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Abstract.  Structural optimization involves a large number of structural analyses. When optimizing large 
structures, these analyses require a considerable amount of computational time and effort. However, there 
are specific types of structure for which the results of the analysis can be achieved in a much simpler and 
quicker way thanks to their special repetitive patterns. In this paper, frequency constraint optimization of 
cyclically repeated space trusses is considered. An efficient technique is used to decompose the large initial 
eigenproblem into several smaller ones and thus to decrease the required computational time significantly. 
Some examples are presented in order to illustrate the efficiency of the presented method. 
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1. Introduction 
 

In low frequency vibration problems, the response of the structure primarily depends on its 

fundamental frequencies and mode shapes (Grandhi 1993). Therefore, the dynamic behavior of a 

structure can be controlled by constraining its fundamental frequencies. Mass minimization of a 

structure for which some natural frequencies should be upper and/or lower-bounded is known as a 

structural optimization problem with frequency constraints. 

History of structural optimization with frequency constraints dates back to 1960s and since then 

has always received considerable attention by optimization experts utilizing a wide variety of 

algorithms (Taylor 1967, Armand 1971, Cardou and Warner 1974, Elwany and Barr 1978, Lin et al. 

1982, Konzelman 1986, Grandhi and Venkayya 1988, Sedaghati et al. 2002, Lingyun et al. (2005), 

Gomes 2011, Kaveh and Zolghadr 2012, 2014a,b). 

In a frequency constraint structural optimization problem large generalized eigenproblems 

should be solved in order to find the natural frequencies of the structure. The size of the structure 

affects the dimensions of the matrices involved and thus the required computational time and effort. 

On the other hand, as the number of optimization variables increases, more and more structural 

analyses are needed to be performed in order to obtain a near-optimal solution. There are 

numerous algebraic methods for eigensolution of large structural systems some of them utilizing 
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such properties as sparsity and symmetry of the associated matrices. For general structures, 

utilization of general time consuming algebraic methods seems to be inevitable. However, fast and 

efficient techniques could be used for several types of structures, which enjoy specific 

characteristics such as symmetry. These methods utilize the characteristics of special categories of 

matrices whose eigenvalues and eigenvectors can be more easily obtained by using block 

diagonalization techniques. Several applications of these techniques could be found in the 

literature. Kaveh and Rahami (2006, 2007) utilized block diagonalization techniques for different 

types of canonical forms for applications in structural mechanics. Kaveh and Koohestani (2009) 

employed special canonical forms for the efficient eigensolutions of Laplacian and adjacency 

matrices of special graphs and free vibration and buckling load analysis of cyclically repeated 

space truss structures (Koohestani and Kaveh 2010).    

Many different types of complex structural systems can be considered as the cyclic repetition of 

a simple substructure around a revolution axis. These structures, which are usually called 

cyclically symmetric, exhibit some special patterns in their structural matrices. Structures like 

domes and cooling towers fall into this category. These special patterns and the benefits they bring 

about in the analysis of such structures have been studied in the works of Courant (1943), Hussey 

(1967), Leung (1980), Williams (1986), Vakakis (1992), Karpov et al. (2002), and Liu and Yang  

(2007), El-Raheb (2011), Zingoni (2012,2014), Shi et al. (2013), Tran (2014), Rahami et al. (2014), 

and Shojai et al. (2015) among many others. 

The aim of this paper is to incorporate previously existing efficient methods of analysis for 

cyclically repeated truss structures into the well-known frequency constraint optimization problem 

in order to achieve considerable computational savings. An efficient method for free vibration 

analysis of these structures, introduced by Koohestani and Kaveh (2010), is utilized to decompose 

the initial generalized eigenproblem to several smaller ones and to reduce the required 

computational time consequently. Other swift and efficient methods for analysis of different types 

of symmetric, regular and near regular structures could be found in (Kaveh 2013). 

 The remainder of this article is organized as follows. In section 2, the mathematical statement 

of the minimum weight optimization problem for a truss structure subject to frequency constraints 

is summarized. In section 3, basic formulation of free vibration analysis of a truss structure and the 

corresponding stiffness matrix are presented concisely. The efficient eigensolution of cyclically 

repeated dome trusses is then discussed in section 4 followed by three numerical examples, 

examined in section 5, in order to show the efficiency of the proposed method. Finally, some 

concluding remarks are presented in section 6.  

 
 

2. Formulation of the optimization problem 
 

Size optimization of a truss structure subject to frequency constraints where the objective is to 

minimize the weight of the structure can be mathematically stated as follows: 

Find X=[x1,x2,x3,….,xn] 

to minimize P (X) = f(X) ×  fpenalty(X) 

subject to 

ωj≤ωj
*    for some natural frequencies j 

ωk≥ωk
*   for some natural frequencies k 

ximin ≤ xi ≤ ximax                                                    (1) 
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where X is the vector of the design variables i.e., cross-sectional areas; n is the number of 

optimization variables which depends on the element grouping scheme; f(X) is the cost function, 

which is taken as the weight of the structure in a weight optimization problem; fpenalty(X) is the 

penalty function, which is used to make the problem unconstrained. When some constraints are 

violated in a particular solution, the penalty function magnifies the weight of the solution by taking 

values bigger than one; P(X) is the penalized cost function or the objective function to be 

minimized. ωj is the jth natural frequency of the structure with the corresponding upper bound ωj
*, 

while ωk is the kth natural frequency of the structure with the corresponding lower bound ωk
*. ximin 

and ximax are the lower and upper bounds for the design variable xi, respectively. 

The cost function can be expressed as 

f(X)= ii

nm

1i

i AL



                             (2)

 

where nm is the number of structural members; ρi , Li, and Ai are the material density, length, and 

cross-sectional area of the ith element. 

The penalty function is defined as 

fpenalty(X) =   2v.1 1


 ,  v=



q

i

iv
1                      (3)

 

 

where q is the number of frequency constraints. The values for vi can be considered as 

 

vi = 








 else1

satisfiedisintconstraiththeif0

i
*

i



              (4) 

 

The parameters ε1 and ε2 determine the degree to which a violated solution should be penalized. 

In this study ε1 is taken as unity, and ε2 starts from 1.5 and then linearly increases to 6 for all test 

problems. Such a scheme penalizes the unfeasible solutions more severely as the optimization 

process proceeds. As a result, in the early stages the agents are free to explore the search space, but 

at the end they tend to choose solutions without violation. 

 

 
3. Free vibration analysis of structures 

 
3.1 Basic formulation  
 
Abovementioned frequency constraint structural optimization involves a large number of free 

vibration analyses of the structural system under consideration. The mathematical formulation of 

the free vibration of a structure leads to a generalized eigenproblem of the following form 

K𝝓i=𝜸iM𝝓I                                        (5) 

In which K is the elastic stiffness matrix and M is the mass matrix of the structure; 𝝓i is the ith 
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eigenvector (mode shape) corresponding to the ith eigenvalue 𝜸i; the ith period (Ti) and circular 

frequency (𝝎i) are related to the ith eigenvalue by 

𝜸i= 𝝎i
2
= (2𝝅/Ti)

 2                                     
(6) 

General methods to solve the generalized eigenproblem of Eq. (5) require manipulation of large 

matrices resulting in high computational costs. This is particularly the case when performing 

structural optimization, where the analysis part should be carried out thousands of times. 

Specifically, when the number of degrees of freedom of the structure is relatively large the 

required computational time becomes significant. In the next subsection a formulation is presented 

based on the works of Kaveh and Koohestani (Kaveh and Koohestani 2009, Koohestani and 

Kaveh 2010), which helps to obtain special patterns in the matrices involved in Eq. (5). Such a 

formulation, allows the initial eigenproblem to be decomposed into several smaller ones and 

results in a much faster solution to the problem at hand. 

 
3.2 Elastic stiffness matrix of a 3D truss element 

 
Fig. 1 Shows a three dimensional (3D) truss element in global Cartesian coordinate system 

together with the corresponding components of displacement. The elastic stiffness matrix of such 

an element is as follows 















iiii

iiii

ij

ijxyz

ij
dd

dd

L
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K ,   


















2

ijijijijij

ijij

2

ijijij

ijijijij

2

ij

ii

nmnln

nmmlm

nlmll

d

         (7)

 

where E is the modulus of elasticity and  Aij and Lij are the cross-sectional area and the length of 

the element, respectively. In the submatrix dij, lij, mij, and nij are the direction cosines of the 

element with respect to x, y, and z axes, respectively 

ij

ii

ij
L

xx
l


 ,   

ij

ii

ij
L

yy
m


 , 

ij

ii
ij

L

zz
n




               (8)

 

 

 

Fig. 1 A 3D truss element in the global Cartesian coordinate system 
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Fig. 2 Schematic of the 3D truss element in the global cylindrical coordinate system 

 

 

It is apparent from Eq. (7) that the element stiffness matrix in Cartesian coordinates is not 

invariant against rotation about any axis. Therefore the global stiffness matrix of a cyclically 

repetitive structure does not generally exhibit any favorable pattern in Cartesian coordinates. 

In order to use the desirable patterns of the global stiffness matrices of cyclically symmetric 

structures, the element global stiffness matrix should be developed in a cylindrical coordinate 

system. In such a coordinate system the element stiffness matrix is invariant against rotation about 

an axis of revolution. So the global stiffness matrix of a cyclically repeated structure exhibits a 

special pattern which is highly desired for efficient eigensolutions. A 3D truss element together 

with its displacement components in cylindrical coordinate system is shown in Fig. 2. It should be 

noted that for the group-theoretic formulation of stiffness matrices for symmetric finite elements, a 

similar procedure of choosing the coordinate system and numbering the nodes is also 

recommended by Zingoni (2005), making the matrices invariant with respect to both rotations and 

reflections. 

The element stiffness matrix in Cartesian coordinate system can be transformed in to the 

cylindrical coordinate system by the following transformation 

RKRK xyz

ij

trz

ij 

                              (9)

 

where R is a transformation matrix 











oj

oi

R0

0R
R

                          (10)

 

In which the submatrices Roi and Roj could be defined as 

,
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In which we have 
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where 

2

i

2

ioi yxr  ,   2

j

2

joj yxr 

                 (13)

 

The expanded form of the element global stiffness matrix in cylindrical coordinates can then be 

derived as 


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where 

oiijoiij1 mmlls   

oiijoiij2 lmmls   

ojijojij3 mmlls   

ojijojij4 lmmls 

                            (15)

 

As it can be seen, this form of element stiffness matrix is invariant against rotation about the 

axis of revolution. Therefore, all similar substructures have the same stiffness matrix regardless of 

their rotational positions. Hence, the global stiffness matrix of the structure embodies some 

interesting patterns, which could be used for efficient eigensolution of the structure.  

In relation with mass matrix, it should be noted that, both lumped and consistent mass matrices 

are invariant against rotation and therefore no transformation is needed. Since additional lumped 

masses are added to the free nodes, the difference between consistent and lumped mass matrices is 

negligible. A lumped mass matrix, which lumps the masses of the elements in their end nodes is 

utilized in this study. Therefore the mass matrix is a diagonal one.  

 
 
4. Efficient eigensolution 
 

Matrices related to a 3D truss element in cylindrical coordinate system are invariant against 

rotation about axis of revolution. Therefore, if the nodes of all similar substructures are labeled in 

a similar manner, the matrices corresponding to these substructures would be the same and the 

global mass and stiffness matrices of a cyclically repeated structure exhibit the canonical form 

738



 

 

 

 

 

 

Optimal analysis and design of large-scale domes with frequency constraints 

shown in Eq. (16). This canonical form is called Block Tri-digonal Matrix with Corner Blocks 

(BTMCB). 





























ABB

BAB

...

...

...

BAB

BBA

t

t

t

t

                       (16)

 

For a 3D truss structure which is formed of n cyclically repeated substructures each having m 

nodes, both mass and stiffness matrices are 3nm×3nm. Submatrices A, B, and Bt are square 

matrices with dimension 3 m. Although applying the support condition will change these 

dimensions, the canonical form of Eq. (16) will be preserved if the boundary conditions are also 

cyclically symmetric. Hence, the structural matrices could be decomposed using Kronecker 

products as 

t

)m3m3(K

t

)nn()m3m3(K)nn()m3m3(Knn)nm3nm3( BHBHAIK  
      (17)

 

t

)m3m3(M

t

)nn()m3m3(M)nn()m3m3(Mnn)nm3nm3( BHBHAIM  
     (18)

 

where subscripts K, and M, for A, B and Bt refer to stiffness, and mass matrices, respectively; I is 

an n×n identity matrix and H is an n×n unsymmetric permutation matrix as 


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                        (19)

 

Kronecker product of two matrices Am ×  n and Bp ×  q, denoted by BA  is an mp × nq block 

matrix and could be defined as 


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Block diagonalization of a BTMCB matrix is studied in (Kaveh and Koohestani 2009, 

Koohestani and Kaveh 2010) and could be summarized as follows. Eq. (5) has a non-trivial 

solution if and only if 

0)MKdet()det( ii  
                     (21)

 

where „„det‟‟ stands for determinant. Here the goal is to block diagonalize i  and hence to 

decompose the main problem into some simpler subproblems. Let us consider the following 

definitions 

t

Mi

t

K

t

MiK

MiK

BBB

BBB

AAA













                            (22)

 

Combining Eqs. (17) and (18) with the above equations i  could be written as 

tt

i BHBHAI                      (23) 

This form of i  could now be block diagonalized and its jth block is as follows 

t

jj

j

i BBA                             (24) 

where j  is the jth eigenvalue of matrix H and the bar sign means conjugation of a general 

complex number. Thus the following equation holds 





n

1j

j

ii )det()det( 
                        (25)

 

The determinant of jth block of i  is in turn a new generalized eigenproblem. Therefore, the 

original eigenproblem is decomposed into n highly smaller and simpler subproblems as 

n,...,3,2,1j,xMxK ijiij                       (26) 

In which 

t

MjMjMj

t

KjKjKj

BBAM

BBAK








                       (27) 

where xi could be converted to the required eigenvector corresponding to 𝜸i (Kaveh and 

Koohestani 2009). 

 

 

5. Numerical examples 
 

In this section three numerical examples are studied in order to examine the viability and 

efficiency of the proposed method. Democratic Particle Swarm Optimization (DPSO) as 
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introduced by Kaveh and Zolghadr (2014b) is utilized as the optimization algorithm. However, any 

other metaheuristic algorithm could be used. The algorithm as well as the finite element analysis 

were implemented by MATLAB R2009a on a laptop computer with an Intel (R) Core(TM)2 Duo 

2.50 GHz processor, 4.00 GB RAM under the Microsoft Windows Vista™ Home Basic operating 

system. Matlab internal eigenvalue function was used equally for the initial eigenproblem and the 

decomposed ones. The overall computational times required for different optimization runs 

utilizing the standard method and the proposed one are compared. The results show that the 

proposed efficient method is significantly faster. 

 

5.1 A 600-bar single layer dome 
 

The first test problem is the 600-bar single layer dome structure shown in Fig. 3. The entire 

structure is composed of 216 nodes and 600 elements generated by cyclic repetition of a 

substructure having 9 nodes and 25 elements. The angle of cyclic symmetry between similar 

substructures is 15 degrees. A non-structural mass of 100 kg is attached to all free nodes. Table 1 

summarizes the material properties, variable bounds, and frequency constraints for this example. 

Fig. 4 shows a substructure in more detail for nodal numbering and coordinates. Each of the 

elements of this substructure is considered as a design variable. Thus, this is a size optimization 

problem with 25 variables.  

 
Table 1 Material properties, variable bounds and frequency constraints for the 600-bar single layer dome 

Property/unit Value 

E (Modulus of elasticity)/ N/m2 2 × 1011 

ρ (Material density)/ kg/m3 7850 

Added mass/kg 100 

Design variable lower bound/m2 1 ×10-4 

Design variable upper bound/m2 100 ×10-4 

Constraints on first three frequencies/Hz ω1≥5, ω 3≥7 

 

 

Fig. 3 Schematic of the 600-bar single layer dome 
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Fig. 4 Details of a substructure of the 600-bar single layer dome 

 

 

 
Table 2 Optimized design for the 600-bar dome truss problem (added masses are not included) 

Element no. (nodes) Cross-sectional area (cm
2
)
 

Element no. (nodes) Cross-sectional area (cm
2
)
 

1 (1-2) 1.365 14 (5-13) 5.529 

2 (1-3) 1.391 15 (5-14) 7.007 

3 (1-10) 5.686 16 (6-7) 5.462 

4 (1-11) 1.511 17 (6-14) 3.853 

5( 2-3) 17.711 18 (6-15) 7.432 

6 (2-11) 36.266 19 (7-8) 4.261 

7( 3-4) 13.263 20 (7-15) 2.253 

8 (3-11) 16.919 21 (7-16) 4.337 

9 (3-12) 13.333 22 (8-9) 4.028 

10 (4-5) 9.534 23 (8-16) 1.954 

11 (4-12) 9.884 24 (8-17) 4.709 

12 (4-13) 9.547 25 (9-17) 1.410 

13 (5-6) 7.866 Weight (kg) 6344.55 
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Fig. 5 Convergence curve of the best result for the 600-bar dome truss using the efficient method 

 

 

Using the classical method it takes 2.6150 sec to perform a typical analysis for this structure 

while the efficient method needs 0.0198 sec i.e. the efficient method is about 132 times faster on a 

single analysis. Two different optimization cases are performed on this example as well as the 

other two. In case 1, the initial eigenproblem is solved directly using Matlab internal eigenvalue 

function; this is called the classical method. In case 2, the abovementioned efficient method is used 

for the analysis part i.e., the initial eigenproblem is decomposed into several smaller ones and then 

each of the subproblems are solved using the same Matlab function. In this example, 30 particles 

and 300 iterations (9000 analyses) are used for both cases. The required computational time to 

complete a single optimization run for cases 1 and 2 is 27326.25 sec and 190.77 sec, respectively. 

This means that the optimization procedure could be performed about 143 times faster using the 

efficient analysis method under the same circumstances. This example was solved 10 times using 

the efficient analysis method and the best result is presented in Table 2. 

The total computational time to perform 10 optimization runs using the efficient method is 

1906.68 sec (less than an hour), while it would have taken approximately 273112.84 sec (more 

than 3 days) to perform the same runs using the classical method. Table 3 presents the first 5 

natural frequencies of the optimized structure. It can be seen that the constraints are fully satisfied. 

These frequencies are in full agreement with the results of the classical analysis method up to 10 

significant digits. The mean weight of the structures found in 10 runs is 6674.71 kg with a standard 

deviation of 473.21 kg. Fig. 5 shows the convergence curve of the best result for the 600-bar dome 

truss using the efficient method. 

 

5.2 A 1180-bar dome truss 
  

The second test problem solved in this study was the weight minimization of the 1180-bar 

dome truss structure shown in Fig. 6. The entire structure is composed of 400 nodes and 1180 

elements generated by cyclic repetition of a substructure with 20 nodes and 59 elements. The angle 

of cyclic symmetry between similar substructures is 18 degrees. A non-structural mass of 100 kg is 

attached to all free nodes. Table 4 summarizes the material properties, variable bounds, and 

frequency constraints for this example. Fig. 7 shows a substructure in more detail for nodal 
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numbering. Table 5 summarizes the coordinates of the nodes in Cartesian coordinate system. Each 

of the elements of this substructure is considered as a design variable. Thus, this is a size 

optimization problem with 59 variables. 

 

 
Table 3 Natural frequencies (Hz) evaluated at the optimized design for the 600-bar dome truss problem 

Frequency number Frequency value 

1 5.000 

2 5.000 

3 7.000 

4 7.000 

5 7.000 

 

 
Table 4 Material properties, variable bounds and frequency constraints for the 1180-bar dome truss 

Property/unit Value 

E (Modulus of elasticity)/ N/m2 2 × 1011 

ρ (Material density)/ kg/m3 7850 

Added mass/kg 100 

Design variable lower bound/m2 1 ×10-4 

Design variable upper bound/m2 100 ×10-4 

Constraints on first three frequencies/Hz ω1≥7, ω 3≥9 

 

 

 

Fig. 6 Schematic of the 1180-bar dome truss 
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Fig. 7 Details of a substructure of the 1180-bar dome truss 

 

 
Table 5 Coordinates of the nodes of the main structure (the 1180-bar dome truss) 

Node no. Coordinates (x, y, z) Node no. Coordinates (x, y, z) 

1 (3.1181, 0.0, 14.6723) 11 (4.5788, 0.7252, 14.2657) 

2 (6.1013, 0.0, 13.7031) 12 (7.4077, 1.1733, 12.9904) 

3 (8.8166, 0.0, 12.1354) 13 (9.9130, 1.5701, 11.1476) 

4 (11.1476, 0.0, 10.0365) 14 (11.9860, 1.8984, 8.8165) 

5 (12.9904, 0.0, 7.5000) 15 (13.5344, 2.1436, 6.1013) 

6 (14.2657, 0.0, 4.6358) 16 (14.4917, 2.2953, 3.1180) 

7 (14.9179, 0.0, 1.5676) 17 (14.8153, 2.3465, 0.0) 

8 (14.9179, 0.0, -1.5677) 18 (14.4917, 2.2953, -3.1181) 

9 (14.2656, 0.0, -4.6359) 19 (13.5343, 2.1436, -6.1014) 

10 (12.9903, 0.0, -7.5001) 20 (3.1181, 0.0, 13.7031) 

 

 

A single analysis takes up to 11.3575 sec of computational time using the classical method. The 

required computational time for a similar analysis using the efficient method is only 0.0720 sec. 

This means that the efficient method is about 157 times faster for a single analysis. 100 particles 

and 500 iterations (50000 analyses) are used for optimization of this test problem. The required 

computational time to complete a single run for case 2 is 7095.56 sec. Fig. 8 shows the variation of 

the computational time with number of analyses for case 1. According to the figure, it is estimated 

that it would take 800160 sec to perform the same optimization run for case 1 (50000 analyses).  
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Table 6 Optimized design for the 1180-bar dome truss problem (added masses are not included) 

Element no. (nodes) Cross-sectional area (cm2) Element no. (nodes) Cross-sectional area (cm2) 

1 (1-2) 7.926 31 (8-9) 34.642 

2 (1-11) 10.426 32 (8-17) 19.860 

3 (1-20) 2.115 33 (8-18) 25.079 

4 (1-21) 14.287 34 (8-28) 18.965 

5 (1-40) 3.846 35 (9-10) 47.514 

6 (2-3) 5.921 36 (9-18) 28.133 

7 (2-11) 7.955 37 (9-19) 33.023 

8 (2-12) 6.697 38 (9-29) 32.263 

9 (2-20) 1.889 39 (10-19) 33.401 

10 (2-22) 11.881 40 (10-30) 1.344 

11 (3-4) 7.121 41 (11-21) 9.327 

12 (3-12) 6.080 42 (11-22) 7.202 

13 (3-13) 6.599 43 (12-22) 6.792 

14 (3-23) 7.772 44 (12-23) 6.228 

15 (4-5) 9.358 45 (13-23) 6.601 

16 (4-13) 6.213 46 (13-24) 6.584 

17 (4-14) 8.200 47 (14-24) 8.320 

18 (4-24) 7.799 48 (14-25) 8.844 

19 (5-6) 11.752 49 (15-25) 11.254 

20 (5-14) 7.494 50 (15-26) 12.162 

21 (5-15) 9.696 51 (16-26) 13.854 

22 (5-25) 9.177 52 (16-27) 13.844 

23 (6-7) 17.326 53 (17-27) 17.536 

24 (6-15) 11.797 54 (17-28) 20.551 

25 (6-16) 14.002 55 (18-28) 24.072 

26 (6-26) 11.562 56 (18-29) 27.287 

27 (7-8) 23.981 57 (19-29) 32.965 

28 (7-16) 12.996 58 (19-30) 36.940 

29 (7-17) 16.591 59 (20-40) 3.837 

30 (7-27) 15.910 Weight (kg) 37779.81 
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Table 7 Natural frequencies (Hz) evaluated at the optimized design for the 1180-bar dome truss problem 

Frequency number Frequency value 

1 7.000 

2 7.000 

3 9.000 

4 9.000 

5 9.005 

 

 

Therefore, the optimization procedure could be performed about 113 times faster under the 

same circumstances using the efficient analysis method. Again, this example was solved 10 times 

using the efficient analysis method and the best result is presented in Table 6. 

It takes 68933.06 sec to perform 10 optimization runs using the efficient method for this 

example, while it would have taken approximately 7773580 sec (about 90 days) to perform the 

same runs using the classical method. Table 7 presents the first 5 natural frequencies of the 

optimized structure for this example. The mean weight of the structures found in 10 runs is 

38294.45 kg with a standard deviation of 550.5 kg. Fig. 9 shows the convergence curve of the best 

result for the 1180-bar dome truss using the efficient method.  

 

 

 

Fig. 8 Variation of the computational time with number of analyses for case 1 (1180-bar dome truss) 
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Fig. 9 Convergence curve of the best result for the 1180-bar dome truss using the efficient method 

 

 

5.3 A 1410-bar double layer dome truss 
 

The third test problem solved in this study was the weight minimization of the 1410- bar double 

layer dome truss as shown in Fig. 10. The entire structure is composed of 390 nodes and 1410 

elements generated by cyclic repetition of a substructure with 13 nodes and 47 elements. The angle 

of cyclic symmetry between similar substructures is 12 degrees. A non-structural mass of 100 kg is 

attached to all free nodes. Table 8 summarizes the material properties, variable bounds, and 

frequency constraints for this example. Fig. 11 shows a substructure in more detail for nodal 

numbering. Table 9 presents the coordinates of the nodes in Cartesian coordinate system. Each of 

the elements of this substructure is considered as a design variable. Thus, this is a size 

optimization problem with 47 variables. 

Required computational times for classical and efficient methods are 11.7101 and 0.0140 sec, 

respectively. Like the previous example, 100 particles and 500 iterations (50000 analyses) are used 

for optimization of this test problem. The required computational time to complete a single run for 

case 2 is 3871.62 sec. Fig. 12 shows the variation of the computational time with number of 

analysis for case 1. According to the figure, it is estimated that it would take 950240 sec to 

perform the same optimization run for case 1 (50000 analyses). Therefore, the optimization 

procedure could be performed about 245 times faster under the same circumstances using the 

efficient analysis method. This example was solved 10 times using the efficient analysis method 

and the best result is presented in Table 10. 

It takes 38310.43 sec to perform 10 optimization runs using the efficient method for this 

example, while it would have taken approximately 9386055 sec (about 108 days) to perform the 

same runs using the classical method. Table 11 presents the first 5 natural frequencies of the 

optimized structure for this example. The mean weight of the structures found in 10 runs is 

38294.45 kg with a standard deviation of 550.5 kg. Fig. 13 shows the convergence curve of the 

best result for the 1410-bar dome truss using the efficient method. 
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Table 8 Material properties, variable bounds and frequency constraints for the 1410-bar dome truss 

Property/unit Value 

E (Modulus of elasticity)/ N/m2 2 × 1011 

ρ (Material density)/ kg/m3 7850 

Added mass/kg 100 

Design variable lower bound/m2 1 ×10-4 

Design variable upper bound/m2 100 ×10-4 

Constraints on first three frequencies/Hz ω1≥7, ω 3≥9 

 

 
Table 9 Coordinates of the nodes of the main substructure (the 1410-bar dome truss) 

Node no. Coordinates (x, y, z) Node no. Coordinates (x, y, z) 

1 (1.0, 0.0, 4.0) 8 (1.989, 0.209, 3.0) 

2 (3.0, 0.0, 3.75) 9 (3.978, 0.418, 2.75) 

3 (5.0, 0.0, 3.25) 10 (5.967, 0.627, 2.25) 

4 (7.0, 0.0, 2.75) 11 (7.956, 0.836, 1.75) 

5 (9.0, 0.0, 2.0) 12 (9.945, 1.0453, 1.0) 

6 (11.0, 0.0, 1.25) 13 (11.934, 1.2543, -0.5) 

7 (13.0, 0.0, 0.0)   

 

 

 

Fig. 10 Schematic of the 1410-bar dome truss 
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Table 10 Optimized design for the 1410-bar dome truss problem (added masses are not included) 

Element no. (nodes) Cross-sectional area (cm
2
)
 

Element no. (nodes) Cross-sectional area (cm
2
)
 

1 (1-2) 7.209 25 (8-9) 2.115 

2 (1-8) 5.006 26 (8-14) 4.923 

3 (1-14) 38.446 27 (8-15) 4.047 

4 (2-3) 9.438 28 (8-21) 5.906 

5 (2-8) 4.313 29 (9-10) 3.392 

6 (2-9) 1.494 30 (9-15) 1.902 

7 (2-15) 8.455 31 (9-16) 4.381 

8 (3-4) 9.488 32 (9-22) 8.442 

9 (3-9) 3.480 33 (10-11) 5.011 

10 (3-10) 3.495 34 (10-16) 3.577 

11 (3-16) 16.037 35 (10-17) 2.805 

12 (4-5) 9.796 36 (10-23) 2.024 

13 (4-10) 2.413 37 (11-12) 6.709 

14 (4-11) 5.681 38 (11-17) 5.054 

15 (4-17) 15.806 39 (11-18) 3.259 

16 (5-6) 8.078 40 (11-24) 1.063 

17 (5-11) 3.931 41 (12-13) 5.934 

18 (5-12) 6.099 42 (12-18) 7.057 

19 (5-18) 10.771 43 (12-19) 5.745 

20 (6-7) 13.775 44 (12-25) 1.185 

21 (6-12) 4.231 45 (13-19) 7.274 

22 (6-13) 6.995 46 (13-20) 4.798 

23 (6-19) 1.837 47 (13-26) 1.515 

24 (7-13) 4.397 Weight (kg) 10453.84 
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Table 11 Natural frequencies (Hz) evaluated at the optimized design for the 1410-bar dome truss problem 

Frequency number Frequency value 

1 7.001 

2 7.001 

3 9.003 

4 9.005 

5 9.005 

 

 

Fig. 11 Details of a substructure of the 1410-bar dome truss 

 

 

Fig. 12 Variation of the computational time with number of analysis for case 1 (1410-bar dome truss) 
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Fig. 13 Convergence curve of the best result for the 1410-bar dome truss using the efficient method 

 

 

6. Conclusions 
 

Structural optimization using meta-heuristic algorithms involves a large number of structural 

analyses, which requires a great amount of computational time, especially when optimizing large 

structural systems. In this paper simultaneous optimal analysis and design of cyclically repetitive 

dome trusses with frequency constraints is considered. These types of structures exhibit some 

favorable patterns in their structural matrices, which makes it possible to utilize some efficient 

analysis methods. These methods decompose the original eigenproblem into several smaller ones, 

which are simpler to solve and require less computational time. Democratic Particle Swarm 

Optimization (DPSO) introduced by Kaveh and Zolghadr (2014b) is utilized as the optimization 

algorithm. 

Three different dome trusses are considered as numerical examples to show the efficiency of 

the proposed method. It can be seen that using the efficient method for analysis, the optimization 

procedure can be performed significantly faster. While all the runs are taken in less than 2 days 

using the efficient methods, it would have taken more than 200 days to do the same thing using 

classical methods. Such a substantial saving in computational time is due to the regular nature of 

the structures under consideration. Other types of efficient methods could also be used in order to 

deal with near-regular structures (Kaveh 2013). 

The presented concepts can be generalized to optimization of other types of symmetric or 

regular structures as well as structural optimization with static constraints.   
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