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Abstract. The vibration characteristic analysis of sandwich cylindrical shells subjected with 
magnetorheological (MR) elastomer and constraining layer are considered in this study. And, the discrete 
finite element method is adopted to calculate the vibration and damping characteristics of the sandwich 
cylindrical shell system. The effects of thickness of the MR elastomer, constraining layer, applied magnetic 
fields on the vibration characteristics of the sandwich shell system are also studied in this paper.  
Additionally, the rheological properties of the MR elastomer can be changed by applying various magnetic 
fields and the properties of the MR elastomer are described by complex quantities. The natural frequencies 
and modal loss factor of the sandwich cylindrical shells are calculated for many designed parameters. The 
core layer of MR elastomer is found to have significant effects on the damping behavior of the sandwich 
cylindrical shells. 
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1. Introduction 
 

The vibration control is an important aspect in the design of mechanical structures and one of 

the methods to suppress excessive vibration is damping treatment. The passive damping methods 

are usually used to reduce vibration levels in those mechanical structures. The added viscoelastic 

materials which exhibit great material loss factors provide the major damping effects due to the 

deformations.   

The relative studies on the vibration and damping effects of the structures with constrained 

layer damping treatments were presented by Ross et al. (1959), Mead and Markus (1969). And, in 

their work, the loss factor of the system was defined in terms of strain energy. Then, Pan (1969) 

investigated the axisymmetrical vibration of the finite length cylindrical shells with the 

viscoelastic core layer. After that, Markus (1976) investigated the damping properties of layered 

cylindrical shells in axially symmetric modes. EI-Raheb and Wagner (1986) adopted the transfer 

matrix method to study the problem of cylinder-absorber system with thin axial strips and a thin 

viscoelastic layer. Then, Ramesh and Ganesan (1994) presented the vibration and damping 

analysis of isotropic and orthotropic cylindrical shells with the constrained damping layer. The 
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Rayleigh-Ritz method was used by Ip et al. (1996) to obtain the vibration analysis of orthotropic 

thin cylindrical shells with free ends. Then, Chen and Huang (1999) obtained the mathematical 

model for the cylindrical shells with partially constrained damping layer and the thin shell theory 

with Donnell-Mushtari-Vlasov assumption was adopted in their model. The modal strain energy 

method was used to calculate the energy dissipation of the cylindrical shells with viscoelastic layer 

by Saravanan et al. (2000). Then, Ganapathi et al. (2002) utilized the higher order theory to 

perform dynamic analysis of laminated cross-ply composite thick cylindrical shells. 

In the past few years, the magnetorheological (MR) materials have great potential in 

applications for smart materials and structures. The effects of the MR materials were first 

discovered by Rabinow (1951) and the MR material had rapid change in the damping and stiffness 

properties with the applications of the magnetic fields (Weiss et al. 1994). Then, the study of the 

magnetoviscoelastic behaviors for composite gels was presented by Shiga et al. (1995). The 

magnetoviscoelastic response of the elastomer composites consisting of ferrous particles 

embedded in a polymer matrix was investigated by Jolly et al. (1996). Hereafter, Dyke et al. (1998) 

focused on designs of MR dampers and evaluations of their potential benefits in vibration 

suppression in structures and systems. The applications for the construction of smart components 

had been previously discussed and presented by Yalcintas and Dai (1999). Bellan and Bossis (2002) 

obtained the filed-dependence of viscoelastic properties of magnetorheological elastomers.  Sun 

et al. (2003) utilized Hamilton’s principle to develop the analytical model for the case of sandwich 

beam structure with MR core layer based and calculated the numerical results with 

simply-supported boundary condition. The investigation for the adjustable rigidity of 

magnetorheological-elastomer-based sandwich beams can be obtained by Zhou and Wang (2006).  

Then, Yeh and Shih (2006) calculated the Dynamic characteristics and dynamic instability of 

magnetorheological based adaptive beam structures. Ying and Ni (2009) calculated the 

micro-vibration response of a stochastically excited sandwich beam with a magnetorheological 

elastomer core. In recent, the dynamic analysis of magnetorheological elastomer-based sandwich 

beam with conductive skins for various boundary conditions was discussed by Nayak et al. (2011).  

Then, Rajamohan and Ramamoorthy (2012) studied the dynamic characterization of 

non-homogeneous magnetorheological fluids based multi-layer beam. Then, Aguib et al. (2014) 

presented the dynamic behavior analysis of a magnetorheological elastomer sandwich plate. 

In this paper, the vibration and damping behaviors of the sandwich cylindrical shells with MR 

elastomer are calculated by the discrete layer finite element method. There is no work that has 

been done to study the sandwich cylindrical shells with MR elastomer to author’s knowledge.  

The complex solutions can be obtained by adopting complex modulus representation of MR 

elastomer to substitute the material properties of the sandwich system. The variations of the natural 

frequencies and modal loss factors are discussed in this work. Besides, the effects of some 

designed parameters of the sandwich cylindrical shells, such as, applied magnetic field, thickness 

of the MR elastomer and thickness of the constraining layer are also calculated and discussed. 

 

 

2. Problem formulation 
 

2.1 Mathematical formulation 
 

The sandwich cylindrical shells subjected with MR elastomer and constraining layer are 

considered in Fig. 1. The cylindrical shell layer is designated as layer 3 and assumed to be 
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homogeneous, elastic and isotropic. Layer 2 is the MR elastomer and its material properties can be 

changed by applying various magnetic field magnitudes.  And, layer 1 is the elastic, 

homogeneous, and isotropic constraining layer. Additionally, the thicknesses of the three layers of 

the sandwich cylindrical shells system are 
1h , 

2h , and 3h , respectively.  Besides, the following 

assumptions must be mentioned before the derivation proceeds: 

1. There is no slipping between the interfaces.   

2. And, layer 1 and layer 3 are assumed to be undamped.  

3. The deflections of the system are small.  

In this study, the displacement relation of the elastic layer can be expressed in terms of the 

in-plane displacements of the adjacent layer interfaces and the transverse displacement as the 

following equation 
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where iu  is the displacement field of layer i and the transverse thickness interpolation matrix 

for ith layer 
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ih  is the thickness of layer i and iR  is the radius of the middle surface, respectively.  

Then, the strain-displacement relation of the cylindrical shell can be expressed as follows 

ii Du                                  (2) 

where  T,,,,, izixzixiixxi     and the differential operator matrix 
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Fig. 1 The cylindrical shell with ER core layer and constraining layer 

 

 

The stress-strain relations for the ith layer can be written as the following form 

iii C                                    (3) 

where  T,,,,, izixzixiixxi     and the elasticity matrix 
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 , respectively.  In the above equations, iE  is the 

Young’s modulus, i  is the Poisson ration, and 2  is the shear correction factor (
12

22    for 

layer 1,2 and 12   for layer 2). 

 

2.2 Finite element formulation 
 

As shown in Fig. 2, the discrete layer finite element is adopted to construct the sandwich 

cylindrical shell structure. The displacement of the interfaces can be expressed in terms of the 

nodal degrees of freedom by using interpolation in the x-direction and for the circumferential wave 
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number m as follows 
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 mA
u cos)1(  ,  mB

u cos ,  mA
v sin)1(  ,  mB

v sin , 

 mA
w cos)231( 32  ,  mB

w cos)23( 32  ,  mA cos)2( 32  , 

 mB cos)( 32  , 
eL

x
 , and eL  is the elemental length in the x-direction, respectively. 

  Then, the strain and kinetic energies of the element for the ith layer can be expressed as the 

following equations 



V

ii
e

i dVρV i
T ε

2

1
                            (5) 



V

i
e

i dVρT i
T
i uu

2

1
                            (6) 

where i  is the mass density of the ith layer. The strain and kinetic energies of the element can 

be rewritten as the following forms by substituting Eqs. (1)-(4) into Eqs. (5) and (6): 
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where e
iK  and e

iM  are the element stiffness and mass matrices, respectively and can be 

expressed as follows 
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Fig. 2 Discrete layer finite element for three-layer element 
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The following relations must be done first by assembling the elemental matrices into the global 

stiffness and mass matrices 
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e
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in which, U  and e
iTr  are the global nodal co-ordinate vector and transformation matrix, 

respectively. 

Then, the equation of motion of the sandwich system can be express as the following equations 

by assembling the contributions of all elements 

0KUUM                              (12) 

where K  and M  are the global stiffness and mass matrices and written as follows 
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in which iN  is the element number of the ith layer. 

The complex eigenvalues 
~

 of the above complex eigenvalue problems can be calculated and 

obtained numerically. And, the natural frequencies   and modal loss factor v  are extracted in 

the following equations 

)
~

Re(                                (15) 

)
~

Re(

)
~

Im(




 v                                (16) 

 

 

3. Results and discussions 
 
The sandwich cylindrical shells with MR elastomer and constraining layer are presented in this 

study. The comparisons between the present results and the results of the references are made in 

order to validate the present method and calculations. The good agreements can be seen in Table 1 

(Ip et al. 1996) and Fig. 3 (Bert et al. 1969), respectively. In this study, only the electric field 

dependence of the ER material in the pre-yield regime needs to be considered based on the 

existing results of MR elastomer. The complex shear modulus of the MR elastomer used in this 

study was estimated by performing a free oscillation experimental on the fully treatment MR 

sandwich system (Rajamohan et al. 2010). The complex shear modulus of the MR elastomer can 

be expressed as follows with respect to the intensity of magnetic field 

)()()(* BGjBGBG                          (17) 

in which, the storage modulus 8730005.49973691.3)( 2'  BBBG , the loss modulus 

1855004.8129.0)( 2''  BBBG , B is the intensity of magnetic field in Gauss, and the 

mass density of the MR elastomer is 
3/3500 mkg .  Besides, the calculation results of the mode 

(n,m), where n is the axial mode number and m is circumferential mode number, are presented and 

the boundary condition is the simply-supported at two ends.  Then, the following parameters are 

introduced 

mL 3.0 , GPaEE 7031  , 3.031  , 499.02   

              
3

31 /2 7 0 0 mkg  , 3
2 /3500 mkg , mmh 5.03    

where L is the length of the cylindrical shell and R is the displacement from the central axis to the 

layer 3 (the base cylindrical shell). 
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Mode (n,m) 

Fig. 3 Comparison between references and present method for simply-supported boundary condition 

 
 

Table 1 Comparison between references and present method for free-free boundary condition 

 Natural frequency (Hz) 

Mode Case 1 Case 2 

(n,m) Present Rayleigh-Ritz  

(Ip et al. 1996) 

Experimental 

result  

(Ip et al.1996) 

Present Rayleigh-Ritz  

(Ip et al. 1996) 

Experimental result 

(Ip et al. 1996) 

(1,2) 81.65 81.93 79.57 56.39 56.43 55.99 

(2,2) 88.59 88.91 88.63 58.51 58.58 59.11 

(1,3) 231.2 231.71 225.64 159.47 159.61 158.21 

(2,3) 242.68 243.57 241.78 162.89 163.12 164.20 

(1,4) 442.94 444.23 433.37 305.65 306.02 301.92 

(2,4) 456.34 458.43 455.03 309.64 310.18 310.69 

 

 

 The effects of magnetic fields on natural frequencies and modal loss factors of the sandwich 

cylindrical shells with various parameters L/R are presented in Fig. 4. In the present paper, L is 

fixed as 0.3 m and the total Ri=L*(R/L)+h1/2+h2/2+h3/2. According to the numerical results, it can 

be seen that the natural frequencies increase while the applied magnetic field magnitudes increase 

in lower magnitude of magnetic fields (0-400G) and will decrease under larger magnitude of 

magnetic fields (over 800G). Besides, the modal loss factors decrease when the magnetic field 

strength increases. Based on the numerical results, the tendency of the natural frequency and 

modal loss factor is similar for L/R=1.0, 1.5 and 2.0. Thus, the geometrical parameters of the 

sandwich system had significant effects on the natural frequency and modal loss factor of the 

sandwich system according to the above results. Fig. 5 shows the variations of the effects of 
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magnetic fields on the natural frequency and modal loss factor of the sandwich system with 

various thickness of MR elastomer layer.  It can be observed that the natural frequency decrease 

when the thickness of the MR elastomer layer of the sandwich system increase. As to the modal 

loss factor, it will increase as the thickness of the MR elastomer layer increases. The effects of 

magnetic fields on the natural frequency and modal loss factor of the sandwich system with 

various thickness of constraining layer are presented in Fig. 6. The natural frequency will increase 

and the modal loss factor will decrease as the thickness of constraining layer increases. The 

variation tendency of the system for parameter 1.031 hh , 0.2 and 0.3 are similar.   

Fig. 7 shows the effects of MR elastomer thickness on the natural frequency and modal loss 

factor of the sandwich cylindrical shells with various parameters L/R. The natural frequency of the 

sandwich system will be smaller and the modal loss factor of the sandwich system will be getting 

larger as the thickness of MR elastomer increases. With various parameters L/R, the variations of 

the sandwich system on the natural frequency and modal loss factor are similar. According to the 

results, the larger parameter L/R is, the natural frequency increases and modal loss factor decreases 

as the parameter L/R increases. Then, the effects of the MR elastomer thickness on the natural 

frequencies and the modal loss factor of the sandwich cylindrical shell with various magnetic 

fields are presented in Fig. 8. The natural frequency decreases as the MR elastomer thickness 

increases and the tendency is similar for different applied magnetic fields according to the 

numerical results. On the other hand, it also can be observed that the modal loss factor increases 

while the MR thickness increases and the variations are similar with various magnetic fields. It is 

because that the MR elastomer thickness and the applied magnetic fields on the system can change 

the stiffness of the sandwich system. In Fig. 9, the numerical results for the effects of the MR 

elastomer thickness on the natural frequencies and the modal loss factor of the sandwich 

cylindrical shell with various thickness of constraining layer are plotted.  It can be seen that the 

natural frequency increases and modal loss factor decreases as the thickness of the constraining 

layer increases from the results. 

 

  

Fig. 4 Effects of magnetic fields on the natural frequency and modal loss factor of the sandwich 

cylindrical shells with various parameters L/R 
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Fig. 5 Effects of magnetic fields on the natural frequency and modal loss factor of the sandwich 

cylindrical shells with various thickness of MR elastomer layer 

 

 

 

Fig. 6 Effects of magnetic fields on the natural frequency and modal loss factor of the sandwich 

cylindrical shells with various thickness of constraining layer 
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Fig. 7 Effects of MR elastomer thickness on the natural frequency and modal loss factor of the sandwich 

cylindrical shells with various parameters L/R 

 

 

 

Fig. 8 Effects of MR elastomer thickness on the natural frequency and modal loss factor of the sandwich 

cylindrical shells with various magnetic fields 
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Fig. 9 Effects of MR elastomer thickness on the natural frequency and modal loss factor of the sandwich 

cylindrical shells with various thickness of constraining layer 

 

 

 

Fig. 10 Effects of constraining layer thickness on the natural frequency and modal loss factor of the 

sandwich cylindrical shells with various parameters L/R 
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Fig. 11 Effects of constraining layer thickness on the natural frequency and modal loss factor of the 

sandwich cylindrical shells with various magnetic fields 

 

 

 

Fig. 12 Effects of constraining layer thickness on the natural frequency and modal loss factor of the 

sandwich cylindrical shells with various thickness of MR elastomer layer 
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The effects of the thickness of constraining layer on the natural frequency and modal loss factor 

of the sandwich cylindrical shell are plotted in Fig. 10. The natural frequency increases and modal 

loss factor decreases as the thickness of constraining layer increases based on the numerical results.  

Besides, the tendency of the sandwich system is the same for various parameters L/R. In Fig. 11, 

the effects of the thickness of constraining layer on the natural frequency and modal loss factor of 

the sandwich cylindrical shell with various applied magnetic fields are presented.  From the 

figure, the natural frequency increases and the modal loss factor decreases as the applied magnetic 

fields increase.   

Finally, the effects of the thickness of constraining layer on the natural frequency and modal 

loss factor of the sandwich cylindrical shell with various MR elastomer thicknesses can be 

obtained in Fig 12. The natural frequency decreases and the modal loss factor increases as the MR 

elastomer thickness increases according to the numerical results. Thus, the vibration characteristics 

and damping effects of the sandwich system can be controlled and changed with various 

parameters according to the above numerical results. 

 

 

4. Conclusions 
 

The vibration and damping characteristics of the sandwich cylindrical shells with MR 

elastomer and constraining layer are investigated in this study. The natural frequency and modal 

loss factor of the sandwich cylindrical shell system are calculated and analyzed by the discrete 

layer finite element method. Based on the numerical results, the following conclusions can be 

drawn: 

 It can be observed that the applied magnetic fields will change the characteristics of the MR 

elastomer According to the above results. As the applied magnetic fields increase, the natural 

frequencies of the sandwich cylindrical shell system increase and the modal loss factor will 

decrease.   

 Besides, it also can be observed that the larger MR elastomer thickness, the smaller natural 

frequency of the sandwich cylindrical shell system. As to the modal loss factor, the larger MR 

elastomer thickness will affect the values of the modal loss factor.   

 Additionally, the thickness of the constraining layer also will change the characteristics of the 

sandwich system from the above results. 

The material property of the MR elastomer is a function of the applied magnetic fields, and the 

change of the MR elastomer thickness also has significant effects on the natural frequency and 

modal loss factor. Thus, the thickness of MR elastomer, thickness of the constraining layer, and 

applied magnetic fields can be considered to obtain the high damping effects. So, we can use the 

characteristics to design some active, tunable and controllable mechanical devices. 
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