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Abstract.  The hygro-thermo-mechanical bending behavior of sigmoid functionally graded material 
(S-FGM) plate resting on variable two-parameter elastic foundations is discussed using a four-variable 
refined plate theory. The material characteristics are distributed within the thickness direction according to 
the two power law variation in terms of volume fractions of the constituents of the material. By employing a 
four variable refined plate model, both a trigonometric distribution of the transverse shear strains within the 
thickness and the zero traction boundary conditions on the top and bottom surfaces of the plate are respected 
without utilizing shear correction factors. The number of independent variables of the current formulation is 
four, as against five in other shear deformation models. The governing equations are deduced based on the 
four-variable refined plate theory incorporating the external load and hygro-thermal influences. The results 
of this work are compared with those of other shear deformation models. Various numerical examples 
introducing the influence of power-law index, plate aspect ratio, temperature difference, elastic foundation 
parameters, and side-to-thickness ratio on the static behavior of S-FGM plates are investigated. 
 

Keywords:  refined plate theory; moisture concentration; thermal effect; functionally graded plate; variable 

elastic foundation 

 
 
1. Introduction 
 

Recently, a novel type of plates made up of functionally graded materials (FGM), in which the 

material characteristics continuously change across the thickness, has become popular in various 

engineering applications such as building constructions, automotive, aerospace, nuclear, ship and 

underwater (Hadji et al. 2014, Arefi 2015, Bennai et al. 2015, Al-Basyouni et al. 2015, Ebrahimi 

and Dashti 2015, Darılmaz 2015, Pradhan and Chakraverty 2015, Tagrara et al. 2015, Sallai et al. 

2015, Akbaş 2015, Hadji et al. 2015a,b, Hadji et al. 2016, Ait Atmane et al. 2015, 2016, Bellifa et 

al. 2016, Abdelbari et al. 2016, Ebrahimi and Habibi 2016, Moradi-Dastjerdi 2016). The concept 
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of FGM was introduced in 1984 by the material scientists in the Sendai area of Japan (Koizumi 

1997), although it had been suggested much earlier by American scientists as a type of novel 

spatially-graded composite materials aimed at providing a structural tailoring tool to aerospace 

designers (Bever and Duwez 1972). FGMs are considered as new composite materials which are 

now widely employed in aerospace, nuclear, civil, automotive, optical, biomechanical, electronic, 

chemical, mechanical, and shipbuilding industries. Therefore, proposing theoretical and numerical 

investigation of FGM structures (such as plates or beams) has attracted considerable attention from 

researchers (Mantari and Guedes Soares 2012, Bourada et al. 2012, Ould Larbi et al. 2013, Neves 

et al. 2013, Jung and Han 2014, Belabed et al. 2014, Jung et al. 2014, Ait Yahia et al. 2014, 

Bourada et al. 2015, Mahi et al. 2015, Hebali et al. 2014, Bousahla et al. 2014, Larbi Chaht et al. 

2015, Nguyen et al. 2015, Kar and Panda 2015a, Meradjah et al. 2015, Belkorissat et al. 2015, 

Bounouara et al. 2016, Bennoun et al. 2016).  

Many studies on FGM structures have been investigated in literature. For example, Reddy 

(2000) discussed the bending response of FG rectangular plates using a third-order shear 

deformation plate theory. The deflection of a FGM plate was examined by Ferreira et al. (2005) 

using a third-order shear deformation theory. Malekzadeh (2009) studied the free vibration 

behavior of thick FG plates resting on two-parameter elastic foundation based on the 

three-dimensional elasticity theory. Matsunaga (2008) studied natural frequencies and buckling 

stresses of plates made of FGM by considering the influences of transverse shear and normal 

deformations and rotatory inertia. Lu et al. (2009) examined the free vibration behavior of FG 

thick plates on elastic foundation based on three-dimensional elasticity. Akavci (2014) investigated 

the efficiency of an improved version of a hyperbolic shear deformation theory proposed by 

Akavci (2007) for free vibration analysis of FG plates. Vibration and buckling response of 

exponentially graded sandwich plate resting on elastic foundations under various boundary 

conditions have investigated by Ait Amar Meziane et al. (2014) using an efficient and simple 

refined theory. Laoufi et al. (2016) studied the mechanical and hygrothermal response of FG plates 

resting on elastic foundation using hyperbolic shear deformation theory. 

In general, the structures are subjected to mechanical load and temperature changes both 

internally and externally. Then, it is important to investigate the response of structural elements 

under a mechanical or thermal loads or a combination of both. In this sense, many researchers 

analyzed the thermo-mechanical response of FG plates by employing higher order shear 

deformation theories (HSDTs). Zhang et al. (1994) proposed an analytical method for FGM 

cylinder with axial symmetry based on thermal elasticity theory. Reddy and Chen (2001) proposed 

a 3D model for a FG plate under mechanical and thermal loads. Liew et al. (2003) analyzed the 

thermo-mechanical response of hollow circular cylinders made of FGM. Vel and Batra (2003) 

proposed a 3D solution for transient thermal stresses in FG rectangular plates. The stability 

investigation of shear deformable FG rectangular plates under thermo-mechanical loads was 

studied by Shukla et al. (2007) using the first-order shear deformation plate theory (FSDT). 

Shahrjerdi et al. (2011) presented a free vibration analysis of solar FG plates with 

temperature-dependent material properties using second order shear deformation theory. The 

thermal stability analysis of rectangular composite laminated plates is discussed by Moradi and 

Mansouri (2012) using the Differential Quadrature method. Using a novel shear deformation 

theory, Saidi et al. (2013) analyzed the thermo-mechanical bending response with stretching effect 

of FG sandwich plates. Houari et al. (2013) presented a thermoelastic bending analysis of FG 

sandwich plates using a new higher order shear and normal deformation theory. Zidi et al. (2014) 

studied the bending response of FGM plates under hygro-thermo-mechanical loading using a four 
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variable refined plate theory. Khalfi et al. (2014) developed a refined and simple shear 

deformation theory for thermal buckling of solar FG plates on elastic foundation. Thermal 

buckling of the FG orthotropic plates has been examined by Mansouri and Shariyat (2014). 

Chakraverty and Pradhan (2014) studied the free vibration of exponential functionally graded 

rectangular plates in thermal environment with general boundary conditions. Kar and Panda 

(2015b) analyzed the free vibration responses of temperature dependent FG curved panels under 

thermal environment. Rad (2015) investigated the thermo-elastic analysis of FG circular plates 

resting on a gradient hybrid foundation. Hamidi et al. (2015) proposed a sinusoidal plate theory 

with 5-unknowns and stretching effect for thermomechanical bending of FG sandwich plates. 

Tebboune et al. (2015) studied the thermal buckling analysis of FG plates resting on elastic 

foundation based on an efficient and simple trigonometric shear deformation theory. Kar et al. 

(2015) presented a nonlinear flexural analysis of laminated composite flat panel under 

hygro-thermo-mechanical loading. Mansouri and Shariyat (2015) investigated for the first time the 

biaxial buckling behavior of FG orthotropic plates under hygrothermal effects. Using various four 

variable refined plate theories, Attia et al. (2015) analyzed the free vibration response of FG plates 

with temperature-dependent properties. Bakora and Tounsi (2015) studied the thermo-mechanical 

post-buckling behavior of thick FG plates resting on elastic foundations. Bouchafa et al. (2015) 

discussed the thermal stresses and deflections of FG sandwich plates using a new refined 

hyperbolic shear deformation theory. Bouguenina et al. (2015) proposed a numerical analysis of 

FG plates with variable thickness subjected to thermal buckling. Mehar et al. (2016) studied the 

vibration response of FG carbon nanotube reinforced composite plate in thermal environment. Kar 

and Panda (2016) analyzed the nonlinear thermo-mechanical deformation behavior of P-FGM 

shallow spherical shell panel. Sobhy (2016) proposed an accurate shear deformation theory for 

vibration and buckling of FGM sandwich plates in hygrothermal environment. Bouderba et al. 

(2016) studied the thermal buckling of FG sandwich plates using a simple shear deformation 

theory.  

Power-law function (Bao and Wang 1995, Jin and Paulino 2001), and exponential function 

(Delale and Erdogan, 1983; Erdogan and Chen, 1998) are commonly employed to describe the 

variations of material characteristics of FGM. However, in both power-law and exponential 

functions, the stress concentrations appear in one of the interfaces in which the material is 

continuously but rapidly changing. Therefore, Chung and Chi (2001) proposed a sigmoid FGM 

(S-FGM), which was composed of two power-law functions to define a novel volume fraction. Chi 

and Chung (2002) demonstrated that the use of an S-FGM can significantly diminish the stress 

intensity factors of a cracked body. Han et al. (2008) investigated vibration and stability responses 

of S-FGM plates and shells by employing finite element method. The non-linear analysis of 

anisotropic S-FGM structures was discussed by Han et al. (2009). Duc and Cong (2013) 

investigated the nonlinear post-buckling of symmetric S-FGM plates resting on elastic foundations 

using higher order shear deformation plate theory in thermal environments. Jung and Han (2013) 

studied an S-FGM nanoscale plates using the nonlocal elasticity theory. Jung et al. (2014) 

investigated the bending and vibration behavior of S-FGM microplates embedded in Pasternak 

elastic medium using the modified couple stress theory. Han et al. (2015) proposed a four-variable 

refined plate theory for dynamic stability analysis of S-FGM plates based on physical neutral 

surface. Quan et al. (2015) discussed the nonlinear dynamic and vibration of shear deformable 

eccentrically stiffened S-FGM cylindrical panels with metal–ceramic–metal layers resting on 

elastic foundations. Lee et al. (2015) used a refined higher order shear and normal deformation 

theory for E-, P-, and S-FGM plates on Pasternak elastic foundation. Chikh et al. (2016) presented 
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an analytical formulation based on both hyperbolic shear deformation theory and stress function, 

to study the nonlinear post-buckling response of symmetric S-FG plates supported by elastic 

foundations and subjected to in-plane compressive, thermal and thermo-mechanical loads. Thanga 

et al. (2016) presented an analytical formulation for nonlinear analysis of imperfect S-FGM plates 

with variable thickness resting on elastic medium. 

It can be noticed in the above studies, that the hygro-thermo-mechanical bending behavior of 

FGM plates is studied in different works (Hamidi et al. 2015, Zidi et al. 2014, Tounsi et al. 2013, 

Bouderba et al. 2013, Houari et al. 2013), However, the hygro-thermo-mechanical bending 

behavior of S-FGM plates resting on variable elastic foundation is not treated. Thus, the aim of 

this work is to investigate the hygro-thermo-mechanical bending response of S-FGM plates resting 

on variable two-parameter elastic foundations using a four-variable trigonometric plate theory.  

The material properties are graded in the thickness direction according to the two power-law 

distribution in terms of volume fractions of the constituents of the material. The effective material 

properties are estimated by employing a simple power law based on rule of mixture. The 

equilibrium equations are obtained using the four-variable trigonometric plate theory containing 

the thermal effect and the interaction between the plate and the elastic foundations. The results 

obtained by the present four-variable trigonometric plate theory are compared with those obtained 

by the first-order shear deformation theory (FSDT) and the higher-order one. Some numerical 

examples are presented to demonstrate the influences of various parameters on the 

hygro-thermo-mechanical bending behavior of the S-FGM plates. 

 

 

2. Fundamental formulations 
 

In the present work, a functionally graded rectangular plate with an uniform thickness h , the 

length a , and the width b  is examined. The geometry of the plate and coordinate system are 

indicated in Fig. 1. The volume fraction employing two power-law functions which ensure smooth 

variations of stresses is expressed by 
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By employing the rule of mixture, the material properties P  like as Young’s modulus E , 

Poisson’s ratio  , and thermal   and moisture expansion   coefficients of the S-FGM can be 

computed by 
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where 1P  and 2P  denotes the property of the top and the bottom faces of the plate, respectively, 

and k  is the volume fraction exponent. The Poisson’s ratio   is considered to be constant.  

Based on the refined trigonometric four-variable plate theory (Tounsi et al. 2013), the 

displacement field can be expressed as 
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where 0u  and 0v  are the mid-plane displacements of the plate in the x and y direction, 

respectively; bw  and sw  are the bending and shear components of transverse displacement, 

respectively. 

Also the shape function )(zf  is chosen according to Bouderba et al. (2013), Fekrar et al. 

(2014) and Draiche et al. (2014) as 
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By employing the displacement field in Eq. (3) within the application of the linear, small-strain 

elasticity theory, normal and shear strains are determined as 
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For the FG plates, the stress–strain relationships for plane-stress state can be written as 
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where ( x , y , z , yz , xz , xy ) and ( x , y , 
z , yz , xz , xy ) are the stress and 

strain components, respectively. The elastic constants ijC  are defined as 

,
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and 0TTT   and 0CCC   in which 0T  is the reference temperature and 0C  is the 

reference moisture concentration. 

We consider the plate under a thermal field and moisture concentration varying linearly within 

the thickness, i.e., ),(),(),,( 21 yxT
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However, the temperature variation and the moisture concentration may be distributed nonlinearly 

across the thickness of the plate as Zidi et al. (2014) 
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3. Governing equations 
 

The governing equations of equilibrium can be obtained by employing the principle of virtual 

displacements. The principle of virtual work in the present case yields 
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where   is the top surface, and ef  is the density of reaction force of foundation. For the 

Pasternak foundation model 
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where wK  is Winkler parameter depended on x only. It is considered to be linear, parabolic or 

sinusoidal as (Zhou 1993, Pradhan and Murmu 2009, Sobhy 2015) 
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in which 1J  is a constant and   is a varied parameter. GK  is the shear layer foundation 

stiffness, 
2  is the Laplace operator in x and y. 

Note that, if 0 , the elastic foundation becomes Pasternak foundation and if the shear layer 

foundation stiffness is neglected, the Pasternak foundation becomes the Winkler foundation. 

Substituting Eqs. (5) and (7) into Eq. (10) and integrating across the thickness of the plate, Eq. (10) 

can be expressed as 
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N , M  and S  are stress resultants and can be expressed as follows 
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Substituting Eq. (7) into Eq. (14) and integrating across the thickness of the plate, the stress 

resultants are written as 
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and stiffness components are given as 
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The governing equations of equilibrium can be obtained from Eq. (13) by integrating the 

displacement gradients by parts and setting the coefficients 0 u , 0 v , bw   and sw   zero 

separately. Thus one can obtain the equilibrium equations associated with the present theory 
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Substituting Eq. (15) into Eq. (19), the governing equations can be expressed in terms of 

displacements ( 0u , 0v , bw , sw ) as follows 
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where    t
ppppp 4321 ,,,  is a generalized force vector, ijd , ijld  and ijlmd  are the 

following differential operators 
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The components of the generalized force vector  p  are given by 
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4. Analytical solution for simply-supported S-FG plates 
 

In this work, the exact solution of equations (20) is desired for a simply supported S-FG plate. 

The boundary conditions for simply supported plate according to the present formulation can be 

found in Refs (Benachour et al. 2011, Thai and Vo 2013). Navier solution is considered for the 

mechanical, temperature and moisture loads, q , iT  and iC  in the form of a double Fourier 

series as 
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where a/  , b/  , 0q , it  and ic  are constants and iT  and iC  are defined in Eq. 

(9).  

Following the Navier method, we suppose the following solution form for 0u , 0v , bw  and 

sw  that respects the boundary conditions 
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where U , V , bW ,  and sW  are arbitrary coefficients to be determined. One obtains the 

following equation 

    ,PK 
                             (24) 

where    t

sb WWVU ,,,  and  K  is the symmetric matrix defined by 
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5. Results and discussion 
 

In this section, various numerical examples are proposed and discussed for studying the 

hygro-thermo-mechanical bending responses of S-FGM plates resting on variable two-parameter 

elastic foundations. Comparisons are carried out with the proposed model. The S-FGM plate is 

considered to be made of Titanium and Zirconia with the following material properties (Zidi et al. 

2014): 

 Ceramic (Zirconia, ZrO2): GPa  0.1171 E , 3/1 ,  )/10(11.7 6
1 C  ,  01  . 

 Metal (Titanium, Ti-6Al-4V): GPa  2.662 E , 3/1 ,  )/10(3.10 6
2 C  ,  

33.02  .  

 

The reference temperature and moisture concentration are taken by C 250 T  (room 

temperature) and 0%0 C . It is assumed, unless otherwise stated, that 1000 q
 

GPa, 10/ ha , 

01 t , 01 c . We also take the shear correction factor K = 5/6 in FSDT. Numerical results are 

provided in terms of dimensionless stresses and deflection. The various dimensionless parameters 

employed are 
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Comparisons are made with various plate models available in the scientific literature. The 

description of various displacement models is given in Table 1. 

The correlation between the proposed model and different shear deformation theories is 

presented in Tables 2-5. These tables demonstrate also the influences of the volume fraction 

exponent k  and elastic foundation parameters on the dimensionless transverse displacement and 

stresses of S-FGM plate. 

Table 2 shows the effects of the elastic foundation parameters on the dimensionless deflections 

of S-FGM square plate subjected to a mechanical load. The present four-variable refined plate 

model provides almost identical results. It can be observed that the deflection is decreasing with 
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the existence of the elastic foundations. The inclusion of the Winkler foundation parameter yields 

higher magnitude results than those with the inclusion of Pasternak foundation parameters. 

Tables 3 and 4 illustrate similar results as those given in Table 2 including the influence of the 

temperature and moisture fields. An excellent agreement is demonstrated between the present 

four-variable refined plate model and the other plate models for all values of thickness ratios ha /  

and with or without the presence of the elastic foundation. Comparatively to the results given by 

Table 2, it can be observed that the incorporation of the hygrothermal loads affect clearly the 

deflections of S-FGM plates. 

Table 5 presents the effects of the material distribution parameter k  and elastic foundation 

parameters on the dimensionless deflections and stresses of S-FGM plate subjected to a 

hygro-thermo-mechanical load. It can be seen that both the deflections and stresses are sensitive to 

the variation of k . It can be shown that the deflection and stresses are decreasing with the 

existence of the elastic foundations. The inclusion of the Winkler foundation parameter yields 

higher magnitude results than those with the inclusion of Pasternak foundation parameters.  

 
Table 1Displacement models 

Model Theory
 

Unknowns 

FSDT First-order shear deformation theory (Whitney 1969) 5 

TSDT Third-order shear deformation theory (Reddy 2000) 5 

SSDT Sinusoidal shear deformation theory (Touratier 1991) 5 

Present Four-variable refined plate theory 4 

 

Table 2 The deflection w  of S-FGM square plates with/without elastic foundations ( 1000 q , 0CT , 

2k , 0 ) 

1J  2J  Theory 
ha /  

5 10 15 20 25 30 50 

  
FSDT 0.92581 3.26081 7.15246 12.60077 19.60574 28.16738 77.98053 

  
TSDT 0.95457 3.28993 7.18165 12.62999 19.63498 28.19662 78.00978 

0 0 SSDT 0.95417 3.28962 7.18136 12.62970 19.63469 28.19633 78.00949 

    Present 0.95417 3.28962 7.18136 12.62970 19.63469 28.19633 78.00949 

  
FSDT 0.67562 2.45898 5.42722 9.58219 14.92416 21.45316 59.43991 

  
TSDT 0.69080 2.47551 5.44401 9.59908 14.94109 21.47012 59.45690 

103 0 SSDT 0.69059 2.47533 5.44384 9.59891 14.94092 21.46995 59.45673 

    Present 0.69059 2.47533 5.44384 9.59891 14.94092 21.46995 59.45673 

  
FSDT 0.10666 0.42006 0.94201 1.67269 2.61211 3.76028 10.44053 

  
TSDT 0.10703 0.42054 0.94252 1.67320 2.61262 3.76080 10.44106 

103 103 SSDT 0.10702 0.42054 0.94251 1.67320 2.61262 3.76079 10.44105 

    Present 0.10702 0.42054 0.94251 1.67320 2.61262 3.76079 10.44105 
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Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations… 

 

Figs. 2-6 demonstrate the effect of the type of elastic foundations (parabolic, linear, sinusoidal) 

on the deflection and the stresses when the S-FGM plates ( 2k ) is subjected to 

thermo-mechanical or hygro-mechanical loads. It can be noted that the results depends on the type 

of elastic foundations. The thermo-mechanical load always amplifies the deflection and stresses 

magnitudes whereas the hygro-mechanical load always reduces these quantities.  

 

 

 

Fig. 1 Schematic representation of a rectangular FG plate resting on elastic foundation 

 

Table 3 The deflection w  of S-FGM square plates with/without elastic foundations ( 1000 q , 031  tt ,

102 t , 031  cc , 1002 c , 2k , 0 ) 

1J  2J  Theory 
ha /  

5 10 15 20 25 30 50 

  
FSDT 7.72551 10.06050 13.95215 19.40046 26.40544 34.96707 84.78022 

  
TSDT 7.75003 10.08856 13.98087 19.42942 26.43450 34.99619 84.80942 

0 0 SSDT 7.74913 10.08812 13.98052 19.42909 26.43419 34.99589 84.80913 

    Present 7.74913 10.08812 13.98052 19.42909 26.43419 34.99589 84.80913 

  
FSDT 5.63772 7.58664 10.58676 14.75299 20.10017 26.63202 64.62291 

  
TSDT 5.60854 7.59113 10.59812 14.76680 20.11514 26.64761 64.63940 

103 0 SSDT 5.60853 7.59098 10.59796 14.76664 20.11497 26.64744 64.63924 

    Present 5.60853 7.59098 10.59796 14.76664 20.11497 26.64744 64.63924 

  
FSDT 0.89001 1.29601 1.83757 2.57531 3.51804 4.66802 11.35092 

  
TSDT 0.86895 1.28959 1.83485 2.57398 3.51737 4.66771 11.35114 

103 103 SSDT 0.86917 1.28964 1.83487 2.57399 3.51737 4.66771 11.35114 

    Present 0.86917 1.28964 1.83487 2.57399 3.51737 4.66771 11.35114 
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Figs. 2 and 3 display the variation of the center deflection w  with the side-to-thickness ha /  

and aspect ab /  ratios, respectively. The deflection is maximum for the plate resting on parabolic 

elastic foundation and minimum for the plate supported on sinusoidal elastic foundation 

irrespective of the values of temperature and moisture.  
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Fig. 2 The deflection w  of the S-FGM plate ( 2k ) versus the side-to-thickness ratio ha /  under 

thermo-mechanical and hygro-mechanical loads for various types of Winkler parameter 
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Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations… 

 

Fig. 4 depicts the through-the-thickness distributions of the non-dimensional axial stress x in 

the S-FGM rectangular plates. It can be seen that the effect of the type of elastic foundations 

(parabolic, linear, sinusoidal) on x  is not important particularly for the case of 

thermo-mechanical loads.  

The effect of the type of elastic foundations (parabolic, linear, sinusoidal) on the shear stress 

xz  through the thickness of S-FGM plate is demonstrated in Fig. 5 for thermo-mechanical or 

hygro-mechanical loads. It can be seen that the maximum value occurs at a point above the 

mid-plane of the S-FGM plate and it depends on the type of elastic foundations. 
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Fig. 3 The deflection w  of the S-FGM plate ( 2k ) versus the aspect ratio ab /  under 

thermo-mechanical and hygro-mechanical loads for various types of Winkler parameter 
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Table 4 The deflection w  of S-FGM square plates with/without elastic foundations ( 1000 q , 01 t ,

1032  tt , 01 c , 10032  cc , 2k , 0 ) 

1J  2J  Theory 
ha /  

5 10 15 20 25 30 50 

  
FSDT 13.00085 15.33585 19.22750 24.67581 31.68078 40.24242 90.05557 

  
TSDT 13.00621 15.35911 19.25409 24.70356 31.70908 40.27101 90.08458 

0 0 SSDT 13.00318 15.35813 19.25350 24.70311 31.70868 40.27064 90.08427 

    Present 13.00318 15.35813 19.2535 24.70311 31.70868 40.27064 90.08427 

  
FSDT 9.48742 11.56479 14.58964 18.76460 24.11584 30.64990 68.64399 

  
TSDT 9.41233 11.55695 14.59545 18.77528 24.12879 30.66408 68.65998 

103 0 SSDT 9.41122 11.55649 14.59514 18.77503 24.12857 30.66388 68.65980 

    Present 9.41122 11.55649 14.59514 18.77503 24.12857 30.66388 68.65980 

  
FSDT 1.49775 1.97559 2.53236 3.27559 4.22088 5.37227 12.05722 

  
TSDT 1.45829 1.96331 2.52690 3.27269 4.21920 5.37125 12.05718 

103 103 SSDT 1.45849 1.96335 2.52692 3.27269 4.21920 5.37125 12.05718 

    Present 1.45849 1.96335 2.52692 3.27269 4.21920 5.37125 12.05718 

 

 

 

Fig. 6 shows the variation of the in-plane shear stress xy  through the thickness of S-FGM 

plate when is subjected to thermo-mechanical or hygro-mechanical loads. Different type of elastic 

foundations (parabolic, linear, sinusoidal) are considered in this example. It can be observed that 

this effect is more pronounced near the top and bottom surfaces of the plate.      

The variation of the transverse displacement w  of the S-FGM plate ( 2k ) resting on 

parabolic elastic foundation and under thermo-mechanical load vs. the side-to-thickness ratio 

ha /  is exhibited in Fig 7 for ζ = 10, 30, 50, 80. Also, in such case, the variations of the stresses 

through-the-thickness of S-FGM plate are presented in Figs. 8 to 10 with the case of 

hygro-thermo-mechanical loads. As is evident, the decrease of the parabolic parameter ζ leads to a 

significant increment in the variation of the transverse displacement and shear stresses ( xz  and 

xy ). However, this effect in the case of the normal stress x  is felt slightly at the top and 

bottom surfaces of the plate. 
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Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations… 

 

 
Table 5 Effect of the volume fraction exponent and elastic foundation parameters on the dimensionless and 

stresses of an S-FGM square plate ( 10/ ha , 1000 q , 01 t , 1032  tt , 01 c , 10032  cc ,

0 ) 

k  1J  2J  Theory w  x  xz  xy  

   
FSDT 15.54469 1.20274 1.59155 52.19976 

   
TSDT 15.56983 1.18323 2.32855 52.29730 

0 0 0 SSDT 15.56909 1.18205 2.39624 52.30321 

 

  
Present 15.56909 1.18205 2.39624 52.30321 

  
FSDT 11.83355 3.60072 -0.29182 40.20988 

  
TSDT 11.82624 3.60337 -0.49277 40.19664 

103 0 SSDT 11.82593 3.60362 -0.51494 40.19536 

  
Present 11.82593 3.60362 -0.51494 40.19536 

  
FSDT 2.07150 9.90852 -5.24595 8.67088 

  
TSDT 2.05814 9.91818 -7.85439 8.62256 

103 103 SSDT 2.05821 9.92268 -8.11165 8.60008 

  
Present 2.05821 9.92268 -8.11165 8.60008 

   
FSDT 2.03173 8.27104 -5.11466 6.79059 

   
TSDT 2.01864 8.28625 -7.67656 6.77087 

0.5 103 103 SSDT 2.01868 8.29173 -7.92987 6.75503 

   
Present 2.01868 8.29173 -7.92987 6.75503 

   
FSDT 2.00121 8.40197 -5.01394 6.96572 

   
TSDT 1.98848 8.41890 -7.53181 6.95451 

1 103 103 SSDT 1.98851 8.42428 -7.78118 6.93921 

   
Present 1.98851 8.42428 -7.78118 6.93921 

   
FSDT 1.97559 8.51057 -4.92939 7.10902 

   
TSDT 1.96331 8.52966 -7.40214 7.10529 

2 103 103 SSDT 1.96335 8.53504 -7.64710 7.09053 

   
Present 1.96335 8.53504 -7.64710 7.09053 

   
FSDT 1.96114 8.58428 -4.88169 7.22509 

   
TSDT 1.94928 8.60561 -7.32235 7.22721 

5 103 103 SSDT 1.94933 8.61111 -7.56368 7.21292 

   
Present 1.94933 8.61111 -7.56368 7.21292 

   
FSDT 2.06374 9.71180 -5.22032 6.69643 

   
TSDT 2.04996 9.71936 -7.81103 6.65862 

Metal 103 103 SSDT 2.05003 9.72385 -8.06660 6.63616 

   
Present 2.05003 9.72385 -8.06660 6.63616 
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Fig. 4 Dimensionless axial stress x  through-the-thickness of S-FGM plate ( 2k ) under 

thermo-mechanical and hygro-mechanical loads for various types of Winkler parameter 
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Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations… 
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Fig. 5 Dimensionless shear stress xz  through-the-thickness of S-FGM plate ( 2k ) under 

thermo-mechanical and hygro-mechanical loads for various types of Winkler parameter 
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Fig. 6 Dimensionless in-plane shear stress xy  through-the-thickness of S-FGM plate ( 2k ) under 

thermo-mechanical and hygro-mechanical loads for various types of Winkler parameter 
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Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations… 
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Fig. 7 The deflection w  of the S-FGM plate ( 2k ) against the side-to-thickness ratio ha /  under 

thermo-mechanical load for different values of the parabolic parameter   
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Fig. 8 Variation of the stress x  through-the-thickness of the S-FGM plate ( 2k ) under 

hygro-thermo-mechanical load for different values of the parabolic parameter   
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Fig. 9 Variation of the transverse shear stress xz  through-the-thickness of the S-FGM plate ( 2k ) 

under hygro-thermo-mechanical load for different values of the parabolic parameter   
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Fig. 10 Variation of the on-plane shear stress xy  through-the-thickness of the S-FGM plate ( 2k ) 

under hygro-thermo-mechanical load for different values of the parabolic parameter   

 

 

 

776



 

 

 

 

 

 

Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations… 

 

Figs. 11 and 12 show the influence of the thermal and moisture loads, respectively, on the 

center deflection of S-FGM plate resting on parabolic elastic foundations (ζ = 50). It can be 

observed that the transverse displacement w  increases as the temperature and the moisture 

parameters increase. 
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Fig. 11 Dimensionless center deflection w  of S-FGM plate ( 2k ) on parabolic elastic foundations 

versus side-to-thickness ratio ha /  for different values of temperatures 
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Fig. 12 Dimensionless center deflection w  of S-FGM plate ( 2k ) on parabolic elastic foundations 

versus side-to-thickness ratio ha /  for different values of moistures 
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Fig. 13 Dimensionless normal stress x  of S-FGM plate ( 2k ) on parabolic elastic foundations 

versus side-to-thickness ratio ha /  for different values of temperatures 
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Fig. 14 Dimensionless normal stress x  of S-FGM plate ( 2k ) on parabolic elastic foundations 

versus side-to-thickness ratio ha /  for different values of moistures 
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Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations… 

 

The effect of thermal and moisture loads on in-plane normal stress x  of S-FGM plate resting 

on parabolic elastic foundations (ζ = 50) is demonstrated in Figs. 13 and 14, respectively. It can be 

seen that the increase of the temperature and the moisture parameters leads to an increase of the 

normal stress x .  
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Fig. 15 Dimensionless in-plane shear stress xy  of S-FGM plate ( 2k ) on parabolic elastic 

foundations versus side-to-thickness ratio ha /  for different values of temperatures 
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Fig. 16 Dimensionless in-plane shear stress xy  of S-FGM plate ( 2k ) on parabolic elastic 

foundations versus side-to-thickness ratio ha /  for different values of moistures 
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The same observation are demonstrated in Figs. 15 and 16 for the case of in-plane shear stress 

xy  and in Figs. 17 and 18. It can be also noticed from these figures that the increasing of the 

side-to-thickness ratio leads to a decrement in the variation of the stress x  and an increment in 

the variation of the shear stresses ( xy  and xz ). 

 

4 6 8 10 12 14 16 18 20

-70

-60

-50

-40

-30

-20

-10

0

 t
2
=t

3
=0

 t
2
=t

3
=5

 t
2
=t

3
=10

 t
2
=t

3
=20

a/h

J
1
=J

2
=10

3

, =50, c
2
=c

3
=10

 

Fig. 17 Dimensionless transverse shear stress xz  of S-FGM plate ( 2k ) on parabolic elastic 

foundations versus side-to-thickness ratio ha /  for different values of temperatures 
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Fig. 18 Dimensionless transverse shear stress xz  of S-FGM plate ( 2k ) on parabolic elastic 

foundations versus side-to-thickness ratio ha /  for different values of moistures 
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Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations… 

 

6. Conclusions 
 

The four-variable refined plate theory for hygro–thermo-mechanical response of S-FGM plates 

resting on two-parameter elastic foundations is investigated. The Winkler parameter is varying in 

the direction of x-axis as a linear, parabolic or sinusoidal functions of x. The second parameter 

represents the shear layer modulus that takes constant values. All comparison studies demonstrate 

that the deflection and stresses obtained by the proposed theory with four unknowns are almost 

identical with those predicted by other shear deformation theories containing five unknowns. The 

effect of moisture concentration as well as other parameters is shown to be significant. The 

formulation and techniques derived herein should be useful in further studies and should provide 

engineers with the capability for the design of functionally graded plates for special technical 

applications including rocket launch pad foundation structures. 
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