it is obtained that 

2
1 1 1

1 2 2
1 2

2
1 1 1

2 2
1 2

a s b
B a

s s
a s b

D
s s


 







                          (48) 

Multiplying the third part of the Eq. (47) by 
2

1s  and adding the resulted equation to the forth 

equation, produces the following characteristic equation from which 1  can be obtained 

   
2

2 2 2 20 1 2
1 1 1 2 1 2 2 2 2 13

2

2 2

0 2

2

2

( )

(

( )

1 )
cos cos

2 EI N N

s
b a s s s s s b a s

s A s   
  

    
  

 (49) 

1  is obtained from the above equation as following 

   
  

3 2 2
2 2 1 1 1 2 2 1 2

1 2 2 2
0 2 1 2 2

2 2 2
02 cos

2 1

)

o

)

s

(

c

(EI N Ns s b a sA s a s b

s s s s





  


     
 

 
      (50) 

If the third part of Eq. (47) is multiplied by 
2

2s  and added to the forth equation, the following 
equation will be obtained 

   2 2 2

2 2

2
1 2 1 1 2 1

2
2 2 20 1 2

1 2 1 2 2 23
2 2

2
0

sinh cosh

2

( ) ( )

(1 )
2 cos

2 E

A s s s B s s s

s
s s s a s

sI N A
b

sN


  




  


 

  


       (51) 

Substituting the constant B from Eq. (48) into the above equation yields the constant A as 
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   
 

22
2 2 2 2 20 1 21 1 1

2 2 2 1 1 2 1 1 2 12 2 3
1 2 2 2

2 2 2

2 2
2

0

1 1

( ) ( )

2 (1 )
cosh 2 cos

2

sinh

sa s b
a s b a s s s s s s

s s s s
A

EI N N A

s s s

   
    

         


   (52) 

Now substituting the constants A, B and D into the Eq. (46),  xY1  is obtained as follows 

 
   

 

22
2 2 2 2 20 1 21 1 1

2 2 2 1 1 2 1 1 2 122 2 3
1 2 2 2

1 2 2
1 2 1

22 2
0 1 21 1 1 1 1 1

1 1 1 22 2 2 2
1 2 1

2 2
0

2

2 (1 )
cosh 2 cos

2
.

sinh

2 (1
sinh cosh cos

( ) ( )

sa s b
a s b a s s s s s s

s s s s
Y x

s s s

sa s b a

EI

s b
s x a s x

N N A

s x
s s s s

  
 

 


   

         


     
      







   
2 23 2

0
2

2 2( ) (

)
cos

)2 EI N N A
x s x

s s   

(53) 

Having  xY0  and  xY1  from Eqs. (37) and (44) respectively, the solution of the 

differential Eq. (19) is obtained as following 

   
 

22
2 2 2 2 20 1 21 1 1

2 2 2 1 1 2 1 1 2 12 2 3
1 2 2 2

2 2 2
1 2 1

2 2
1 1 1 1 1 1

1 1 12 2 2

2
0

1

2

2
2

2

1 2

2 (1 )
cosh 2 cos

2
2 sin .

sinh

sinh cos

( ) (

h s

)

co

sa s b
a s b a s s s s s s

s s s s
Y s x

s s s

a s b a s b
s x a s x s

s s s s

EI N N A  
 




    
             





    
         

 

2
0 1 2

2 23
2 2

2 2 2
0

2 (1 )
c

( )
os

2 ) (

s
x

E
x s x

s sI N N A   
 

 

   

 (54) 

Moreover, from Eqs. (35) and (50), the parameter   appeared in Eq. (19) is derived as 
following 

   
  

2 2 4 2 2

2 2 2 2 2

2 2 2
0

3 2 2
2 2 1 1 1 2 2 1 2

2 2 2
0 2 1 2 2

( )

( )

( ) (2 cos

c

)

2 1 os

s s b

L n N n EI N

AL L n

EI N a s s a s b

s s

N

s s

A

 
  

   








   



   
 









 
    (55) 

Now using Eqs. (54) and (55) , the mode shapes and the frequencies of the nanobeam subjected 
to axial loading with non-ideal B.C.’s can be obtained respectively. 
 
 
4. Validation of the analysis 
 

In this section, the accuracy and the efficiency of the presented method and closed form 
solutions are investigated through some examples. For this purpose, nanobeams with the following 
properties are assumed in computing the numerical values (Reddy 2007) 

3 6 61, /12, 3010, 0.3, *10 , 1.6*10xI EL bh        

Firstly, the accuracy of the nonlocal natural frequencies of nanobeam is investigated. Table 1 

presents the non-dimensional fundamental frequencies of nonlocal nanobeams 2ˆ ρA / EIL   
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with ideal B.Cs compared to the results given by Reddy (2007), Thai (2012) which shows a good 
agreement. It can be observed that increasing the nonlocality parameter tends to decrease in natural 
frequency of the nanobeams due to the decrease in the stiffness of the nanostructure.  

Next, the first normalized natural frequencies of a nanobeam with different aspect ratio and 
various nonlocal parameters  are presented in Tables 2 for ideal B.Cs and non-ideal B.Cs at one 
end and both ends. The nonlocal parameters are taken as 0, 1, 2, 3, and 4 nm2. 

It should be noted that 0  corresponds to the local beam theory. Also, note that 0   
corresponds to the frequencies and mode shapes for ideal B.Cs. It can be seen that increasing the 
aspect ratio tends to increase the natural frequency while increasing nonlocal parameter tends to 
decrease the natural frequency. 

Fig. 2 shows the effect of preload parameter on fundamental frequency of a nanobeam with 
non-ideal B.Cs at both ends with different perturbation parameters and aspect ratios. It is seen that 
the fundamental frequency increases by increasing the axial load from compressive to tensile 
values. 

 
 

Table 1 Comparison of non-dimensional fundamental natural frequencies for simply supported nanobeams 

L/h µ Analytical (Thai 2012) Analytical (Reddy 2007) 
Perturbation method  

(Present study) 

10 

0 9.8293 9.8696 9.86960440 

1 9.3774 9.4159 9.41588108 

2 8.9826 9.0195 9.01948110 

3 8.6338 8.6693 8.66926898 

4 8.3228 8.3569 8.35691990 

20 

0 9.8595 9.8696 9.86960440 

1 9.4062 9.4159 9.41588108 

2 9.0102 9.0195 9.01948110 

3 8.6604 8.6693 8.66926898 

4 8.3483 8.3569 8.35691990 

100 

0 9.8692 9.8696 9.86960440 

1 9.4155 9.4159 9.41588108 

2 9.0191 9.0195 9.01948110 

3 8.6689 8.6693 8.66926898 

4 8.3566 8.3569 8.35691990 
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Table 2 Comparison of the first non-dimensional natural frequencies for the ideal ( 0  ) and non-ideal 

( 0.1  ) B.Cs when N=0, 0   

L/h µ  (ideal) (Reddy 2007)    (NIOE*)   ( NIBE**) 

10 

0 9.8696 9.6825 9.4753 

1 9.4158 9.2204 9.0021 

2 9.0194 8.8181 8.1688 

3 8.6692 8.4641 9.0094 

4 8.3569 8.1496 8.3942 

20 

0 9.8696 9.8228 9.7710 

1 9.4158 9.3670 9.3124 

2 9.0194 8.9691 8.8068 

3 8.6692 8.6179 8.7543 

4 8.3569 8.3050 8.3662 

100 

0 9.8696 9.8677 9.8656 

1 9.4158 9.4139 9.4117 

2 9.0194 9.0174 9.0109 

3 8.6692 8.6672 8.6726 

4 8.3569 8.3548 8.3572 

* NIOE: non-ideal B.C at one end 

** NIBE: non-ideal B.C at both end 
 

 
The other noticeable point is that by increasing the perturbation parameter at a specific axial 

load, the fundamental frequency decreases. On the other hand, increasing aspect ratio tends to 
make a convergence of all three conditions to the state of ideal B.Cs. The reason is that by 
increasing aspect ratio, the beam becomes thicker and stiffer while the non-ideal B.Cs tends to 
decrease the stiffness of the nanostructures and hence decreases the values of natural frequencies.  

Table 3 illustrates the variations of the fundamental frequency with respect to the perturbation 
parameter for L/h=100, N=0 and 0  while nonlocal parameters are taken as 0, 1 and 2 nm2. It is 
observed that the fundamental frequency of the nanobeams decreases by increasing the 
perturbation parameter for different values of nonlocal parameters. Also, Fig. 3 shows the 
variations of the fundamental frequency with respect to the perturbation parameter for aspect ratios 
equal to 20 and 50.  

The fundamental frequency parameter as a function of temperature change is presented in Table 
4 for a nanobeam with different nonlocal parameters. Also, Table 5 and Fig. 3 present the 
variations of the first dimensionless natural frequency of the nanobeam with respect to temperature 
change for different values of aspect ratios and nonlocal parameters. Observing these figures, it is 
easily deduced that, an increase in nonlocal parameter leads to a decrease in the first dimensionless 
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natural frequency for all temperature changes and aspect ratios. In addition, it is deduced that the 
fundamental frequency may increase by increasing the temperature changes and thus the 
temperature change has a significant effect on the fundamental frequency of the nanobeams which 
cannot be ignored. 
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Fig. 2 Fundamental frequency versus preload parameter for different perturbation parameters and aspect 
ratios with non-ideal B.Cs at both ends and 0, 0   , L/h=20 

 

1101



 
 
 
 
 
 

Farzad Ebrahimi and Gholam Reza Shaghaghi 

Table 3 Comparison between the first non-dimensional natural frequencies of the nanobeams with ideal and 
non-ideal B.Cs with different perturbation parameters (N=0, L/h=100, 0  ) 

  

20 nm   
21 nm   

22 nm   

  

(ideal) 

  

(NIOE*) 

  

(NIBE**) 

  

(ideal) 

  

(NIOE*) 

  

( NIBE**)

  

(ideal) 

  

(NIOE*) 

  

( NIBE**)

0 9.8696 9.8696 9.8696 9.4158 9.4158 9.4158 9.0194 9.0194 9.0194 

0.1 9.8696 9.8636 9.8571 9.4158 9.4097 9.4028 9.0194 9.0131 8.9925 

0.2 9.8696 9.8577 9.8446 9.4158 9.4035 9.3897 9.0194 9.0067 8.9656 

0.3 9.8696 9.8518 9.8322 9.4158 9.3973 9.3766 9.0194 9.0003 8.9387 

0.4 9.8696 9.8459 9.8197 9.4158 9.3911 9.3635 9.0194 8.9940 8.9118 

0.5 9.8696 9.8400 9.8072 9.4158 9.3849 9.3504 9.0194 8.9876 8.8849 

0.6 9.8696 9.8341 9.7948 9.4158 9.3788 9.3373 9.0194 8.9812 8.8580 

0.7 9.8696 9.8282 9.7823 9.4158 9.3726 9.3242 9.0194 8.9749 8.8311 

0.8 9.8696 9.8222 9.7698 9.4158 9.3664 9.3112 9.0194 8.9685 8.8042 

0.9 9.8696 9.8163 9.7574 9.4158 9.3602 9.2981 9.0194 8.9621 8.7773 

1.0 9.8696 9.8104 9.7449 9.4158 9.3540 9.2850 9.0194 8.9558 8.7504 

* NIOE: non-ideal B.C at one end  ** NIBE: non-ideal B.C at both ends 
 

Table 4a Effect of temperature on first natural frequencies with different aspect ratios (N=0, 21 nm  ) 

L/h 

0   20   50   

  

(ideal) 

  

(NIOE*) 

  

(NIBE**) 

  

(ideal) 

  

(NIOE*) 

  

( NIBE**)

  

(ideal) 

  

(NIOE*) 

  

( NIBE**)

10 9.4158 8.7979 8.1073 9.4359 8.8172 8.1319 9.4660 8.8462 8.1681 

20 9.4158 9.2613 9.0887 9.4960 9.3408 9.1729 9.6150 9.4586 9.2958 

30 9.4158 9.3472 9.2704 9.5953 9.5258 9.4532 9.8583 9.7878 9.7172 

40 9.4158 9.3772 9.3341 9.7325 9.6932 9.6532 10.1891 10.1488 10.1073

50 9.4158 9.3911 9.3635 9.9062 9.8808 9.8553 10.5993 10.5729 10.5410

60 9.4158 9.3987 9.3795 10.1145 10.0966 10.0785 11.0801 11.0613 11.0252

70 9.4158 9.4032 9.3891 10.3552 10.3419 10.3275 11.6226 11.6085 11.4004

80 9.4158 9.4062 9.3954 10.6261 10.6158 10.6031 12.2187 12.2076 12.2330

90 9.4158 9.4082 9.3997 10.9251 10.9168 10.9037 12.8610 12.8520 12.8626

100 9.4158 9.4097 9.4028 11.2498 11.2430 11.2253 13.5428 13.5353 13.5428

* NIOE: non-ideal B.C at one end  ** NIBE: non-ideal B.C at both end 
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Table 4b Effect of temperature on first natural frequencies with different aspect ratios (N=0, 23 nm  ) 

L/h 

0   20   50   

  

(ideal) 

  

(NIOE*) 

  

(NIBE**) 

  

(ideal) 

  

(NIOE*) 

  

( NIBE**)

  

(ideal) 

  

(NIOE*) 

  

( NIBE**)

10 8.6692 8.0205 9.7451 8.6911 8.0405 8.8391 8.72374 8.07051 9.99238

20 8.6692 8.5070 8.9382 8.7562 8.5922 9.1078 8.88516 8.71853 9.44242

30 8.6692 8.5971 8.7888 8.8638 8.7899 9.1916 9.14787 9.07139 10.6688

40 8.6692 8.6287 8.7365 9.0122 8.9699 9.2672 9.50347 9.45859 9.23011

50 8.6692 8.6433 8.7123 9.1995 9.1718 9.3297 9.942 9.91179 9.8481 

60 8.6692 8.6512 8.6991 9.4233 9.4036 9.4876 10.453 10.4308 10.4007

70 8.6692 8.6560 8.6912 9.6812 9.6663 9.6185 11.0265 11.0091 10.9905

80 8.6692 8.6591 8.6860 9.9705 9.9587 9.9046 11.6531 11.6389 11.6248

90 8.6692 8.6612 8.6825 10.2886 10.2789 10.2642 12.3249 12.3129 12.2998

100 8.6692 8.6627 8.6800 10.6328 10.6246 10.6146 13.0347 13.0243 13.0093

* NIOE: non-ideal B.C at one end  ** NIBE: non-ideal B.C at both end 

 
Table 5 Effect of temperature on first natural frequencies with nonlocal parameter s (N=0, L/h=100) 

  

20 nm   
21 nm   

22 nm   

  

(ideal) 

  

(NIOE*) 

  

(NIBE**) 

  

(ideal) 

  

(NIOE*) 

  

( NIBE**)

  

(ideal) 

  

(NIOE*) 

  

( NIBE**)

0 9.8696 9.8636 9.8571 9.4158 9.4097 9.4028 9.0194 9.0131 8.9925 

10 10.7870 10.7810 10.7522 10.3734 10.3669 10.3599 10.0150 10.0080 10.0002

20 11.6322 11.6263 11.6363 11.2498 11.2430 11.2253 10.9202 10.9126 10.9049

40 13.1608 13.1550 13.1620 12.8241 12.8168 12.8256 12.5359 12.5273 12.4608

50 13.8621 13.8564 13.8774 13.5428 13.5353 13.5428 13.2702 13.2611 13.2848

* NIOE: non-ideal B.C at one end  ** NIBE: non-ideal B.C at both end 

 
Also, Table 6 and Fig. 4 show the variation in frequency parameter with respect to nonlocal 

parameters for different modes of vibration. The preload parameter is assumed to be zero. It is 
observed that as the nonlocal parameter increases, the frequency decreases and the rate of drop of 
the frequency with nonlocal parameter is magnified for higher modes (mode = 3, 4, and 5). 

And finally, Table 7 shows the variation of frequency parameter with respect to the preload 
parameter N for different modes of vibration. Five modes of vibration are considered. From Table 
7, it is observed that the natural fundamental frequency will decrease and increase with increasing 
compressive and tensile preload, respectively and the trends are similar for all modes of vibration.  
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Fig. 3 Fundamental frequency versus the temperature change for different aspect ratio and nonlocal 
parameter with both side of non-ideal B.Cs and N=0 
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Table 6 Effect of nonlocal parameters on first three natural frequencies of nanobeams (N=0, L/h=100, 
=20) 

  

1st frequency 2nd  frequency 3rd frequency 

  

(ideal) 

  

(NIOE*) 

  

(NIBE**) 

  

(ideal) 

  

(NIOE*) 

  

( NIBE**)

  

(ideal) 

  

(NIOE*) 

  

( NIBE**)

0 11.6322 11.6263 11.6363 41.3539 41.3478 41.3409 90.7261 90.7201 90.7136

1 11.2498 11.2430 11.2253 35.6231 35.616 35.6082 67.228 67.2216 67.2152

2 10.9202 10.9126 10.9049 31.9766 31.9696 31.9901 56.4165 56.4127 56.4062

3 10.6328 10.6246 10.6146 29.4126 29.4066 29.4157 49.9405 49.9436 49.9521

4 10.3797 10.3711 10.3115 27.4934 27.4887 28.0919 45.5415 45.5483 45.5571

 
 
 

Table 7 Effect of preload parameter on first three natural frequencies of nanobeam ( 22 , 20nm   , 

L/h=100) 

N 1st frequency 2nd  frequency 3rd frequency 

  

(ideal) 

  

(NIOE*) 

  

(NIBE**) 

  

(ideal) 

  

(NIOE*) 

  

( NIBE**)

  

(ideal) 

  

(NIOE*) 

  

( NIBE**)

-10 4.5336 4.5331 4.5330 25.0543 25.0498 25.0651 47.9015 47.8978 47.9177 

-8 6.3477 6.3470 6.3479 26.5834 26.5782 26.5847 49.7213 49.7175 49.6929 

-6 7.7480 7.7450 7.7374 28.0291 28.0235 28.0292 51.4768 51.473 51.4661 

-4 8.9315 8.9265 8.9209 29.4039 29.3978 29.4044 53.1744 53.1705 53.1663 

-2 9.9755 9.9690 9.9625 30.7172 30.7106 30.7202 54.8194 54.8156 54.8117 

0 10.920 10.9120 10.9049 31.9766 31.9696 31.9901 56.4165 56.4127 56.4062 

2 11.789 11.7810 11.7721 33.1882 33.1809 32.8770 57.9696 57.9659 57.9805 

4 12.598 12.5899 12.5804 34.3572 34.3495 34.3283 59.4821 59.4786 59.4823 

6 13.359 13.3500 13.3405 35.4877 35.4797 35.4671 60.9572 60.9538 60.9588 

8 14.0786 14.0693 14.0599 36.5832 36.575 36.5650 62.3974 62.3941 62.3879 

10 14.7630 14.7537 14.7440 37.6469 37.6384 37.6294 63.8051 63.8019 63.7984 

* NIOE: non-ideal B.C at one end  ** NIBE: non-ideal B.C at both end 
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Fig. 4 Fundamental frequency versus nonlocal parameters for different aspect ratios and mode numbers 
for a nanobeam with with non-ideal B.Cs in both ends ( 0, 0   ) 
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5. Conclusions 
 

In this manuscript, the vibration analysis of a nanobeam with non-ideal boundary conditions 
subjected to a preload was studied based on Eringen’s nonlocal elasticity theory. The governing 
equations are derived through Hamilton’s principle while they are solved by Lindstedt - Poincare 
technique. The perturbation parameter is employed to model the non-ideal B.Cs and the effects of 
non-ideal B.Cs and preload values on the frequency of nanobeams are studied. The obtained 
results can be summarized as follows: 
 Increasing the preload from compressive to tensile values tends to increase in fundamental 

frequency. 
 By increasing of the perturbation parameter, the fundamental frequency of the nanobeam 

subjected to tensile or compressive preload decreases. 
 Consideration of non-ideal B.Cs tends to decrease in natural frequencies compared to the ideal 

B.Cs.  
 The decreasing rate of frequency respect to nonlocal parameter is magnified for higher modes 

of vibration. 
 Fundamental frequency increases by increasing the temperature changes. 
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