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Abstract.  This paper presents an efficient method for updating the structural finite element model. Model 
updating is performed through minimizing the difference between the recorded acceleration of a real 
damaged structure and a hypothetical damaged one. This is performed by updating physical parameters 
(module of elasticity in this study) in each step using iterative process of modified nonlinear conjugate 
gradient (M-NCG) and modified Broyden–Fletcher–Goldfarb–Shanno algorithm (M-BFGS) separately. 
These algorithms are based on sensitivity analysis and provide a solution for nonlinear damage detection 
problem. Three illustrative test examples are considered to assess the performance of the proposed method. 
Finally, it is demonstrated that the proposed method is satisfactory for detecting the location and ratio of 
structural damage in presence of noise. 
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1. Introduction 
 

Quantitative and objective condition assessment for infrastructure protection has been the 

subject of many researchers conducted within the engineering community. To achieve this, 

methodologies of the routine inspections either with fixed intervals or the continuous monitoring, 

which provide information on safety reliability or remaining life of the structure, have been under 

development in recent years. Inspecting structural components for damage diagnosis is vital to 

take decisions about their repairs. 
Structural health monitoring is divided into four stages: determining the existence, location of 

damages, and estimating the amount of damage and the remaining life of structure (Rytter 1993). 

Among the tissues, detection and localization of damage are currently of growing interest among 

researchers (Basseville et al. 2004). The detection methods generally can be divided into two 

categories, the methods which are based upon static responses (Chou and Ghaboussi 2001, Wang 

et al. 2011) and the other methods which use dynamic data (Yan et al. 2007, Salawu 1997, Pandey 

et al. 1991, Fan and Qiao 2011). The prevailing interest among researchers is focused on damage 

detection using vibration data. 
Since the damage is a nonlinear characteristic, the direct solution of the resulted system of 
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equations is formidable or maybe impossible. This particular set of equations should be solved 

through a numerically iterative process. Current methods of damage detection are mostly 

composed of updating finite element model through minimizing the difference between responses 

of real damaged and hypothetically damaged structures. Some of the mentioned methods apply the 

explorer optimization algorithms to update the structural model during an iterative process. The 

other methods based on sensitivity analysis, utilize various algorithms to update the finite element 

model by minimizing the objective function.  

Many effective sensitivity-based damage detection methods have been suggested in the 

literature. Esfandiari et al. (2009) updated the structural model using a least square algorithm using 
an appropriate stabilization method. Their method can detect the ratio and location of damage in 

trusses, where the noise exists in the frequency response function. Teughels and Roeck (2005) 

presented two sensitivity-based algorithms, modified Gauss-Newton and coupled local minimizers 

(CLM), for updating the finite element model. They detected the location and ratio of damages in 

bridges by model updating through minimization of the difference between frequencies and mode 

shapes. Bakir et al. (2007) implemented another sensitivity-based method called trust region 

algorithm, for updating the finite element model. They obtained the location and ratio of damage 

in reinforced concrete frames by minimizing the frequency and mode shape residuals. Their 

algorithm was also efficient in the case of noisy data. Jaishi and Ren (2006) generated a 

sensitivity-based finite element model updating for damage diagnosis. They utilized a modal 

flexibility residual as the objective function and trust region Newton algorithm for minimizing the 

objective function. Numerical results indicate that the proposed method can provide a reliable tool 

to accurately identify the multiple structural damages. Lee (2009) introduced a method for 

identifying multiple cracks in a beam using the Newton-Raphson method, sensitivity analysis and 

natural frequencies.  

Naseralavi et al. (2012) proposed a new damage detection algorithm for space structures under 

static loads. To make the method stable to noise, in their method, first a set of damage candidates 

is obtained using a discrete version of ant colony optimization. In the second stage by employing 

continuous ant colony optimization the damage extents are evaluated. Naseralavi et al. (2012) 

identified the damages by searching exhaustively within the sensitivity vector of elements to 

obtain the associated subspace in which response change vector lies in the best. Torkzadeh et al. 

(2013) used modal strain energy changes to restrict the damage candidates. The damage severity of 

damage candidates are computed by minimizing the norm of difference between the response of 

damaged structure and that of the mathematical model of structure as the objective function. The 

minimization is performed by using the heuristic particle swarm optimization. Kaveh and Maniat 

(2014) employed the novel charged system search as a heuristic optimization tool for detecting 

multi damages using changes in natural frequencies and incomplete mode shapes. They verified 

their method for beams, frames and trusses in various noise levels. They obtained satisfactory 

results in all cases. 

Sarvi et al. (2014) proposed a method for identifying damage based on sensitivity analysis 

using the updating finite element model method. They used Levenberg-Marquardt algorithm for 

solving damage equation and acceleration responses as input data for this method. Their proposed 

method was effective in the presence of noise and performed satisfactorily in detecting damages. 
Although various methods have been developed for model updating, still the novel ideas are 

being presented. The main objective of this paper is to develop an efficient method for updating 

the structural finite element model for solving system of nonlinear equations using gradient based 

methods such as nonlinear conjugate gradient (NCG) and BFGS. These algorithms are based on 
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sensitivity analysis and provide a linear solution for nonlinear damage detection problem.  
This paper is organized as follows. First the fundamentals of damage detection are reviewed. 

Then in Section 3, the formulation of NCG and BFGS algorithms for model updating and damage 

detection method are presented. In Section 4 the proposed algorithm is given. Finally, the results of 

the numerical simulations of three spatial structures are discussed and the efficiency of the 

proposed approach is investigated. 

 

 

2. Fundamentals of damage detection 
 

The main idea of updating methods for damage detection is based on the fact that changes in 

structural response are due to changes in physical properties. In other words, through a reversed 

model updating the detailed changes of physical model can be found using the known responses. 

The considered responses of damaged structure are functions of the structural damage. It means 

that a specific damage causes a unique response. This point can be used to find the damage. The 

damage can be simulated by inflicting changes on structural parameters such as Young’s modulus 

or cross sectional area of members. The damage detection equation can be stated as 

d R( ) ?  R X X
                           (1)

 

dR( ) r X R
                              (2) 

{ } 1≤≤0  ,,...,= 21 in xxxxX                         (3) 

where r is the residual function, R(X) and Rd are the response vectors of hypothetically damaged 

structure and the existing damaged structure respectively. X represents the damage vector which 

consists of all structural members’ damage ( ix ) and n  is the number of members. The goal of 

damage detection is to find the damage vector X, using the response vector of the damaged 

structure. 

Eq. (1) can be expressed as follows using the Taylor series expansion 

 d h

R
= R + +...


 


R X R X

X                        (4)
 

where Rh is the response of healthy structure and ∆X is change of damage vector. If first-order 

approximation (linearization) is applied, regardless of higher order terms, Eq. (4) can be rewritten 

as 

d h d h+   - =


     


R
R R X R R R S X

X
 ,   





R
S =

X
            (5) 

where S is sensitivity matrix, S ∊ Rm×n and m n that m and n are number of rows and columns of 

matrix S respectively. Finally damage detecting problem leads to the solution of nonlinear 

equation system, then residual function is rewritten as follows 

  r R S X                               (6) 
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By minimizing residual vector using Newton-Raphson method during update process, the 

damage solution is resulted. 

 

2.1 Updating parameter 
 

The updating parameter is the unknown physical features of the model. In this paper the ratio of 

updated modulus of elasticity (
e e

0E - E ) to its initial value 
e

0(E ) is considered as updating 

parameter. The dimensionless updating parameter is defined as follows 

= - = (1- )
e e

e e e e0
0e

0

E - E
x E E x

E


                      (7)

 

 
2.2 Objective function 
 
The damage detection procedure using model updating is similar to the identification of 

unknown parameters in an optimization problem using model updating. By spotting the error 

between responses of healthy structure and updated structure and minimizing the objective 

function in each step of iterative process, 
e

X  is updated. Minimizing the objective function is 

defined as a nonlinear least square minimization problem (Teughels et al. 2002) 

   
2T 2

d d

1 1
f( ) = R( ) - R( ) - = ( ) = r( )

2 2

m

j

j=1

X X R X R r X X

             (8)

 

where r is the residual value of damage function, and  is Euclidean norm. The structural 

model updating, as employed in this work, is represented by minimizing the difference between 

the acceleration response of actual damaged structure and the hypothetically damaged one. 

 

 

3. Algorithm of solving damage equation 
 

3.1 Methodology 
 

In a system of equations when the coefficient matrix is non-square and the number of equations 

is more than the number of unknowns, the system will come up with no consistent solution. 

However, by utilizing optimization methods it would be possible to reach the best answer with the 

minimum residual value (r). In case of damage identification issue based on sensitivity analysis, 

we may come across such equation systems for which a practical method is needed. Optimization 

could be defined as finding out the best damage solution among all the possible ones. Among 

various optimization methods we herein consider the line search methods. These methods start 

from a specified point in solution space and using rules that are based on mathematics and 

geometry, and achieve to a specific result, the coming points could be identified as more optimized 

answers. These methods are the basis of most multivariable optimization methods. If Xn is the 

identified solution in the nth step, the solution in the next step will be as follows 
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nn+1 n n
X = X + S

                           (9)
 

where nα  is the step size and nS  is a vector and similar to nX  in dimension which determines 

the direction of the movement. Finding the proper nα
 

and nS
 

is the major goal in line search 

process. Among the developed line search techniques which have been introduced in the literature, 

the conjugate gradient method and BFGS is considered in this research. 

 

3.2 Nonlinear conjugate gradient algorithm 
 

In numerical optimization, the nonlinear conjugate gradient method generalizes the conjugate 

gradient method to the nonlinear optimization. For a quadratic function f(X) 

2
f( ) = -X AX b

                           (10)
 

The minimum of f is obtained when the gradient is equal to zero 

 T

x f = 2 - = 0 A AX b
                       (11)

 

whereas linear conjugate gradient seeks a solution to the linear equation AT
Ax=A

T
b, the nonlinear 

conjugate gradient method is generally used to find the local minimum of a nonlinear function 

using its gradient ∇xf alone. It works when the function is approximately quadratic near the 

minimum, which is the case when the function is twice differentiable at the minimum. 

 

3.3 BFGS algorithm 
 

BFGS is a Quasi-Newton second-derivative line search family method, which is one of the 

most powerful methods to solve unconstrained optimization problem. Consider the unconstrained 

optimization problem 

nmin f( ), RX X
                           (12)

 

2
f( )  X AX b

                           (13)
 

where f  is a general non-convex function having continuous second derivatives. The 

quasi-Newton method is one of the most well-known and efficient methods for solving (13) and 

has the general form 

k 1 k k k k= -X X H X
                          (14)

 

where Hk is an approximation to the inverse Hessian and αk is the step-size. BFGS technique 

identified to be the most efficient quasi-Newton method as declared by Broyden, Fletcher, 

Goldfarb, and Shanno, independently. In Quasi–Newton methods, the idea is to construct matrices 

approximating the Hessian matrix and/or its inverse, instead of exact computing the Hessian 

matrix as in Newton-type methods. The matrices are adjusted on each iteration and can be 

843



 

 

 

 

 

 

S.S. Naseralavi, S. Shojaee and M. Ahmadi 

produced in many different ways ranging from simple techniques to advanced ones. For more 

details about these algorithms, see Luenberger and Ye (2007). 

 
3.4 Tikhonov regularization 
 
The responses of damaged structures are measured by sensors in a laboratory or from in situ 

structures. Always there is a noise in responses measured by sensors. The noise is artificially 

added to responses coming from numerical simulation. This error is called measurement error and 

is applied to the responses by the following equation (Li and Law 2010) 

calculatednoisep  calculated measured  × ×E+ = aNaa                      (15) 

where ameasured is the noisy acceleration response vector and acalculated is the acceleration response 

vector calculated from the damaged structure and Ep is the noise level (e.g., 1 to 5 percent,…). 

Nnoise is the normally distributed vector with zero mean and unit standard deviation. 

Most methods which are used to identify damage cannot withstand the influence of 

measurement errors resulting to wrong damage solutions. Moreover, in such problems, small 

measurement errors can lead to large variations in model parameters. Therefore to resolve these 

problems, the effect of measurement errors should be reduced. This is done by means of 

regularization technique.  

The main obstacle in ill-posed problems is large condition number. In other words, the 

spectrum of the eigenvalues of matrix coefficients is wide. Therefore, it is necessary to consider 

the specification of real damage cases for stabilizing the problem. “Tikhonove method” is the most 

common method in stabilization of ill-posed problems, especially in solving inverse problems. 

The idea of this method were presented by Phillips (1962) and Tikhonov (1963) almost 

simultaneously but independently. From a statistical point of view, this method was categorized as 

Bayesian methods for solving inverse problems. These problems were used when the information 

or the basic premise of unknowns were existed. In Tikhonov method such as least square scheme, 

we assume that the observation errors are random with zero mean probability distribution function. 

Therefore, in this method as well as the least squares method, we look for a damage solution with 

the lowest residual. However, achieving such a solution with the lowest residual in ill-posed 

system of equation is not easily possible. Hence in Tikhonov method, the norm of residual vector 

was minimized and at the same time, the feature of unknowns can be reduced to prevent 

immensity response. In general the Tikhonov method can be defined as a minimization of 

Tikhonov function given by 

2

Tikhonov 2
f ( , λ) = - + λ ( )X AX b X

                   (16)
 

In above relation, the function Ω(X) is determined according to the basic assumptions and 

information of the unknowns. It should be noted that the Tikhonov method with the definition 

above, is also called "generalized Tikhonov". In regularization of ill-posed problems with 

generalized Tikhonov method, we can often use the semi-norm of problem solution by defining 

function  as follow 

2

2
( )   , Rm?  X LX L

                       (17)
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Putting the function  in equation (16), differentiating from unknowns and setting derivatives 

equal to zero, we achieve the generalized Tikhonov regularization strategy. In this study, the main 

diagonal in matrix AT
A is considered to be the main diagonal of the matrix L. 

T=diag( )L A A
                            (18) 

By selecting matrix L as above, the condition number will be further reduced so that the system 

of equations will be more stable and thus will reach to a more accurate solutions of the equations. 

For applying NCG and BFGS methods to damage detection process, we need to use regularizer, 

because these algorithms cannot converge without regularization method. 

 

 

4. Modified algorithms based on damage identification 
 

In the procedure of damage identification based on sensitivity analysis, we face damage system 

of equations given in Eq. (5). In order to solve such a system, the objective function is defined as 

shown in Eq. (8). Optimizing the objective function, the best solution will be obtained for the 

damage system of equations. As the system of equations is inconsistent, the objective function has 

to be stabilized by adding penalty function as follows 

2 2 2 2

df( ) = r( )     X X LX SX R LX
                (19)

 

where S represents sensitivity matrix, X is the damage solution in each updating step, Rd is the 

response of the damaged structure, and L is a diagonal matrix whose diagonal elements are equal 

to those of AT
A.   is a factor which is selected in a way that the value of objective function finds 

a descending process. In order to be applied to conjugate gradient algorithm and BFGS, the first 

and second order gradient of objective function is calculated as follows 

 T T

df = 2 - 2 ( ) S SX R L L X
                       (20)

 

T T

2 f = 2 2 ( ) S S L L
                          (21)

 

To execute conjugate gradient and BFGS, the parameter nα  should be found in a line search 

process. To this aim, the first and second order gradient of the objective function is computed as 

follows 

T

T

2

=
f  

n n
NCG

n n






s x

s s
                           (22)

 

T

T

2

 
=

(  ) f  (  )

n n n
BFGS

n n n n




r H r

H r H r
                       (23)

 

 

The steps of algorithm with an effective method for structural damage detection can be 

described in a step-by-step procedure as follows: 
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1. Choice the starting point properly and the control parameters of the algorithm. 

2. Select the appropriate factor λ, it is important and it differs in different cases. 

3. Update the sensitivity matrix. 

4. Update the damage index using the suggested M-NCG and M-BFGS. 

To stabilize the updating process, Tikhonov regularization is used as the following steps: 

1. Update the objective function. 

2. If the value of objective function is reduced, it is accepted. 

3. If the objective function value is more than the previous one, a new value is ascribed to the 

λ and the X is calculated again. 

4. Use the above process and new damage index, the objective function is again calculated 

with updated parameters. 

5. If the value of the objective function decreases, the updated damage index is feasible. 

6. If else the updated damage index does not change the objective function, updating process 

will continue with the failure index of previous stage. 

 
 
5. Numerical examples 

 

To demonstrate the efficiency of the M-NCG and M-BFGS algorithms in solving complex 

discrete structures, in three space-structures damage are detected. Using the acceleration response 

recorded in some points, structure damage detection is done by extension of NCG and BFGS 

algorithms in updating the structure models. Modulus of elasticity and the weight per unit volume 

are respectively 210000 Mpa and 7850 Kg/m3. The Riley damping has been used to model the 

structural damping. The response of structure is obtained through a linear time-history analysis. 

Triangular impulsive load in time step 0.005 sec is induced vertically on the structure nodes. The 

sensors are considered to be tri-axial, getting the accelerations in all three dimensions, having the 

sampling frequency of 200 Hz. The losing weight and temperature are ignored in all examples 

during the analysis. 

 

 

 
Table 1 Different condition for 52-element dome 

Noise Level % Sensor Pattern Scenario Condition 

0 a 2 A 

0 b 2 B 

3 a 4 C 

3 b 4 D 

1 a 3 E 

1 b 1 F 
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5.1 Space dome with 52 members 
 

A 52-member dome as shown in Fig. 3 is considered here to confirm the proposed methods. 

Finite element model of the structure is composed of 21 nodes with 39 active degrees of freedom. 

In this example, some sensor patterns have been considered as shown in Fig. 4. Also, the label 

of the nodes and members are shown in Fig. 1. Various conditions and patterns for damages are 

given in Tables 1 and 2 respectively. In this example we use Levenberg-Marquardt results from 

reference (Sarvi et al. 2014) to be compared with M-NCG and M-BFGS methods. 

 
 

Table 2 Different damage scenarios 52-element dome 

Damage ratio % Number of element Scenario 

01 27 
0 

10 34 

01 22 
2 

30 44 

30 2 

0 01 10 

30 30 

40 9 

4 30 13 

30 40 

 
 

 

Fig. 1 The flowchart of the proposed method 
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Fig. 2 The Flowchart of M-BFGS and M-NCG in the proposed method 

 
 

The norm of residual, the difference between real damage and identified damage, is shown in 

Table 3. 

 
Table 3 Result summary for 52-member dome 

Time (s) Max iteration 
Norm of residual 

(actual-detected) 
Method Scenario 

160 82 0.0002 M-NCG 

A 156 41 0.0002 M-BFGS 

153 - 0.0000 Lev-Mar 

157 73 0.0004 M-NCG 

B 150 41 0.0004 M-BFGS 

153 - 0.0000 Lev-Mar 

201 101 0.0628 M-NCG 

C 166 42 0.0625 M-BFGS 

155 - 0.0581 Lev-Mar 

177 89 0.0714 M-NCG 

D 159 43 0.0625 M-BFGS 

154 - 0.0717 Lev-Mar 

182 105 0.0203 M-NCG 

E 162 44 0.0207 M-BFGS 

156 - 0.0202 Lev-Mar 

166 66 0.0187 M-NCG 

F 160 37 0.0191 M-BFGS 

156 - 0.0204 Lev-Mar 
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Fig. 3 52-element dome structure 

 
 
 

 

Fig. 4 Two sensor patterns in 52-element dome structure 
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Fig. 5 Damage detection result for 52-element dome structure for Conditions A and B 

 
 

 

Fig. 6 Damage detection result for 52-element dome structure for Conditions C and D 
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Figs. 5 and 6 show equal accuracy for the three methods of damage detection using M-BFGS, 

M-NCG and LEV-MAR algorithms. According to these figures, in the absence of noise in data, 

accuracy of three methods is same, but in the presence of noise M-BFGS method works a little 

better.  

 

5.2 Space dome with 120 members 
 

A 120-member dome as shown in Fig. 4 is considered here to confirm the proposed method. 

The section area of members of the 120-member dome is optimized under static loading (Kaveh 

and Talatahari 2009). Physical model of the structure consists of 49 nodes with 117 active degrees 

of freedom. The label of the joints and members are shown in Fig. 4. Various conditions and 

damage pattern are given in Tables 4 and 5 respectively. In this example, the results from reference 

(Sarvi et al. 2014) is used to be compared with M-NCG and M-BFGS methods. 

 
Table 4 Different condition for 120-element dome 

Noise Level % Sensor Pattern Scenario Condition 

0 a 2 A 

0 b 2 B 

0 a 4 C 

0 b 4 D 

5 b 3 E 

2 a 1 F 

 

 

Fig. 7 Damage detection result for 52-element dome structure for Condition E 
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Table 5 Different damage scenarios in 120-element dome 

Damage ratio % Number of element Scenario 

01 03 

0 

41 10 

01 12 

21 000 

1 003 

01 01 

2 

02 22 

02 40 

1 44 

41 12 

21 41 

01 002 

21 0 

0 

01 04 

41 42 

1 11 

01 13 

01 11 

21 12 

02 22 

4 42 

21 1 

4 

21 22 

41 02 

1 04 

41 01 

01 41 

02 40 

02 42 

01 44 

00 002 

4 004 
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Table 6 Results summary for 120-member dome 

 
 
 

 

Fig. 8 Damage detection result for 52-element dome structure for Condition F 

Time (s) Max iteration 
Norm of residual 

(actual-detected) 
Method Scenario 

721 312 0.0005 M-NCG 

A 552 95 0.0004 M-BFGS 

448 - 0.0004 Lev-Mar 

754 175 0.0000 M-NCG 

B 514 74 0.0000 M-BFGS 

623 - 0.0000 Lev-Mar 

656 294 0.0017 M-NCG 

C 539 91 0.0017 M-BFGS 

453 - 0.0017 Lev-Mar 

615 180 0.0003 M-NCG 

D 539 76 0.0003 M-BFGS 

446 - 0.0003 Lev-Mar 

698 183 0.1629 M-NCG 

E 564 72 0.1625 M-BFGS 

709 - 0.1621 Lev-Mar 

702 224 0.0885 M-NCG 

F 551 77 0.0915 M-BFGS 

469 - 0.0906 Lev-Mar 
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Fig. 9 120-element dome structure 

 
 
 

 

Fig. 10 Two sensor patterns in 120-element dome structure 
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Fig. 11 shows the results of damage detection of Condition A. The accuracy of proposed 

method is demonstrated in noise free data. In this condition, sensors location is asymmetric which 

shows this method is insensitive to sensors location. 

Fig. 12, shows the results of damage detection of condition B in which sensors location is 

almost symmetric and data is free of noise. According to this figure and Table 6, it is noticeable 

when sensors condition is symmetric, result is accurate and norm of difference between actual 

values and calculate values is tend to zero. 

 

 

Fig. 11 Damage detection result for 120-element dome structure for Condition A using M–BFGS and M–

NCG methods 

 

 

Fig. 12 Damage detection result for 120-element dome structure for Condition B employing M–BFGS and 

M–NCG methods 
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Results of damage detection for Condition C is shown in Fig. 13. In this condition sensors 

location is asymmetric and data is free of noise. This result show the proposed method is capable 

of assessing adjacent damages without error. Also insensitivity to sensors location is observed. 

Results of damage detection in Condition D show accuracy of method to detect adjacent 

damages as before. It is demonstrated the accuracy of method is increased in the case of symmetric 

sensors location. In this condition sensors location is almost symmetric and data is free of noise 

(see Fig. 14). 

Fig. 11 shows the results of damage detection in condition E. In this case, the location of 

sensors is almost symmetrical and 5% noise is applied to acceleration data. These show proposed 

method is capable to assessment location and magnitude of damage in large structure with noisy 

data. 

 

 

Fig. 13 Damage detection result for 120-element dome structure for Condition C using M–BFGS and M–

NCG methods 

 

 

Fig. 14 Damage detection result for 120-element dome structure for Condition D, M–BFGS and M–NCG 

methods 
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According above figure which shows result of condition F, efficiency of method in noisy data is 

demonstrated and the ability of assessment adjacent damage is shown. 

The comparison between convergence speed of Conditions A and B is shown in above figure. 

The good convergence speed of this method is proved. 

 
 

 

Fig. 15 Damage detection result for 120-element dome structure for Condition E, M–BFGS and M–NCG 

methods 

 
 

 

Fig. 16 Damage detection result for 120-element dome structure for Condition F, M–BFGS and M–NCG 

methods 
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Table 7 The result summary for 120-member dome in different conditions 

Case 

study 

name 

Number of 

nodes 

Number of 

element 

Noise 

% 

Number of 

sensor 

Sensor 
% 

Norm of residual 

(actual-detected) 
node 

120 

member 

dome 

49 120 0 4 8 % 0.0001 

120 

member 

dome 

49 120 2 9 18 % 0.0911 

120 

member 

dome 

49 120 5 11 22 % 0.1821 

 
 

The comparison between convergence speed of Conditions C and D is shown in above figure. 

If sensors location is almost symmetrical, convergence speed is increased increased compared with 

asymmetric sensors location. 
In Table 7, the minimum number of sensors required for acceptable identification process is 

given for 120 member structure. Here are three noise level is tested and for each level of the noise, 

the minimum number of sensors and the ratio of the number of sensor on number of nodes is 

calculated. As is noticeable, with an increase in the level of noise in the data, the number of 

sensors required for damage detection operations increases. It should be noted that the sensor 

position is almost symmetrical. 

 

5.3 Double layer grid space structure with 800 members 
 
For more investigation, the proposed algorithm is implanted on a full-member structure for 

damage detection. Physical model of the structure is composed of 221 nodes and 555 active 

degrees of freedom. 

 The label of points and members are shown in Figure 14. Patterns and condition of damage 

are respectively given in Tables 8 and 9. In this example, sensor pattern are randomly considered 

as shown in Fig. 21. 

 

 
 
Table 8 Condition for 800-Element Double Layer Grid 

Noise Level % Sensor Pattern Scenario Condition 

1 a 1 A 
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Fig. 17 Convergence diagram for 120-element dome structure for Condition A&B, M-BFGS and M–NCG 

 
 
 

 

Fig. 18 Convergence diagram for 120-element dome structure for Condition C&D, M-BFGS and M–NCG 
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Table 9 Different damage ratio in 800-element double layer grid 

Damage ratio % Number of element 

15 12 

25 35 

8 50 

24 94 

17 124 

23 202 

15 241 

31 245 

30 264 

17 293 

25 306 

37 377 

11 422 

40 455 

17 465 

27 483 

33 570 

15 682 

8 687 

22 750 

 
 
Table 01 Results summary for 800-element double layer grid 

 

Time (s) Max iteration 
Norm of residual 

(actual-detected) 
Method Scenario 

N/C 210 0.0816 M-NCG 
A 

N/C 041 0.0631 M-BFGS 
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Fig. 19 800-element double layer grid 

 
 

 

Fig. 20 Sensor pattern in 800-element double layer grid 
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Fig. 21 Damage detection result for 800-element double layer grid for Condition A using M-BFGS and 

M-NCG methods  
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7. Conclusions 
 

This work proposes damage identification of large structures using the M-NCG and M-BFGS 

algorithms based on sensitivity analysis. Due to the high cost of data-receiving systems (including 

installation of sensors and instruments for keeping them), it is demonstrated that the proposed 

method can effectively detect damage with the assumption of putting limited number of sensors in 

structure and therefore it has more advantages in this respect. Number of sensors are dependent on 

level of noise. 

Since sensor placement is carried out randomly, the results show that the proposed method with 

different sensor placement patterns is able to detect the damage, but it should be noted the location 

of sensors is significant in terms of precision and convergence speed. From different patterns of 

sensors placement it is concluded that the quantity of damage with symmetrical sensors in structures 

is detected with more accuracy and speed. The results show that the sensitivity of the method is 

higher compared to the little acceleration change and even in big structures the gradual loading in 

one of the points is sufficient and is able to detect the damage with high precision and speed. 

To investigate the performance of M-NCG and M-BFGS methods some examples are solved to 

detect damage in full-member discrete structures.  

Also the results from damage detection of 800-element double layer grid show that the proposed 

method has high precision and efficiency for the damage detection in large scale structures and it can 

be used in practical issues.  
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