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Abstract.  The main purpose of this paper is to study the effects of initial stress, gravity, anisotropy and 
porosity on the propagation of shear wave (SH-waves) in a fiber-reinforced layer placed over a porous 
media. The frequency equations in a closed form have been derived for SH-waves by applying suitable 
boundary conditions. The frequency equations have been expanded and approximated up to 2

nd
 order of 

Whittaker’s function. It has been observed that the SH-wave velocity decreases as width of fiber-reinforced 
layer increases. However, with the increase of initial stress, gravity parameter and porosity, the phase 
velocity increases. The results obtained are in perfect agreement with the standard results investigated by 
other relevant researchers. 
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1. Introduction 
 

The surface wave propagation in an anisotropic layer is basically unalike from the propagation 

of same waves in an isotropic media. Therefore the study of surface waves in anisotropic layered 

media is of great interest for seismologists to understand the geophysical prospecting and the earth 

quake engineering. Also, the complex behaviour of layered structures can be understood with the 

propagation of shear waves in these different layers. Some important, useful and sincere attempts 

have been initiated to study the propagation of surface waves in layered complex structures 

coupling with magnetic, electrical and mechanical fields. The investigation of the mechanical 

response of a fiber-reinforced material is of sizeable significance in geotechnical engineering and 

geomechanics. Fiber-reinforced materials continue to give a distinctive interdisciplinary outlook 

and a logical perspective to understanding the latest developments in the geotechnical field. A 

continuum model is used to explain fiber-reinforced composites as they are widely used in 

different engineering applications including aviation, automotive and engineering structures due to 

their high stiffness, lightweight, strength and damping properties. Reinforced materials are 

superior to the structural materials in applications because reinforced composite has characteristic 

property where its components act together as a single anisotropic unit till they remain in the 
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elastic condition. Also, fiber-reinforced composite concrete structures are significant due to their 

low weight and high strength. Earth can be chosen as a composite material with horizontally 

preferred direction perpendicular to the propagation of wave with different properties. During an 

earthquake, the spurious structures on the outside of the earth are excited which gives rise to 

violent vibrations in some cases. They act like a single unit in the elastic condition such that 

relative displacement can be absent between them. Belfield et al. (1983) presented the method of 

introducing a continuous self-reinforcement in elastic solid. Hashin and Rosen (1964) investigated 

the elastic moduli for fiber-reinforced materials. Boukhari et al. (2016) studied time-varying 

physical parameter identification of shear type structures based on discrete wavelet transform. 

Bose and Mal (1974) studied the propagation of time-harmonic elastic waves in a fiber-reinforced 

composite. Sengupta and Nath (2001) considered the surface waves in fiber-reinforced anisotropic 

elastic media. Singh (2007) obtained the reflection coefficients from free surface of an 

incompressible transversely isotropic fiber-reinforced elastic half-space for the case when outer 

slowness section is re-entrant. Singh and Yadav (2013) studied fiber-reinforced elastic solid 

half-space with magnetic field by taking the concept of reflection of plane waves. Singh (2002) 

and Sing and Singh (2004) presented many papers on fiber-reinforced materials. Sahu et al. (2014) 

investigated shear waves in a heterogeneous fiber-reinforced and porous media. Gupta et al. (2013) 

discussed propagation of Love waves in a porous layer under the influence of directional rigidities. 

Gupta (2014) studied surface waves in fiber-reinforced medium. Gupta and Gupta (2013) analyzed 

wave propagation in an anisotropic fiber-reinforced medium under temperature and stress. Wang et 

al. (2014) studied time-varying physical parameter identification of shear type structures based on 

discrete wavelet transform. Boukhari et al. (2016) proposed efficient shear deformation theory for 

wave propagation of functionally graded material plates. 

The investigations of surface wave propagation in porous medium have acquired great interest 

in recent times. The SH-wave propagation in a fiber-reinforced anisotropic medium overlying a 

semi-infinite pre-stressed gravitational porous medium has prime importance in seismology and 

earthquake engineering on account of existence of inhomogeneity and porosity of the Earth. Earth 

is a porous media consists of different layers of uniform pores. Many researchers have discussed 

the elastic properties of porous media. The propagation of Love type waves with irregular 

boundary in a porous layer has been discussed by Chattopadhyay and De (1983). Dey and Gupta 

(1987) investigated wave propagation in void medium. Chattaraj et al. (2013a, b) studied Love 

wave propagation pre-stressed porous layer lying between two isotropic half-spaces and studied 

the effect of anisotropy and porosity on Love wave phase velocity. Gupta et al. (2013) presented a 

technical note on the propagation of Love wave in porous layer. Kundu et al. (2014a) showed the 

influence of various parameters such as porosity, rigidity, and anisotropy on Love wave 

propagation. Kundu et al. (2014b) discussed SH-waves in three layered media. The Earth’s 

gravitational force affects the seismic wave propagation. The hydrostatic stresses in the 

gravitational half-space play an important role to analyze the static and dynamic problems of the 

Earth. Ghorai et al. (2010) discussed Love wave propagation in a porous layer overlying a 

gravitational half-space. Abd-Alla et al. (2013) investigated the effect of various parameters such 

as fibre-reinforcement, anisotropy and gravity of the elastic media on surface waves.  

In this paper, the dispersion of SH-waves in a fiber-reinforced anisotropic layer overlying a 

pre-stressed gravitational porous half space has been briefly investigated. The influence of 

reinforce parameter, porosity and gravity parameter on the SH-wave propagation have discussed 

graphically. The obtained dispersion equation is in perfect agreement with the standard results 

investigated by other relevant researchers in the absence of reinforcement, porosity and 

912

https://www.google.co.in/search?biw=1366&bih=667&q=define+spurious&sa=X&ved=0ahUKEwjvis3OlejJAhVGHo4KHbd_AuIQ_SoISDAA


 

 

 

 

 

 

Shear wave in a fiber-reinforced anisotropic layer overlying a pre-stressed porous half space… 

 

stress-gravity parameters. 

 

 

2. Formulation of the problem 
 

Let H  be the thickness of the steel fiber reinforced silica fume concrete layer placed over 

porous half-space. We consider x -axis along the direction of wave propagation and z -axis 

vertically downwards (Fig. 1).  

 

 

3. Boundary conditions  
 

The displacement components and stress components are continuous at z = -Η , and at z = 0 , 

therefore the geometry of the problem leads to the following conditions 

At z = -Η , the stress component
23 0  . 

At z = 0 , the stress component of the layer and half space is continuous, i.e., 
23 23  . 

At z = 0 , the velocity component of both the layer is continuous, i.e., 2 2u u . 

 

 

4. Solution of the problem 
 
4.1 Solution for the upper layer 
 
The constitutive equations for a fiber reinforced linearly elastic anisotropic medium with 

respect to a preferred direction  a  (Belfield et al. 1983) are:  

      2 2ij kk ij T ij k m km ij kk i j L T i k kj j k ki k m km i je e a a e e a a a a e a a e a a e a a               
(2)

 

 

 

Fig. 1 Geometry of the problem 

Fiber-Reinforced Anisotropic Layer   I 

 

 

  

Porous Half-space   
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where , 
, ,

1
( )

2
ij i j j ie     are components of strain; ,? ? ?L T     are reinforced anisotropic 

elastic parameters;  , T  are elastic parameters.  Preferred direction of fibers are given by                                                         

  2 2 2

1 2 3 1 2 3, , , 1.a a a a a a a     If a  has components that are (1, 0, 0) so that the preferred 

direction is the z-axis normal to direction of propagation. Relation (2) in the presence of initial 

compression simplifies as given below 
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The equations of motion in upper half are 

2
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2
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1 3 2 20, 0, ( , , )u u u u x z t  
                (5)

 

Taking transversely isotropic and setting 2 0a   we get from Eqs. (3) as 

2 2 2
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
      

                 
    


                 (6)

 

Substituting Eq. (6) in Eq. (4), we get 
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2 2 2 2
2 22 2 2 2
1 1 3 32 2 2

1 1 2 1 1 1L L L

T T T T

u u u u
a a a a

x x z z t

   

   

           
                                   (7)

 

In order to solve Eq. (7), we take 

( )

2 ( , , ) ( )eik x ctu x z t z 
                           (8)

 

Here, k is wave number; c is the phase velocity of simple harmonic waves of wave length

2 k .  

From Eqs. (7) and (8), we get 

2
2 2 2 2

3 1 3 12

( ) ( )
1 1 2 1 1 1 ( ) 0L L L

T T T T

z z
a a a ik a k z

z z

    
 
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                 
                                      (9)

 

where, kc   is the angular frequency, k the wave number and c is the phase velocity. 

Let the solution of Eq. (9) is 

( ) QikXz ikYzz e e   
                          (10) 

where, X and Y are arbitrary constants given by 

2
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                  

             


 
  
         (11)
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             
                  

             


 
  
        (12)

 

and Tc



  is the shear velocity. 

Therefore, the equation of displacement of the upper reinforced medium is the solution of Eq. 

(7) and is given by 

  ( )

2 ( , , ) Q eikXz ikYz ik x ctu x z t e e    
                   (13)

 

4.2 Solution for the porous half-space 
 
We assume an anisotropic initially stressed half space. Neglecting the viscosity of water, the 

dynamic equations of motion in the porous half-space under the compressive initial stress P , in 

the absence of body forces (Biot 1965) are 
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where, ( , 1,2,3)ij i j  are the incremental stress components, 1 1 1( , , )u v w   are the components of 

the displacement vector of the solid, ( , , )x y zU V W   are the components of the displacement vector 

of the liquid and  is the stress vector due to the liquid. This stress vector  is related to the fluid 

pressure p  by the relation fp   , where f is porosity of the layer. The angular components 

, ,x y z      are given by 

1 1 1 1 1 11 1 1
, ,

2 2 2
x y x

w v u w v u

y z z x x y
  

              
           

                     (14b)

 

The mass coefficients 11 12 22,  and      are related to the densities ,  and s w   of the layer, 

solid and water, respectively, given by 

11 12 12 22(1 ) ,   s wf f         
                    (14c)

 

So that the mass density of the aggregate  

11 12 222 ( )s w sf           
                     (14d)

 

These mass coefficients also obey the following inequalities 

2

11 12 22 11 22 120,   0,   0,   0         
                  (14e)

 

For SH- wave propagation, the stress-strain relations for the water saturated initially stressed 

anisotropic porous layer 
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where  , ,

1

2
ij i j j ie u u  ,  div u   is the dilation, I,F,C,N and G are elastic constants                                                                                                                                          

for the medium; N and L are, in particular, shear moduli of the anisotropic layer in the x and z 

direction respectively. Further, K being the measure of coupling between the volume change of the 

solid and the liquid is a positive quantity. 
The hydrostatic stresses in the self weight half-space are given by 

11 33 dgz   
                             (14g)

 

where d  is the density of the lower half-space. 

The components of body force are due to gravity g and are 

0,  0,    x y z g  
                            (14h) 

For the SH- waves propagating along the x-direction, having the displacement of particles 

along the y-direction, we have 
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These displacements will produce only the xye eand yze strain components and the other strain 

components will be zero. Hence, the stress-strain relations useful in the problem are 
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Therefore Eq. (14(a)) with the help of Eqs. (14(g)-14(j)) can be written as 
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where ij  are the angular components, which are defined as 
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Eliminating xU   (displacement of liquid part) from Eq. (15), we get 
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                 (17)

 

where 

2

12
11

22

d





   . 

Using Eq. (14(j)), Eq. (16) in Eq. (17), we have 

2 2 2

2 2 2 2

2 2 22 2 2 2

u u u uP dgz dgz dg
N L d

x z z t

            
          

                    (18)

 

In order to solve Eq. (18), we take 

( )

2 ( , , ) ( )eik x ctu x z t z  
                         (19)

 

From Eqs. (18) and (19), we get 

2

22
2 2

2

2( ) ( )
( ) 0

2 1 1
2 2

N G kz c

L cz G k z
k z

G kz G kzz z


 

  


 

  
    

      
     

     
               (20)

 

where  
1

2
2 /c L   is the shear velocity in the lower half-space, /G dg Lk  known as gravity 

parameter, 
2

P

L



  is called stress parameter, 

2

11 12 22 11 11/ ,  / ,          

12 12 22 22/ ,  / ,         are the non-dimensional parameters for the material of the porous 

half-space, k is wave number. 

Now substituting

1
 
2

( ) ( ) 1
2

G kz
z z


 



 
  

 
  in Eq. (20) to eliminating term 

( )z

z




 , we 

obtain 

2 12 2 2
2

2

2

( ) 1 1 ( ) 0
16 2 2 2

G G kz N G kz c G k
z k z

L c

   
   

        
              

             (21)
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Introducing the dimensionless quantities 
4

and ( ) ( )
2

N G kz
z g

G L


   



 
    

 
 in Eq. 

(21), we get, 

 
 

2

2 2

1 1
0

4 4

d g R
g

dz




 

 
      
                       (22)

 

where, 

2

2

2

1 1
1

N c
R

G L c




  
     

  
 

Eq. (22) is the well known Whittaker’s equation (Whittaker and Watson 1990). 

The solution of Whittaker’s Eq. (21) is given by 

     R,0 R,0AW BWg     
                      (23)

 

where A and B are arbitrary constants and     R,0 R,0W ,W    are the Whittaker function. 

Now Eq. (23) satisfying the condition 2lim 0z u
   i.e.,  lim 0 as 0 z g      may 

be taken as 

   R,0BWg   
                           (24)

 

Hence the displacement for the SH-wave in the lower layer is 

1

2
(x ct)

2 R,0

4
( , , ) B 1 W 1

2 2

ikG kz G kz
u x z t e

G

 









    
        

                (25)

 

 

 

5. Dispersion relation 
 

The dispersion relation for SH-waves can be obtained by using boundary conditions given in 

section 3. Therefore, the displacement for the SH-waves in the in-homogeneous half-space using 

boundary conditions (1), (2) and (3) in Eq. (6), Eq. (13), Eqs. (14(j)) and (25) 

2 2

1 3 3 1 3 31 1 1 Q 1 1 1 0iXkH iYkHL L L L

T T T T

a a a X e a a a Y e
   

   

             
                         
               (26)

 

2 2

1 3 3 1 3 31 1 1 Q 1 1 1L L L L
T

T T T T

ik a a a X a a a Y
   


   

             
                        
              

 

= 

1

2

R,0

0

4
AL 1 W 1

2 2
z

G kz G kz

z G

 









  
               
                        (27)

 

919



 

 

 

 

 

 

Rajneesh Kakar and Shikha Kakar 

 

R,0

0

4
Q A W 1

2
z

G kz

G








   
      

                      (28)

 

Now eliminating ,  Q  and A from the Eq. (26), Eqs. (27) and (28), we obtain 

2 2

1 3 3 1 3 3

2 2

1 3 3 1 3 3

1 1 1 1 1 1 0

1 1 1 1 1 1 1

iXkH iYkHL L L L

T T T T

L L L L

T T T T T

a a a X e a a a Y e

L G kz
ik a a a X ik a a a Y

z

   

   

    

    

          
                    

          

           
                                 

1

2

R,0

0

R,0

0

4
W 1 0

2 2

4
1 1        - W 1

2

z

z

G kz

G

G kz

G



















  
              

        

   
    

    (29)

 

On simplifying Eq. (29), we get 

 

1

2

R,0

2
2 0

2
2

1 2

R,02

1 0

4
1 W 1

2 2

tan
4

W 1
2

z

T

z

G kz G kz

z G
kH c L

q p
c c G kz

q p
c G

 




  














  
              

             
    

                     
                     (30)

 

On solving Eq. (30) (taking Whittaker’s function up to second degree term), we get 

2 2

2
2

2
2

1 2 2

2

1

1 16 (2 ) (2 )
4 2 2

tan

16 (2 )
T

G G
G G G

kH c L
q p

c c
q p G G

c

 
  


 

  

 
                   

              
             (31)

 

where 
2

2 2

1 1 3 3 2

2

1
1 1 ,  1 1 ,  1 1 ,  1

2

L L L

T T T

c N P
p a q a a a

c L L

  


   

            
                                      

 

Eq. (31) is the dispersion equation of SH-wave propagation in a fiber-reinforced anisotropic 

layer over a porous half-space under the effect of initial stress and gravity. 

 

Particular Cases 

 

If the layer is non-porous then 0f   and s   which leads to 11 12 1    and 

12 22 0   , which leads to 
2

12
11

22

1





   or 1  . If the layer is porous then 1f  , then

w   , the liquid becomes fluid
2

12
11

22

0





   or 0  , which means shear waves do not exit. 

Hence, for porous layer 0 1f   corresponds to 0 1  .        
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Case-1 

 

For homogeneous reinforced medium over porous half space, we take 1 2 31, 0a a a    then 

L

T





  and 1L T    , 2L N    therefore, Eq. (31) reduces to 

2 2

2

2

2 2
1 1 2

2

1

1 16 (2 ) (2 )
4 2 2

tan 1

1 16 (2 )

G G
G G G

c
kH

c c
G G

c

 
  




 

 
                

        
             (32)

 

 

Case-2  

 

For SH-wave propagation in a fiber-reinforced anisotropic layer over a porous half-space free 

from initial stress 0   , therefore, Eq. (31) reduces to 

2 2

2

2

2 2
1 1 2

2

1

1 16 (2 ) (2 )
4 2 2

tan 1

1 16 (2 )

G G
G G G

c
kH

c c
G G

c

 
  




 

 
                  

        
             (33)

 

where,

2

2

2

1
1

c N

c L

 
    

 
 

 

Case-3  

 

For SH-wave propagation in a fiber-reinforced anisotropic layer over a porous half-space free 

from gravity  0G  , therefore, Eq. (31) reduces to 

2

22
22

2
2

1 2

2

1

1
1 1

2 2
tan

T

c N

c LkH c L
q p

c c
q p

c





 



  
              

        
                    (34)

 

 

Case-4 

 

If the layer is non-porous then 1  , therefore, Eq. (31) reduces to 

2 2

2
2

2
2

1 2 2

2

1

1 16 (2 ) (2 )
4 2 2

tan

16 (2 )
T

G G
G G G

kH c L
q p

c c
q p G G

c


 



 
                    

              
              (35)
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where 

2

2

2

1
2

c N P

c L L

 
     

 
 

 

Case-4 

 

For homogeneous reinforced medium over non-porous half space, we take 1 2 31, 0a a a    

then L

T





  and 1L T    , 1  , 2L N    therefore, Eq. (31) reduces to 

2 2
2 2 2

2 2 2
2 2 2 2

2

2
2 21 1

2 2

1 2

1 1 1
1 1 16 1 1

4 2 2 2 2
tan 1

1
1 16 1

2

G c N c N G c N
G G G

c L c L c Lc
kH

c c c N
G G

c c L

  






                                                                        
       

            

2 
 
 
  (36)

 

 

Case-5 

 

For homogeneous reinforced medium over an homogeneous non-porous half space free from 

gravity 0G , stress parameter 0  1 2 31, 0a a a    then L

T





  and 1L T    , 

1  , 2L N    therefore, Eq. (31) reduces to 

2

22

2 2

2 2
1 1

2

1

1
1

2
tan 1

1

c

cc
kH

c c

c






 

  
   

                        (37)

 

On approximation Eq. (37) gives 

2

22
22

2 2
1 1

2

1

1

tan 1

1

c

cc
kH

c c

c






 

  
   

                      (38)

 

Eq. (38) is the classical dispersion equation of SH-waves given by Love (1911) and Ewing et al. 

(1957). 

 

 

6. Numerical analysis 
 

To show the combined effects of stress, gravity, porosity and steel reinforced parameters on 

SH-wave propagation, the data is taken from Table 1, used by Chattaraj and Samal (2013a). Values 
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of parameters for figures are given in Table 2. MATLAB software is used to explain the 

graphically effects of technical constants on SH-wave propagation in a fiber-reinforced anisotropic 

layer overlying a pre-stressed gravitational porous half space. 

 

 
Table 1 Data for fiber-reinforced anisotropic layer and porous medium 

Symbol Numerical Value Units 

T  95.65 10  
2/N m  

L  92.46 10  2/N m  

  95.65 10  2/N m  

  101.28 10 .   2/N m  

  9220.09 10  2/N m  
  

L  

7800  
100.1167 10  

3/kg m  

2/N m  
2

3a  0.75  ---- 

2

1a  0.25  ---- 

11  31.7567 10  
3/Kg m  

12  

22  

 f  

30.001567 10   
30.19867 10  

0.34  

3/Kg m  

3/Kg m  

---- 

 

 
Table 2 Values of parameters for figures 

 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 

 
2

1a , 
2

3a  

 

0.25, 0.75 

 

0.25, 0.75 

 

0.25, 0.75 

 

0.25, 0.75 

 

0.25, 0.75 

 

0.25, 0.75 

 

  

 

  

 

  

 

0.4 

 

0.4 

 

0.4 

 

0.4 

 

0.4 

 

0.4 

 

G  

 

0.5 

 

0.5 

 

0.5 

 

  

 

0.5 

 

0.5 

 

0.5 

 

/N L  

 

0.5 

 

0.5 

 

  

 

0.5 

 

0.5 

 

0.5 

 

0.5 

 

/L T   

 

2.5 

 

2.5 

 

2.5 

 

2.5 

 

  

 

2.5 

 

2.5 

 

  

 

kH  

 

0.5 

 

4 

 

0.5 

 

  

 

0.5 

 

4 

 

0.5 

 

4 

 

0.5 

 

4 

 

  
 

4 

 

0.5 

 

4 
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Fig. 2 Dimensionless phase velocity 

1

c

c
 against dimensionless wave number kH  for different values 

of porosity   

 

 

Fig. 3 Dimensionless phase velocity 

1

c

c
 against G  for different values kH  

 

 

Fig. 2 discribes the variations of dimensionless phase velocity 

1

c

c
 against dimensionless wave 

number kH for different values of porosity    in the presence of reinforced parameters. It has 

been observed that with the increment of wave number there is decrement in the phase velocity for 
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a particular value of . Further it is seen as  increases the phase velocity decreases for a 

particular value of kH at it becomes constant after a certain value of kH . Fig. 3 depicts the 

variation of dimensionless phase velocity against dimensionless gravity parameter G  for different 

values of kH . It is observed that the gravity parameter G  has great influence on the phase 

velocity i.e., it decreases as gravity parameter G increases. Fig. 4 represents the variations of 

dimensionless phase velocity against dimensionless wave number for different values N

L
   . 

From this figure it has been observed that as the dimensionless ratio N

L
increases, the phase 

velocity also increases at the same frequency. Fig. 5 is plotted between dimensionless phase 

velocity of SH-wave against dimensionless wave number for different values of Biot’s parameter

G . It shows that the phase velocity decreases as wave number increases for different values G .  

Fig. 6 demonstrate the variation of phase velocity against wave number for different values

L

T





  , it is noted that as  increases, the phase velocity decreases and the curves are getting 

closer after some value of kH . Fig. 7 represents the variation of dimensionless phase velocity 

against dimensionless wave number for different values of stress parameter . From this figure it 

has been observed that as the initial stress of the lower half-space increases the phase velocity also 

increases at the same frequency. Figs. 8 and 9 illustrates the variations of dimensionless phase 

velocity against wave number kH  for different values reinforce parameters 
2

1a  and 
2

3a . It is 

seen from the diagram that as 
2

1a  increases or decreases as well as 
2

3a  decreases or increases, 

the velocity of SH-wave decreases.  

 

 

Fig. 4 Dimensionless phase velocity 

1

c

c
 against dimensionless wave number kH  for different values 

of /N L   

925



 

 

 

 

 

 

Rajneesh Kakar and Shikha Kakar 

 

 

 

Fig. 5 Dimensionless phase velocity 

1

c

c
 against dimensionless wave number kH  for different values 

Biot’s parameter G  

 

 

Fig. 6 Dimensionless phase velocity 

1

c

c
 against dimensionless wave number kH  for different values 

  
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Fig. 7 Dimensionless phase velocity 

1

c

c
 against dimensionless wave number kH  for different values 

of stress parameter  

 

 

Fig. 8 Dimensionless phase velocity 

1

c

c
 against dimensionless wave number kH  for different values 

of reinforce parameters
2

1a , 
2

3a  
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Fig. 9 Dimensionless phase velocity 

1

c

c
 against dimensionless wave number kH  for different values 

of reinforce parameters
2

1a , 
2

3a  

 

 

7. Conclusions  
 

In this work, the dispersion of SH-waves in a fiber-reinforced anisotropic layer overlying a 

pre-stressed gravitational porous half space has been investigated analytically. It has been observed 

that the non-dimensional phase velocity is larger for a porous initially stressed gravitational elastic 

half-space as compared to a non-porous elastic half-space ( → 1). The frequency equation for the 

propagation of SH-waves in a fiber-reinforced anisotropic layer overlying a pre-stressed 

gravitational porous half space has been derived in terms of second degree Whittaker. The 

dispersion relation shows that the reinforce parameters, stress, gravity and porosity plays a 

significant role on the propagation of SH-waves. It has been observed that for a fixed value of 

gravity parameter, the dimensionless phase velocity decreases as the width of the reinforced layer 

increases and increasing gravity parameter. 
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