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Abstract.  Two novel semi-active control methods for a seismically excited nonlinear benchmark building 
equipped with magnetorheological dampers are presented and evaluated in this paper. While a primary 
controller is designed to estimate the optimal control force of a magnetorheological (MR) damper, the 
required voltage input for the damper to produce such desired control force is achieved using two different 
methods. The first technique uses an optimal compact Takagi-Sugeno-Kang (TSK) fuzzy inverse model of 
MR damper to predict the required voltage to actuate the MR dampers (TSKFInv). The other voltage 
regulator introduced here works based on the maximum and minimum capacities of MR damper at each 
time-step (MaxMin). Both semi-active algorithms developed here, use acceleration feedback only. The 
results demonstrate that both TSKFInv and MaxMin algorithms are quite effective in seismic response 
reduction for wide range of motions from moderate to severe seismic events, compared with the passive 
systems and performs better than original and Modified clipped optimal controller systems, known as COC 
and MCOC. 
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1. Introduction 
 

One of the challenging tasks for civil engineers is to mitigate the response of a structure 

subjected to dynamic loads in order to reduce the risks of damage and injuries caused by extreme 

hazards such as earthquakes and strong winds. Earthquake engineers, however, have a number of 

options to design buildings that can resist earthquake loading, e.g. structural elements can be 

stiffened, bracing can be introduced, the structure can be isolated from the ground (base isolation) 

or dampers can be used (Li, Yi et al. 2011, Yi, Li et al. 2013) 

Semi-active control uses the measured structural response to determine the required control 

force. Therefore, they have the ability to deal with the changes in external loading conditions. 

Furthermore, they cannot input any energy into the system and have properties that can be adjusted 

in real time and can only absorb or dissipate energy. Because of these properties, there is no 

stability problem associated with this system (Yang 2001). Another advantage of this system is that, 

they have an extremely low power requirement which is particularly critical during seismic events 
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when the main power source to the structure may fail. These systems also offer the reliability of a 

passive system, yet maintain the versatility and adaptability of fully active systems. Moreover, 

they are fail-safe systems as can act as passive control system in the case of power failure (Li, Yi et 

al. 2014). 

A magneto-rheological (MR) damper is a type of controllable fluid damper which uses MR 

fluid. MR fluid has the properties to change reversibly from a free flowing, linear viscous fluid to 

a semi-solid with controllable yield strength. Because of this property, MR dampers are quite 

promising for civil engineering applications (Huang, Liu et al. 2015). However, the semi active 

control of MR damper-systems is still a challenging issue in the research community (Esteki, 

Bagchi et al. 2015). A vibration control system using an MR damper requires two main controllers: 

(i) a primary system controller, and (ii) an MR damper voltage regulator. The former controller 

computes the desired damping force required for given system conditions. This is typically done 

through a sliding mode control, linear quadratic Gaussian (LQG) algorithm or any other optimal 

control theory which makes the real system to emulate an idealised reference system. The function 

of the voltage regulator is to command the damper to produce the desired force. The effectiveness 

of this controller depends on its ability to deal with the nonlinear nature of the device (i.e., the 

nonlinear relationship between damper force and relative velocity across it) and its semi-active 

nature. 

In this paper, two new semi-active control algorithms named TSKInv and MaxMin, are 

designed to convert the force generated by the primary controller to the required voltage of MR 

dampers. The first technique uses an optimal compact TSK fuzzy inverse model of MR damper to 

predict the required voltage to actuate the MR dampers (TSKFInv). To find the inverse model of 

MR damper, the method introduced by Askari et.al , is used here (Askari, Li et al. 2015). Another 

semi-active voltage controller is also presented which works based on the maximum and minimum 

capacities of MR damper at each time-step. Using the response of the structure, the maximum and 

minimum loads that can be generated by an MR damper at each time-step are obtained by a simple 

forward model of MR damper. Considering a linear relation between these two operating points, 

the required voltage to produce a desired force is then estimated. The method is designated as 

MaxMin Optimal Controller. For both algorithms, the acceleration response of building is only 

used as the input. However, in case the acceleration measurement is not available at some storeys, 

a Kalman filter is designed to estimate the required unknown response. For the case study, the 

proposed control strategies are applied to a 20-storey nonlinear benchmark building subjected to 

10 different earthquake signals. The numerical results are compared to clipped optimal control 

(COC) and modified COC and the results discussed. 

It should be emphasized that, the idea of using inverse model of MR damper for vibration 

control purposes, is not new and has been used by other researchers before. However, both 

controllers developed in this study, are novel on their own, in terms of:  

 Learning techniques introduced to model forward and inverse behaviour of MR dampers; a 

new optimal and compact Takagi-Sugeno fuzzy model using subtractive clustering and genetic 

algorithm is proposed for modelling the MR dampers. 

 Inputs used for the controllers; the inputs used in modelling the MR dampers are selected from 

time-history of acceleration responses of structure using genetic algorithm. Also the inputs for 

the controllers are chosen in a way the force feedback is not needed. 

 Application of such semi-active controllers in large nonlinear structures under incomplete 

measurements; the controllers are designed to be able to work with incomplete response of 
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structure. For example, not all the acceleration response of all floors is needed. In case a 

required signal is not available, it will be estimated using a Kalman Filter.” 

More information on each feature will be discussed in the next sections. 

 

 

2. 3rd generation 20-storey nonlinear benchmark building 
 

The case study considered here, is a benchmark building of 20 storeys designed for the Los 

Angeles region as defined by Ohtori in the problem definition (Ohtori, Christenson et al. 2004). 

Based on the literature review, only few semi-active based controls have been reported to mitigate 

the seismic responses of this benchmark structure (Askari and Davaie-Markazi 2008, Karamodin, 

Haji-Kazemi et al. 2009, Bitaraf, Ozbulut et al. 2010, Askari, Li et al. 2011, Ozbulut and 

Hurlebaus 2012, Bitaraf and Hurlebaus 2013). 

During large seismic events, structural members can yield, resulting in nonlinear response 

behaviour that may be significantly different than a linear approximation. To better represent the 

nonlinear behaviour, a bilinear hysteresis model is used to model the plastic hinges of the building 

structural members. The bilinear bending properties are predefined for each structural member. 

These plastic hinges, which are assumed to occur at the moment resisting column-beam and 

column-column connections, introduce a material nonlinear behaviour of these structures. For 

more information on how to model the nonlinear behaviour of structural members please refer to 

(Ohtori, Christenson et al. 2004). 

Ten earthquake records are used in the simulation, using the original four earthquake records 

with different intensities. These records are the El Centro (1940) and Hachniohe (1968) earthquake 

records with 0.5, 1.0, and 1.5 intensity, and Northridge (1994) and Kobe (1995) earthquake records 

with 0.5 and 1.0 intensity. 

25 MR dampers, each with capacity of 1,000 kN are optimally placed throughout the stories of 

the 20-storey benchmark building as shown in Fig. 1. This configuration is obtained using genetic 

algorithm as suggested by (Askari, Li et al. 2011). However, it is assumed that all dampers on a 

single floor experience the same inputs. 

 

 

 

Fig. 1 MR damper and accelerometer configurations 
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Fig. 2 Block diagram of semi-active control strategy 

 

 

3. Proposed control strategies 
 

The proposed controller for MR dampers consists of two components which are the primary 

controller; to produce the desired force and the voltage controller; to convert the desired force to 

the required voltage of MR dampers (Fig. 2). In this study, a Linear Quadratic Gaussian (LQG) is 

designed as primary controller. However, there is basically no restriction on the type of primary 

control algorithm, as the focus of this paper is on the second part, i.e., voltage controller. 

Both controllers proposed here, use the acceleration feedback only as accelerometers are more 

convenient than LVDTs and GPS measurement tools, in terms of installation and cost. Therefore, 

ten sensors for acceleration measurements are used for feedback into the control system on the 2
nd

, 

4
th
, 6

th
, 8

th
, 10

th
, 12

th
, 14

th
, 16

th
, 18

th
 and 20

th
 floors. The required accelerations of other storeys are 

estimated using a Kalman filter observer. More details on how to design the Kalman filter-based 

LQG controller is presented in appendix. 

 
3.1 Voltage controller 1: Optimal TSK fuzzy inverse controller (TSKFInv) 

 
In this section, a voltage controller based on inverse model of MR damper is proposed. The 

controller is used to calculate voltage signals to be sent to the MR damper so that it can produce 

desired optimal control forces estimated by LQG control algorithm. 

To design the inverse model of MR damper, it is important to know that, the model should be 

both accurate and concise to generate a quick and reliable response in real-time applications. In 

conventional EA-based fuzzy modelling methods, the structure of the FS, e.g., the suitable inputs, 

are prescribed and then the other parameters of the fuzzy model such as rules and MFs are 

optimised. However, in many cases the process for selection of inputs and the rule bases for 

nonlinear systems are co-dependent and therefore these two steps should be done simultaneously 

especially when enough knowledge on the effect of each input on the performance of the 

mechanical system does not exist. To solve this problem, some GA based methodologies are then 
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introduced by researchers. However, all these methods still deals with a large number of 

to-be-tuned parameters, causing a huge computational burden and hence making the optimisation 

process very time consuming. Furthermore, application of such method requires a good knowledge 

of the expected bounds of every parameter at the outset of the design, which may not be available. 

On the other hand, the excessive number of inputs and rules, not only affect the compactness and 

transparency of the underlying model, but also increases the complexity of the computations 

necessary for real-time implementation of the resulting model. 

In order to develop an accurate, yet compact FS, in this paper, the algorithm introduced by 

Askari is employed here to select a small structure fuzzy inference system with acceptable 

accuracy (Askari, Li et al. 2015). In this approach, subtractive clustering is used for initial 

estimation of the number of clusters as well as the centres. However, in order to find the efficient 

clusters for each dimension, m, in the input space, the only variable parameter that must be chosen 

appropriately is the neighbourhood radius ra. Furthermore, to design an accurate yet compact 

model, a minimal number of inputs which are the most relevant ones to the model should be 

selected carefully. To this end, non-dominated sorting genetic algorithm (NSGAII) is hired to 

intelligently select the required inputs as well as the initial clusters to be modified by fuzzy c-mean  

(FCM) in the next step. 

Since the inverse model uses the delayed force feedback of MR damper, a forward model can 

be considered to provide the force input and to prevent using load cells. However, if force sensors 

are not an issue, the sensors’ signal is preferable to use. A schematic of TSKFInv controller is 

shown in Fig. 3. To build such forward model, any parametric or non-parametric model of MR 

damper can be used. In this study, in order to provide a quick, yet accurate response, a TSK fuzzy 

model is trained using a set of numerical data. The proposed learning algorithm is as follows: 

Step 1: Encode all the parameters into one chromosome using the proposed encoding scheme. 

Step 2: Generate the initial population of the chromosomes. 

Step 3: Find the initial clusters from the collected data using subtractive clustering method and 

based on the selected inputs and their corresponding neighbourhood radius values of each 

chromosome. 

Step 4: Update the clusters using FCM using the number and centre of clusters achieved in step 

3 for each chromosome. 

Step 5: Derive a TSK fuzzy model out of each chromosome, using the proposed obtained 

clusters and least squares estimator. 

Step 6: Based on the resulting rules, fuzzy input structure and the MF parameters, for every 

chromosome, evaluate three objective functions, namely, the number of inputs, the number of rules 

and the modelling RMSE. In fact, considering the first two factors as objective functions leads us 

to have a concise model while the last objective function is the representative of accuracy and can 

be measured from the following equation, where L is the length of data points, Ŷ is the predicted 

output (“voltage” and “force” in inverse and forward models of MR damper) and Y is the target 

output 

JRMSE = √
1

L
∑ (Yi − Ŷi)

2n
i=1                                   (1) 

Step 7: Rank all the chromosomes based on the objective function values. 

Step 8: Choose parents using tournament selection method, to be used in the next step for 

crossover and mutation. 

Step 9: Perform crossover and mutation operators to the parents to generate new set of 
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individuals called off-springs. 

Step 10: Evaluate the objective function of the new individuals and rank them. Steps 3-8 will 

be repeated for a fixed number of generations. The final answer is the chromosome whose 

objective function is smaller in the last generation. 

 

3.1.1 Forward model of 1,000 kN MR damper using acceleration feedback only 
The forward model describes the force characteristics of the MR damper which depends on the 

excitation signals when a constant voltage is applied. It can be constructed from many different 

models, such as modified Bouc–Wen, hyperbolic tangent or phenomenological model. 

This research employs the optimal TSK fuzzy model proposed by Askari et al., to derive a 

concise and precise forward model of a 1,000kN MR damper while the voltage is maintained at a 

maximum level of 10 V (Askari 2015). The output of the forward model is then used as an input 

signal to the inverse model (Fig. 3). 

The dataset used for training process must include all possible ranges of excitation that may be 

applied to the MR damper during actual operation. The data required for training the proposed 

fuzzy forward model of MR damper is obtained numerically using the model proposed by 

(Spencer Jr. et al. 1996) and shown in Fig. 4 (Details on physical and mathematical model of 

Spencer can be found in Appendix). While “T” indicates current time step, the candidate inputs are 

set to be time histories of acceleration, i.e., �̈�(𝑇 − 11), �̈�(𝑇 − 10),… , �̈�(𝑇) as well as voltage, 

𝑣(𝑇) signals. A time step of 0.01 sec is used to generate 10,000 data points.  

 

 

 

Fig. 3 TSK Fuzzy inverse optimal controller 
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Fig. 4 Collected Training Data 

 

 

 

Fig. 5 Pareto front of forward model of MR damper 

 

 

A Pareto front is then obtained which helps to design a compact and accurate forward model of 

the MR damper (Fig. 5). Here, the designing point marked by red circle, is selected to build the 

proposed forward model which uses �̈�(𝑇 − 9), �̈�(𝑇 − 8), �̈�(𝑇 − 4), �̈�(𝑇 − 2),  �̈�(𝑇), 𝑣(𝑇) as 6 

inputs and has 18 fuzzy rules with RMS error of 8.35. The first 6,500 data-points are chosen for 

training while the last 3,500 are considered as testing data.  
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Fig. 6 Pareto front of inverse model of MR damper 

 

 

3.1.2 Inverse model of 1,000 kN MR damper model 
The training process for designing the inverse model of MR damper is to capture the 

relationship between the applied voltage and the generated force. The training dataset to do so is 

the same as the dataset used in the previous section and has a 60 s time-span. The inputs of model 

will be optimally chosen from 16 candidates. The input candidates for the inverse model are floor 

accelerations; �̈�(𝑇 − 14), �̈�(𝑇 − 13),… , �̈�(𝑇), desired force; 𝐹𝑑(𝑇) and also the damper’s force; 

𝐹𝑀𝑅(𝑇 − 1). The Pareto front achieved after running the optimisation program is shown in Fig. 6. 

It should be mentioned that, the Pareto front gives freedom to the designer to select the best design 

based on his desire. If compactness is of more importance to designer, other points can be selected 

which return more compact models with higher errors. Here the selected point is marked by a red 

star. The proposed designing point features an inverse fuzzy model with 7 inputs; �̈�(𝑇 − 9), 
�̈�(𝑇 − 6), �̈�(𝑇 − 5), �̈�(𝑇 − 4), �̈�(𝑇 − 2), 𝐹𝑑(𝑇) and 𝐹𝑀𝑅(𝑇 − 1), 19 rules and RMS error of 

0.23.  

 
3.2 Voltage controller 2: Max-min optimal controller 

 
Although inverse model of MR damper could estimate the voltage of MR damper to generate a 

specific desired force, the method needs force feedback which might not be available. Moreover, 

developing an inverse model is hard due to highly nonlinear behaviour of MR damper. Forward 

behaviour of MR dampers, on the other hand, is easy to model. Many parametric models are 

suggested by researchers that can estimate the generated force of the MR damper in different states. 

Furthermore, they do not necessarily need force feedback to operate. 

Here, a new semi-active control algorithm is proposed based on maximum and minimum 

capacities of the MR damper at each time-step. Depends on the motion of the piston inside MR 

damper during earthquake, and consequently, the status of MR fluid, damper can generate load in a 

particular range at each time-step, t, i.e., [fmin,t  , fmax,t]. These forces can be found using a 

simple forward model without using force feedback. Now the control law will be defined as follow 
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𝑣𝑡 =

{
 
 

 
 𝑣𝑚𝑎𝑥                           𝑖𝑓   |𝑓𝑑,𝑡| > |𝑓𝑚𝑎𝑥,𝑡|

𝑣𝑚𝑎𝑥 (
|𝑓𝑑,𝑡|−|𝑓𝑚𝑖𝑛,𝑡|

|𝑓𝑚𝑎𝑥,𝑡|−|𝑓𝑚𝑖𝑛,𝑡|
)      𝑖𝑓   |𝑓𝑚𝑖𝑛,𝑡| < |𝑓𝑑,𝑡| < |𝑓𝑚𝑎𝑥,𝑡|

   0                               𝑖𝑓    |𝑓𝑑,𝑡| < |𝑓𝑚𝑖𝑛,𝑡|

           (2) 

In Eq. (2),  𝑓𝑚𝑎𝑥,𝑡 and 𝑓𝑚𝑖𝑛,𝑡 are the maximum and minimum generated forces by the MR 

damper at time 𝑡 which correspond to passive-on and passive-off forces. 𝑓𝑑,𝑡 is also the desired 

force produced by nominal controller (LQG in this study) at time 𝑡. So, if the desired force is less 

than minimum capacity of the MR damper at time 𝑡, the voltage will be set to 0. Similarly, if the 

desired force is larger than maximum capacity of the MR damper;  𝑓𝑚𝑎𝑥,𝑡, the voltage to be sent to 

the MR damper will be maximum; 𝑣𝑚𝑎𝑥,  to produce a force to be as close as possible to the 

desired force. But, if the desired force is between the maximum and minimum forces of the MR 

damper, then the voltage takes a portion of maximum voltage. This portion is found by 

interpolation using a linear relationship between max/min voltage and max/min force of the MR 

damper. It is interesting to note that if we assume,  𝑓𝑚𝑖𝑛,𝑡 and 𝑓𝑚𝑎𝑥,𝑡 to be equal to 0 and the 

total capacity of the MR damper (which is 1,000kN in this study) respectively, then the proposed 

algorithm is similar to Modified Clipped Optimal Controller. However, this assumption is not 

correct as the maximum and minimum of the MR damper’s forces at each time-step are functions 

of structural responses which are again functions of time. A schematic diagram for the controller is 

shown in Fig. 8. To find 𝑓𝑚𝑖𝑛,𝑡 and 𝑓𝑚𝑎𝑥,𝑡, one of the parametric forward models can be used. 

However, the complex ones, such as modified Bouc-Wen, are not very applicable to large real-time 

problems since they are time consuming and the simple ones, on the other hand, are not accurate 

enough. Therefore, the TSK fuzzy forward model, developed in previous section, will be used to 

provide the maximum and minimum of damper force at each time-step using acceleration 

feedback. 

 

 

4. Numerical results 

 
Two proposed semi-active strategies are validated through a highly nonlinear 20-storey 

benchmark building under 10 different ground accelerations. To make a comparison, an active 

control system, semi-active COC and Modified COC systems, together with two passive systems, 

passive off (POFF) and passive on (PON) are also designed. A Simulink model in MATLAB was 

used to implement the six different control strategies. For the passive control models the voltage is 

constant, whereas for the semi-active control models, the voltage is obtained through the 

respective control algorithms. 

The comparison between the desired force developed by LQG and the MR damper’s generated 

force using COC, MCOC, TSKFInv and MaxMin algorithms on the 20
th
 floor, are depicted in Fig. 

9 to Fig. 12 for 4 different earthquakes, each with intensity of 1. Also the required voltages of the 

MR damper to generate such forces, using the aforementioned semi-active control approaches, are 

compared with each other in the same figures. For the sake of better observation and 

understanding, this comparison is done for a short period of time. The force time history shown in 

these figures, illustrates the improvement introduced by MaxMin and TSKFInv algorithms 

compared to original COC and MCOC. The differences in MR damping forces are attributable to 
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the voltage commanded by the different algorithms. For the MCOC, the voltage varies 

continuously between zero and a portion of maximum voltage (𝑣 = 𝜇𝑣𝑚𝑎𝑥).  This is in stark 

contrast to the original COC, for which the control voltage can only take two values, 0 and 𝑣𝑚𝑎𝑥.  

 

 

 

Fig. 7 Comparison between target and predicted voltage and target and predicted force (bottom) using 

fuzzy inverse and forward models of MR damper 

 

 

 

Fig. 8 Schematic diagram of MaxMin optimal controller (proposed in this study) 

 

 
Training Data Testing Data 

1014



 

 

 

 

 

 

Semi-active control of smart building-MR damper systems using novel TSK-Inv… 

Unlike these two algorithms, both inverse and MaxMin models try to estimate the exact value 

of voltage which results in generating smooth and robust force signals being very close to the 

desired force. Consequently, the error between target and MR damper’s forces generated by 

MaxMin and TSKFInv models are less than the original and modified versions of COC. These two 

methods can also successfully track the desired force while the generated force of COC and 

MCOC, in comparison, fluctuate a lot and produce many overshoots. As a consequence, the 

average force and voltage of COC is more than the other semi-active control algorithms. On the 

other hand, it can be seen that the absolute generated force of the MR damper using MCOC is, 

most of the time, smaller than the absolute force generated by the other three semi-active control 

strategies. This is because of the intention of MCOC to work with zero voltage in a wide range of 

situations, in particular when desired force is less than the damper’s force while in reality the 

voltage is not zero as can be seen from the graphs of voltage history. 

 

 

 

Fig. 9 MR damper’s force and voltage at 20
th

 floor (El-Centro, intensity: 1.0) 
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The force time history shown in these figures, illustrates the improvement introduced by 

MaxMin and TSKFInv algorithms compared to original COC and MCOC. The differences in MR 

damping forces are attributable to the voltage commanded by the different algorithms. For the 

MCOC, the voltage varies continuously between zero and a portion of maximum voltage 

(𝑣 = 𝜇𝑣𝑚𝑎𝑥). This is in stark contrast to the original COC, for which the control voltage can only 

take two values, 0 and 𝑣𝑚𝑎𝑥. Unlike these two algorithms, both inverse and MaxMin models try 

to estimate the exact value of voltage which results in generating smooth and robust force signals 

being very close to the desired force. Consequently, the error between target and MR damper’s 

forces generated by MaxMin and TSKFInv models are less than the original and modified versions 

of COC. These two methods can also successfully track the desired force while the generated force 

of COC and MCOC, in comparison, fluctuate a lot and produce many overshoots. As a 

consequence, the average force and voltage of COC is more than the other semi-active control 

algorithms. On the other hand, it can be seen that the absolute generated force of the MR damper 

using MCOC is, most of the time, smaller than the absolute force generated by the other three 

semi-active control strategies. This is because of the intention of MCOC to work with zero voltage 

in a wide range of situations, in particular when desired force is less than the damper’s force while 

in reality the voltage is not zero as can be seen from the graphs of voltage history. 

 

 

Fig. 10 MR damper’s force and voltage at 20
th

 floor (Kobe, intensity:1.0) 
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The comparison between performances of the two newly proposed semi-active control 

algorithms also shows that, although both are very effective in tracking the desired force signal, 

TSKFInv model performs slightly better as it is able to capture almost the exact inverse dynamics 

of the MR damper and, thus, command the MR damper better than MaxMin which uses a linear 

relationship between voltage and force of damper. 

To systematically evaluate the control performance of each controller, fourteen of evaluation 

indices defined in the benchmark problem statement (Table 1) are determined and presented in 

Table  and Table . Also, to understand the effectiveness of each control algorithm, the 

performance of each algorithm are compared with those of the active (Ac), original and modified 

clipped optimal control algorithms (COC, MCOC), passive-on (v=10) and passive-off (v=0) (Table  

and 3). However, it is noted that the original and modified clipped-optimal and TSKInv (without 

combining with forward model) controllers require the use of force feedback through either sensor 

measurements or a non-parametric forward model to achieve this level of performance. 

 

 

 

Fig. 11 MR damper’s force and voltage at 20th floor (Hachinohe, intensity:1.0) 
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Fig. 12 MR damper’s force and voltage at 20th floor (Northridge, intensity:1.0) 

 

 
Table 1 Structural evaluation indices (Ohtori, Christenson et al. 2004) 

J1 Inter-storey Drift Ratio J8 Dissipated Energy 

J2 Level Acceleration J9 Plastic Connections 

J3 Base Shear Force J10 Normed Ductility 

J4 Normed Inter-storey Drift Ratio J11 Control Force 

J5 Normed Level Acceleration J12 Control Device Stroke 

J6 Normed Base Shear J13 Control Power 

J7 Ductility J14 Normed Control Power 

 

The idea of developing a voltage controller is to make the MR damper generate the closest force to 

the desired one produced by nominal controller (LQG in this study). In other words, an ideal 

semi-active voltage controller is the one that can track the performance of the designed active 

controller. From Tables 2 and 3, it is seen that compared with COC and MCOC, active controller, 

in most cases, performs better in terms of reduction of objective indices.  
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Table 2 Structural evaluation criteria (J1 to J7) 

Controller 

El-Centro   Hachinohe   Northridge   Kobe  Max 

0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 0.5 1.0  

J1 

Active 0.742 0.743 0.742 0.867 0.871 0.887 0.840 0.947 0.784 0.678 0.947 

COC 0.751 0.717 0.720 0.870 0.862 0.897 0.824 0.916 0.705 0.835 0.916 

MCOC 0.764 0.752 0.744 0.899 0.898 0.916 0.867 0.914 0.790 0.923 0.923 

TSKFIN 0.756 0.731 0.735 0.880 0.874 0.899 0.844 0.914 0.736 0.730 0.914 

MaxMin 0.759 0.741 0.736 0.902 0.893 0.910 0.847 0.913 0.748 0.654 0.913 

P-ON 0.602 0.598 0.606 0.609 0.629 0.705 0.659 0.845 0.378 0.580 0.845 

P-OFF 0.772 0.811 0.989 0.909 0.921 0.957 0.921 0.937 0.909 0.896 0.957 

J2 

Ac 0.639 0.635 0.652 0.710 0.705 0.796 0.777 0.844 0.665 0.842 0.844 

COC 0.800 0.820 0.750 0.932 0.849 0.898 0.869 0.977 0.722 0.938 0.977 

MCOC 0.693 0.692 0.720 0.913 0.845 0.924 0.931 0.923 0.718 0.886 0.931 

TSKFIN 0.626 0.613 0.624 0.841 0.756 0.836 0.906 0.835 0.668 0.828 0.906 

MaxMin 0.666 0.646 0.655 0.923 0.828 0.883 0.912 0.874 0.677 0.931 0.931 

P-ON 3.628 1.811 1.238 5.271 2.635 2.044 1.605 1.137 1.289 0.970 5.271 

P-OFF 0.790 0.839 1.055 0.943 0.955 1.061 1.015 1.144 0.848 1.004 1.144 

J3 

Ac 0.760 0.763 0.888 0.973 0.977 0.995 0.885 0.983 0.921 1.024 1.024 

COC 0.767 0.840 0.924 1.015 0.984 1.013 0.877 0.993 0.938 1.040 1.040 

MCOC 0.772 0.784 0.908 0.995 0.981 1.009 0.880 0.985 0.981 1.072 1.072 

TSKFIN 0.767 0.786 0.914 0.995 0.981 1.008 0.880 0.985 0.962 1.039 1.039 

MaxMin 0.776 0.778 0.902 0.995 0.981 1.008 0.880 0.988 0.965 1.047 1.047 

P-ON 0.980 0.859 0.943 1.093 1.000 1.031 0.925 1.085 0.594 1.177 1.177 

P-OFF 0.772 0.812 0.948 0.996 0.982 1.008 0.930 0.986 1.017 1.034 1.034 

J4 

Ac 0.681 0.680 0.686 0.885 0.884 0.905 0.768 0.998 0.672 0.225 0.998 

COC 0.589 0.605 0.624 0.836 0.844 0.865 0.651 0.923 0.544 0.276 0.923 

MCOC 0.613 0.638 0.663 0.840 0.848 0.871 0.695 0.933 0.629 0.278 0.933 

TSKFIN 0.605 0.625 0.644 0.838 0.846 0.869 0.670 0.951 0.571 0.200 0.951 

MaxMin 0.605 0.630 0.653 0.838 0.847 0.870 0.683 0.938 0.582 0.217 0.938 

P-ON 0.456 0.440 0.454 0.687 0.716 0.740 0.387 1.006 0.234 0.123 1.006 

P-OFF 0.621 0.659 0.700 0.840 0.852 0.881 0.811 0.869 0.706 0.588 0.881 

J5 

Ac 0.556 0.554 0.572 0.648 0.644 0.654 0.614 0.646 0.586 0.713 0.713 

COC 0.513 0.497 0.520 0.626 0.613 0.621 0.546 0.615 0.531 0.694 0.694 

MCOC 0.573 0.572 0.595 0.661 0.666 0.678 0.615 0.662 0.613 0.764 0.764 

TSKFIN 0.548 0.538 0.554 0.644 0.641 0.650 0.574 0.626 0.564 0.698 0.698 

MaxMin 0.547 0.549 0.567 0.648 0.650 0.658 0.589 0.636 0.578 0.714 0.714 

P-ON 16.482 7.707 4.994 21.885 10.469 6.799 7.946 6.159 8.563 6.365 21.885 

P-OFF 0.597 0.627 0.688 0.672 0.708 0.742 0.712 0.767 0.732 0.885 0.885 

J6 

Ac 0.746 0.745 0.751 0.855 0.855 0.865 0.825 0.867 0.729 0.881 0.881 

COC 0.666 0.676 0.693 0.820 0.816 0.828 0.702 0.816 0.635 0.803 0.828 

MCOC 0.687 0.705 0.728 0.830 0.831 0.844 0.744 0.822 0.679 0.843 0.844 

TSKFIN 0.679 0.693 0.711 0.825 0.823 0.836 0.720 0.818 0.653 0.815 0.836 

MaxMin 0.677 0.697 0.718 0.826 0.827 0.840 0.734 0.823 0.666 0.820 0.840 

P-ON 0.685 0.605 0.581 0.950 0.873 0.826 0.441 0.705 0.352 0.590 0.950 

P-OFF 0.694 0.725 0.764 0.833 0.843 0.862 0.783 0.845 0.748 0.892 0.892 

J7 

Ac 0.776 0.776 0.724 0.958 0.962 0.942 0.742 0.980 0.729 0.698 0.980 

COC 0.732 0.742 0.686 0.944 0.949 0.916 0.680 0.946 0.677 0.711 0.949 

MCOC 0.757 0.768 0.735 0.952 0.955 0.928 0.731 0.945 0.782 0.802 0.955 

TSKFIN 0.747 0.752 0.708 0.949 0.952 0.925 0.693 0.947 0.716 0.697 0.952 

MaxMin 0.748 0.760 0.717 0.947 0.951 0.922 0.706 0.946 0.728 0.690 0.951 

P-ON 0.659 0.652 0.597 0.677 0.730 0.690 0.596 0.846 0.297 0.533 0.846 

P-OFF 0.768 0.808 0.833 0.953 0.956 0.929 0.839 0.945 0.929 0.764 0.956 
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Table 3 Structural evaluation criteria (J8 to J14) 

J8 

Ac 0.000 0.000 0.047 0.000 0.000 0.639 0.267 0.572 0.222 0.307 0.639 

COC 0.000 0.000 0.002 0.000 0.000 0.600 0.092 0.508 0.172 0.321 0.600 

MCOC 0.000 0.000 0.063 0.000 0.000 0.661 0.157 0.572 0.332 0.565 0.661 

TSKFIN 0.000 0.000 0.018 0.000 0.000 0.633 0.109 0.509 0.235 0.233 0.633 

MaxMin 0.000 0.000 0.033 0.000 0.000 0.633 0.127 0.517 0.260 0.238 0.633 

P-ON 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.310 0.000 0.048 0.310 

P-OFF 0.000 0.000 0.325 0.000 0.000 0.697 0.332 0.853 0.604 0.751 0.853 

J9 

Ac 0.000 0.000 0.465 0.000 0.000 0.698 0.542 0.906 0.308 0.833 0.906 

COC 0.000 0.000 0.209 0.000 0.000 0.581 0.333 0.906 0.308 0.857 0.906 

MCOC 0.000 0.000 0.581 0.000 0.000 0.721 0.563 0.917 0.333 0.940 0.940 

TSKFIN 0.000 0.000 0.419 0.000 0.000 0.628 0.354 0.896 0.308 0.845 0.896 

MaxMin 0.000 0.000 0.419 0.000 0.000 0.698 0.396 0.896 0.308 0.857 0.896 

P-ON 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.823 0.000 0.536 0.823 

P-OFF 0.000 0.000 0.860 0.000 0.000 0.814 0.875 1.000 0.667 1.000 1.000 

J10 

Ac 0.764 0.763 0.682 0.860 0.860 0.932 0.663 1.014 0.841 0.238 1.014 

COC 0.645 0.669 0.614 0.814 0.818 0.891 0.549 0.927 0.562 0.238 0.927 

MCOC 0.664 0.698 0.645 0.822 0.829 0.896 0.615 0.952 0.831 0.492 0.952 

TSKFIN 0.658 0.687 0.630 0.818 0.824 0.902 0.576 0.958 0.723 0.207 0.958 

MaxMin 0.658 0.692 0.638 0.819 0.826 0.898 0.591 0.944 0.744 0.250 0.944 

P-ON 0.449 0.455 0.422 0.651 0.699 0.715 0.294 1.013 0.211 0.139 1.013 

P-OFF 0.671 0.717 0.689 0.824 0.841 0.861 0.779 0.901 0.762 0.723 0.901 

J11 

Ac 0.00204 0.00405 0.00605 0.00173 0.00322 0.00458 0.00642 0.00770 0.00584 0.00920 0.00920 

COC 0.00557 0.00682 0.00760 0.00518 0.00666 0.00738 0.00803 0.00807 0.00718 0.00920 0.00920 

MCOC 0.00159 0.00468 0.00725 0.00144 0.00363 0.00507 0.00667 0.00856 0.00666 0.00920 0.00920 

TSKFIN 0.00251 0.00449 0.00700 0.00219 0.00351 0.00494 0.00677 0.00911 0.00623 0.00920 0.00920 

MaxMin 0.00271 0.00401 0.00601 0.00170 0.00321 0.00454 0.00605 0.00795 0.00578 0.00920 0.00920 

P-ON 0.00816 0.00898 0.00920 0.00799 0.00886 0.00920 0.00920 0.00920 0.00920 0.00920 0.00920 

P-OFF 0.00088 0.00101 0.00920 0.00084 0.00092 0.00098 0.00109 0.00920 0.00107 0.00920 0.00920 

J12 

Ac 0.074 0.074 0.074 0.076 0.07 0.081 0.079 0.102 0.131 0.106 0.131 

COC 0.073 0.073 0.073 0.074 0.075 0.080 0.074 0.099 0.127 0.131 0.131 

MCOC 0.073 0.076 0.076 0.073 0.074 0.080 0.078 0.099 0.139 0.145 0.145 

TSKFIN 0.073 0.074 0.075 0.073 0.074 0.080 0.075 0.099 0.133 0.115 0.133 

MaxMin 0.073 0.075 0.075 0.073 0.074 0.080 0.076 0.099 0.134 0.104 0.134 

P-ON 0.056 0.055 0.059 0.045 0.055 0.065 0.064 0.089 0.052 0.096 0.096 

P-OFF 0.073 0.078 0.092 0.073 0.074 0.079 0.086 0.099 0.156 0.141 0.156 

J13 

Ac 0.00129 0.00254 0.00400 0.00058 0.00117 0.00174 0.00308 0.00502 0.00363 0.00797 0.00797 

COC 0.00223 0.00320 0.00410 0.00149 0.00295 0.00411 0.00354 0.00480 0.00480 0.00855 0.00855 

MCOC 0.00137 0.00292 0.00439 0.00088 0.00121 0.00166 0.00295 0.00486 0.00326 0.00746 0.00746 

TSKFIN 0.00170 0.00281 0.00436 0.00107 0.00170 0.00232 0.00335 0.00568 0.00362 0.00845 0.00845 

MaxMin 0.00143 0.00257 0.00396 0.00096 0.00138 0.00198 0.00293 0.00511 0.00340 0.00779 0.00779 

P-ON 0.00908 0.00775 0.00904 0.00879 0.00737 0.00883 0.00635 0.00933 0.00931 0.01543 0.01543 

P-OFF 0.00113 0.00141 0.00616 0.00081 0.00093 0.00100 0.00103 0.00480 0.00159 0.00773 0.00773 

J14 

Ac 0.00005 0.00009 0.00015 0.00003 0.00006 0.00010 0.00007 0.00011 0.00007 0.00013 0.00015 

COC 0.00008 0.00014 0.00020 0.00007 0.00011 0.00016 0.00009 0.00013 0.00008 0.00015 0.00020 

MCOC 0.00007 0.00011 0.00016 0.00006 0.00009 0.00012 0.00008 0.00011 0.00007 0.00013 0.00013 

TSKFIN 0.00007 0.00012 0.00018 0.00006 0.00010 0.00014 0.00008 0.00013 0.00008 0.00015 0.00015 

MaxMin 0.00007 0.00012 0.00017 0.00006 0.00009 0.00013 0.00008 0.00012 0.00008 0.00014 0.00014 

P-ON 0.00347 0.00177 0.00125 0.00135 0.00183 0.00148 0.00105 0.00101 0.00127 0.00105 0.00347 

P-OFF 0.00007 0.00011 0.00014 0.00006 0.00009 0.00011 0.00006 0.00008 0.00006 0.00009 0.00011 

 

 

 

 

 

 

 

1020



 

 

 

 

 

 

Semi-active control of smart building-MR damper systems using novel TSK-Inv… 

 

Peak Control Power (J13) 

 

Peak Control Force (J11) 

Fig. 13 Structural control force and power comparison between different semi-active control algorithms 

 

 

For these cases, J values of TSKFInv and Max-Min algorithms are either better than active 

controller or between active controller and COC. On the other hand, in some cases such as drift 

related indices, i.e., J1 and J4, COC and MCOC suppress the norm acceleration more than active 

system and, therefore, the objective values of TSKFInv and Max-Min algorithms, which are better 

controllers in tracking the desired force, are closer to active one and, therefore, more than COC 

and MCOC. 

Results also show that both new proposed semi-active algorithms have very similar 

performances, although TSKInv is slightly better. In particular, these two algorithms are able to 

reduce the peak drift ratio and peak floor acceleration for all ten earthquakes by up to 35% and 

38%, respectively, noting that a reduction in acceleration response of individual floors can be 

directly related to forces and, hence, to the mass and amount of material needed in each floor to 

resist the earthquake loads. This is while COC can only reduce the peak floor acceleration by 25%. 

The other performance indices which are important to reduce are the control force and power. Due 

to the fact that COC algorithm operates by switching the voltage of the MR dampers between two 

extremes, i.e., passive-on (v=10) and passive-off (v=0), it works with the maximum load on many 

occasions unnecessarily and often causes force overshoots as shown in Fig. 9 to Fig. 12. As a 

consequence, the maximum control force and power indices, i.e. J11 and J13 of COC are more than 

the other semi-active control algorithms considered in this study. MCOC, in contrast, has the least 

control power consumption as it works with zero or a small portion of voltage during the 

earthquake. However, at some point, due to inaccurate dynamic mapping of the MR damper, it also 

produces unnecessary forces, even though compared to COC, these forces are much less.  

MaxMin and TSKInv on the other hand, make a trade-off between reduction of structural 

responses, control force and power consumption. Graphical comparisons of control force and 

power indices between the four aforementioned semi-active algorithms are shown in Fig. 13. It 

shows that, in terms of peak control force reduction (J11), MaxMin, TSKInv, MCOC and COC 
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have the best performances while the least control power consumption belongs to MCOC, 

MaxMin, TSKInv and COC, respectively. 
The last column of Table 2 indicates the maximum values of objective indices of the structure 

under 10 earthquake signals (the maximum of each row). This is called the worst case scenario as 

defined in the benchmark problem. The first six performance criteria of these objective indices are 

compared with each other for different control algorithms in Fig. 14. It can be observed that both 

TSKFInv and MaxMin algorithms are able to track the performance of active controller closely 

which proves their superiority over COC and MCOC. Moreover, as can be seen, passive-on 

algorithm is the best in suppression of the peak drift ratio while it is the worse one in reduction of 

peak values of the acceleration, peak and normalised base shear, peak and normalised level 

acceleration and normalised drift ratio. The reason is due to working with maximum load and 

hence exerting too much resisting force which causes an overshoot in the response of structure. 

 

 

J1,max (Peak Drift Ratio) 

 

J2,max (Peak Acceleration) 

 

J3,max (Peak Base Shear) 

 

J4,max (Norm Drift Ratio) 

 

J5,max (Norm Acceleration) 

 

J6,max (Norm Base Shear) 

Fig. 14 Performance criteria (worst-case scenario) 
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Table 4 Computational effort comparison between different control algorithms for 20 seconds of El-Centro 

earthquake with intensity of 1 

 Active (LQG) COC MCOC TSKInv MaxMin 

Running Time 16.8 s 207.1 208.4 s 227.8 s 235.1 s 

Force Feedback - Yes Yes Yes No 

Structural response 

feedback 
Acc - - Acc Acc (+velocity) 

 
 

In order to compare the computational effort of the algorithms under study, the simulation 

running time of each semi-active algorithm for 20 seconds of El-Centro earthquake with intensity 

of 1 is presented in Table 4. The MATLAB codes were ran on an “Intel Pentium, Core 2Duo, CPU 

E8500, 3.16 GHz, 3.25 GB of RAM” with time step of 0.01s as defined in the benchmark problem. 

The other features of four aforementioned algorithms are also compared with each other in the 

same table. The numerical model of the MR damper used in the SIMULINK is the modified 

Bouc-Wen model which is highly nonlinear and computationally expensive. Therefore, the running 

time of the semi-active controllers, which use MR dampers, are numerically large where COC and 

MCOC provide the quickest response as they work with simple control laws and MaxMin method 

has the largest running time since it uses two fuzzy models to estimate the maximum and 

minimum capacities of the MR damper. In this study, a forward model of the MR damper is trained, 

using acceleration feedback to provide the required force feedback to TSKInv model. However, 

depending on the complexity of the model and availability of force sensors, one can directly use 

the actual force measurements. Moreover, instead of using the acceleration response of the 

structure to build and train the forward and inverse models of MR damper, other states of the 

structure can be employed. 

The top floor absolute acceleration and the inter-storey drift between the 19th and 20th floors of 

uncontrolled, TSKFInv and MaxMin controlled, in time domain, are shown in Fig. 15 for 

El-centro, Kobe, Hachinohe and Northridge earthquakes with intensity of 0.5. For the other floors 

and earthquakes, similar observations can be made. Maximum acceleration and inter-storey drift 

ratio response profiles are also provided for all floors of the building. According to these time 

history results, the peak relative acceleration and inter-storey drift are reduced using both 

semi-active control algorithms. The response profiles show the reduction in peak drift ratio as well 

as acceleration in almost all floors. Moreover, the figures show that both newly developed voltage 

regulating algorithms perform very similar to each other. However, MaxMin method performs 

slightly better. 

 

 

5. Conclusions 
 

In this paper, new technologies for improving structural resistance to earthquake loading were 

investigated. Two new semi-active control algorithms, named TSKInv and MaxMin, were devised 

to convert the force generated by the nominal controller (LQG here) to the required voltage for 

MR dampers.  

TSKInv algorithm was developed by modelling the inverse dynamics of MR damper using 

TSK fuzzy inference systems. The structure of model was optimised to select the best minimal 

inputs and fuzzy rules which lead to an accurate model. To provide the force feedback to the 
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inverse model, another fuzzy model was trained to capture the forward dynamics of the MR 

damper. The second algorithm was designed based on the maximum (𝑣 = 𝑣𝑚𝑎𝑥) and minimum 

(𝑣 = 𝑣𝑚𝑖𝑛) load of the MR damper at each time-step. Then, assuming a linear relationship 

between damper’s voltage and force, a decision is made for voltage regulation in order to generate 

a specific desired force. Both methods use only the acceleration feedback. 

The models were critically evaluated against passive damping as well as the original and 

modified clipped optimal controller through a highly nonlinear 20-storey benchmark building. 

Evaluation was further conducted on the basis of performance criteria to show the effectiveness on 

reduction of quake-induced vibrations of the building structure via a set of ratios (indices) for the 

controlled and uncontrolled cases, respectively. 

Results illustrate that the proposed new control algorithms can effectively track the desired 

control force and perform much better than COC and MCOC in terms of structural response 

reduction using less control force and power. Also, the comparison between MaxMin and TSKInv 

shows that MaxMin model uses less control power while TSKInv decreases the structural response 

more. However, MaxMin is easier to use, although computationally is slightly more expensive 

than TSKFInv. Ability to operate without force measurement is the other benefit of MaxMin 

model. 

 

 

 

El-Centro, 0.5 
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Hachinohe, 0.5 

 

Northridge, 0.5 

Fig. 15 Structural Response 
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Appendix 
 

1.1 Phenomenological model of MR damper 
 

The modified Bouc-Wen model of MR damper,  referred to phenomenological model, is 

shown in Fig. 16 and expressed by the the following differential equations (Spencer, Dyke et al. 

1997) 

F = c1ẏ + k1(x − x0)  

ẏ =
1

c0+c1
[αz + c0ẋ + k0(x − y)]  

ż = −γ|ẋ − ẏ|z|z|n−1 − β(ẋ − ẏ)|z|n + A(ẋ − ẏ) 

α = αa + αbu  

c1 = c1a + c1bu  

c0 = c1a + c1bu 

u̇ = −η(u − v), 

where z and α , called evolutionary variables, describe the hysteretic behaviour  of the MR 

damper; c0 and c1 are viscous damping at high and low velocities, respectively; k0 and k1 are 

the stiffness at large velocities and the accumulator stiffness, respectively; the x0 is the initial 

displacement of spring with stiffness k1; γ, β and A are adjustable shape parameters of the 

hysteresis loops; and v and u are input and output voltages of a first-order filter, respectively.  

A set of typical parameters of the 1000kN MR damper is presented in Table 5 (Ze-bing, Jin-zhi et 

al. 2004). 
 

 

 

Fig. 16 Modified Bouc-Wen model of the MR Damper (Spencer, Dyke et al. 1997) 
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Table 5 Typical Parameters of a 1000kN MR Damper 

Parameter Values  Parameter Values Parameter Values 

   (     ) 110.0  αa(k   ) 46.2 k1 (k   ) 0.0097 

   (      ) 114.3  αb(k    ) 41.2 x0 ( ) 0.18 

   (    ) 0.002   ( −2) 164.0   2 

   (     ) 8359.2   ( −2) 164.0  ( −1) 100 

   (     ) 7481.9  A 1107.2   

 

 

1.2 Primary controller (LQG) and Kalman Filter observer design 

 
Although there is no limitation on the type of controllers, as long as it measures the desired 

force based on the system response, a Linear Quadratic Gaussian (LQG) controller is designed in 

this study using the acceleration feedbacks (measured and estimated), to generate the desired 

control force to be passed to the inverse model of MR damper. 

The force vector for control devices can be modelled as 

ff K u  

where Kf is a matrix that accounts for multiple actuators per level. 

Because the benchmark building model is quite large, a reduced-order model of the system, 

designated as the design model, is developed for purposes of control design. The equations 

relevant to this 20-storey structure is given as 

d d

d d d g

d

md s md md md g

d

ed ed ed ed g

x A x B u E x

y D (C x D u F x )

y C x D u F x

  

    

  
 

where 
dx  is the design state vector, 

ymd = [ẍa2, ẍa4, ẍa6, ẍa8, ẍa10, ẍa12, ẍa14, ẍa16, ẍa18, ẍa20]
T is the vector of measured responses , 

yed = [Ẍa1… Ẍa20] 
T is the vector of the regulated responses (lateral acceleration at each floor), u 

is the control signal for the control force of the individual ideal actuators, and Ad,  Bd, Ed, Cmd, 

Dmd, Fmd, Ced, Ded, and Fed are reduced-order coefficient matrices.  

To simplify designing of the LQG controller, Ẍg is taken to be a stationary white noise, and an 

infinite horizon performance index is chosen that weighs the accelerations of the floors, i.e.,  

d T d 2

ed ed ed ed

0

1
Ĵ lim E[ {(C x D u) Q(C x D u) Ru }dt]




   

 
 

where R=[16   16] matrix with equal weighting placed on each actuator force (i.e., R=(1/16)[I]) 

and the weighting matrix Q is chosen to be a [16 ×16] matrix with equal weighting placed on each 

of the level accelerations (i.e., Q=3 × 109[I]). The ground acceleration and measurement noises are 

assumed to be identically distributed, and the ratio of the power spectral densities is taken to be 
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SẌgẌg

Svivi
=  g = 25.  

The separation principle allows the control and estimation problems to be considered separately, 

yielding a control law of the form 

dˆu Kx   

where 
dx̂ is the Kalman filter estimate of the state vector based on the reduced-order design 

model, including the actuator model. K̰ is the full state feedback gain matrix for the deterministic 

regulator problem given by 

1 T

dK R (N B P)   

where P is the solution of the algebraic Riccati equation given by 

T 1 T

d dPA A P PB R B P Q 0     

and  

T 1 T

ed edQ C QC NR N   
T

ed edN C QD  
T

ed edR R D QD   
1 T

d dA A B R N   

Calculations to determine K̰ were done using the MATLAB routine lqry.m within the control 

toolbox. The Kalman filter optimal estimator is given by 

�̇̂�𝑑 = 𝐴𝑑�̂�
𝑑 + 𝐵𝑑𝑢 + 𝐿(𝑦𝑠 − 𝐶𝑚𝑑�̂�

𝑑 − 𝐷𝑚𝑑𝑢)  

1 T T

g md d mdL [R ( F E C S)]    

Where S is the solution of the algebraic Riccati equation given by  

TSA A S SGS H 0     

and 

T T 1 T

d md g md dA A C R ( F E )    
T 1

md mdG C R C  
T 2 T 1 T

g d d g d md md dH E E E F R F E   
 

T

g md mdR I F F    

Calculations to determine L were done using the MATLAB routine lqe.m within the control 

toolbox. 
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