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Abstract.  This paper is concerned with the dynamics of hyperelastic solids and structures. We seek for a 
smart control actuation that produces a desired (prescribed) displacement field in the presence of transient 
imposed forces. In the literature, this problem is denoted as displacement tracking, or also as shape 
morphing problem. One talks about shape control, when the displacements to be tracked do vanish. In the 
present paper, it is assumed that the control actuation is provided by imposed eigenstrains, e.g., by the 
electric field in piezoelectric actuators, or by thermal actuators, or via analogous physical effects, such as 
magneto-striction or pre-stress. Structures with a controlled eigenstrain-type actuation belong to the class of 
smart structures. The action of the eigenstrains can be conveniently characterized by actuation stresses. Our 
theoretical derivations are performed in the framework of the theory of small incremental dynamic 
deformations superimposed upon a statically pre-deformed configuration of a hyperelastic solid or structure. 
We particularly ask for a distribution of incremental actuation stresses, such that the incremental 
displacements follow exactly a prescribed trajectory field, despite the imposed incremental forces are present. 
An exact solution of this problem is presented under the assumption that the actuation stresses can be 
tailored freely and applied everywhere within the body. Extending a Neumann-type solution strategy, it is 
shown that the actuation stresses due to the distributed control eigenstrains must satisfy certain quasi-static 
equilibrium conditions, where auxiliary body-forces and auxiliary surface tractions are to be taken into 
account. The latter auxiliary loading can be directly computed from the imposed forces and from the desired 
displacement field to be tracked. Hence, despite the problem is a dynamic one, a straightforward 
computation of proper actuator distributions can be obtained in the framework of quasi-static equilibrium 
conditions. Necessary conditions for the functioning of this concept are presented. Particularly, it must be 
required that the intermediate configuration is infinitesimally superstable. Previous results of our group for 
the case of shape control and displacement tracking in linear elastic structures are included as special cases. 
The high potential of the solution is demonstrated via Finite Element computations for an irregularly shaped 
four-corner plate in a state of plain strain. 
 

Keywords:  displacement tracking; shape control; smart structures; piezoelectric actuation; pre-deformed 

configuration, small superimposed displacements 

 
 
1. Introduction 
 

In the present paper, we study vibrations of hyperelastic material bodies (solids or structures) 
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under the action of imposed forces. An additional control actuation is provided by imposed 

eigenstrains, e.g., by the electric field acting in piezoelectric bodies, see e.g., Tiersten (1969) and 

Yang (2005), by the temperature field in a thermoelastic body, see e.g., Parkus (1976), or by 

analogous types of physical actuation, such as magneto-striction or pre-stress. Structures with a 

controlled eigenstrain-type actuation belong to the class of smart structures. Our present theoretical 

derivations are performed in the framework of the theory of small incremental dynamic 

deformations superimposed upon a statically pre-deformed configuration of hyperelastic bodies, 

see e.g., Knops and Wilkes (1973) for foundations of the latter theory. The pre-deformed 

configuration is called the intermediate configuration in the following. We seek for an additional 

eigenstrain-type control actuation, which produces a desired (prescribed) transient displacement 

field from the intermediate configuration, despite some transient forces are imposed upon the latter. 

In the following we talk about incremental forces, when they are applied to the intermediate 

configuration as functions of space and time. Analogously, we talk about incremental stresses, 

incremental displacements, incremental eigenstrains and incremental actuation stresses that evolve 

from the intermediate configuration as functions of space and time. Under the action of the 

imposed incremental forces alone, incremental displacements would take place, which are 

generally different from the desired ones. We however wish to produce the desired incremental 

displacement fields by applying proper incremental eigenstrains. To find proper eigenstrain fields 

that satisfy this requirement is often denoted as displacement tracking problem, or also as shape 

morphing problem in the literature. One talks about shape control, when the incremental 

displacements to be tracked do vanish. The incremental eigenstrains can be characterized by 

incremental actuation stresses, which represent a linear mapping of the incremental eigenstrains 

via the fourth order tensor of linearized elastic parameters in the intermediate configuration. Since 

the intermediate configuration may represent a large deformation from an undeformed and 

unstressed configuration, these parameters generally will be distributed in an inhomogeneous 

manner throughout the body. The undeformed and unstressed configuration will be subsequently 

denoted as natural state or configuration.  

In the following, we assume that the incremental actuation stresses can be tailored freely, and 

that they can be applied everywhere within the body. For some literature reviews on shape control, 

displacement tracking and various structural applications, see Irschik (2002), Irschik et al. (2012), 

where emphasis has been laid upon the previous work of our own group, and Irschik and Krommer 

(2013). The latter paper contains references to the work of various other groups, also with respect 

to automatic or feedback control, a topic that is not addressed in the present contribution. Here, we 

assume that the imposed incremental forces and the geometric and constitutive parameters under 

consideration are known, such that feedback control is not needed. For works on shape control of 

our group, the interested reader is referred e.g. to Krommer and Irschik (2007), Zehetner and 

Irschik (2008), Schöftner and Irschik (2011), Schöfnter and Buchberger (2013) and Zenz et al. 

(2013). 

Subsequently, we present a class of analytic solutions for the displacement tracking problem 

described above. As a main result of our present considerations, we show that the incremental 

actuation stresses necessary for displacement tracking must satisfy some auxiliary quasi-static 

equilibrium conditions only. This important result includes the previous work of Irschik and 

Pichler (2004) on shape control of displacements from a natural configuration as a special case. 

Similar to the previous work of Irschik and Pichler (2004), our present formulation can be 

considered as an extension of the Neumann procedure for proofing the uniqueness of initial 

boundary value problems of the linear theory of elastodynamics. For Neumann’s original 
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procedure, in which eigenstrains, actuation stresses and intermediate configurations of hyperelastic 

bodies were not considered, see e.g. Chandrasekharaiah and Debnath (1994). In the present context 

of small incremental deformations superimposed upon an intermediate configuration it turns out 

that one must also require infinitesimal superstability of the intermediate configuration, see Knops 

and Wilkes (1973) for the latter notion, and see also Wang and Truesdell (1973). The condition of 

infinitesimal superstability is trivially satisfied in the context of shape control of displacements 

from a natural configuration that was considered in Irschik and Pichler (2004). Derivations on 

displacement tracking from a natural configuration, which are preliminary to the subsequent 

results, were presented in Irschik and Krommer (2005), where visco-elastic effects were also 

included, and in Irschik et al. (2007). An alternative approach for solving the problem of 

displacement tracking from a natural configuration was presented in Krommer and Irschik (2007), 

where a virtual displacement and power balance formulation was used, and where several aspects 

that are important for feedback-control, such as collocation of actuators and sensors, were 

addressed in detail. 

In the present contribution, we also include a generalized form of boundary conditions, namely 

the possibility of prescribing the normal component of the boundary displacement and the 

tangential component of the surface traction, additional to the usual boundary conditions of 

prescribing displacement vectors or surface tractions in total, see e.g., Gurtin (1972) for details of a 

corresponding generalized formulation. In extension, this latter formulation of boundary 

conditions here is applied within the framework of small incremental deformations from an 

intermediate configuration.  

Our subsequent solution for displacement tracking is felt to represent a contribution to the 

incremental theory of hyperelasticity in its own right. From a practical point of view, it can be used 

as a proper starting point for the actuator design when restrictions in the actuation with respect to 

its spatial distribution and/or intensity have to be taken into account, e.g. when the actuation stress 

is to be provided by discrete networks of actuators. It also can be conveniently used as a 

preliminary design when methods of automatic control need to be applied. 

As an illustrative numeric example, we treat an irregularly shaped four-corner plate in a state of 

plane strain that was used in Irschik and Pichler (2004) for discussing the problem of shape control 

from a natural state. In the present contribution, a spatially linear displacement field with a 

prescribed time-wise evolution is desired to be tracked by proper distributions of actuation stresses. 

For simplicity and comparison sake, in this example we restrict to the case of incremental 

displacements evolving from the natural configuration, see Irschik and Pichler (2004) for shape 

control. The quasi-static boundary value problem for a field of actuation stresses that can achieve 

the desired goal of displacement tracking is derived and discussed in some detail. Computations 

are performed using the commercial Finite-Element code ABAQUS together with a self-written 

code that assigns the actuation stresses to the Finite Elements in the form of anisotropic transient 

tensors of thermal actuation. The latter eigenstrain-type actuation is applied, and it is demonstrated 

that the required displacement fields are indeed obtained, despite imposed forces are present. 

 

 

2. Initial boundary value problem in the presence of actuation stresses 
 
Consider some continuous material body B. Imposed body forces per unit volume are denoted 

as b. Additional to these forces, a field of actuation stresses AS is applied within B. On some part 
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1B  of the boundary B  of B, the displacement is described as û , while another part, 2B , is 

loaded by imposed surface tractions ŝ  per unit surface area. On the remaining part of B , on 

3B , the normal component of the displacement and the tangential component of the surface 

traction is prescribed. The above quantities, i.e. body forces b, actuation stresses AS , surface 

displacements û , and surface tractions ŝ , or the given components of the latter two, may vary 

with time, such that the particles of B will be accelerated, and time-dependent incremental stresses 

S and displacements u will be produced. This motion may be associated with a prescribed 

non-vanishing initial displacement field 0u , where a non-vanishing initial velocity field 0v  may 

be also present. 

In the present paper, we assume that the body B is hyperelastic. We restrict ourselves to the case 

of small incremental deformations superimposed upon an intermediate configuration, which is 

assumed to represent a pre-deformed equilibrium state. This static intermediate state might 

represent a large deformation with respect to an undeformed and unstressed configuration, which 

we call a natural state or configuration of B. In order to enable a proper mathematical description 

of the small incremental deformations from the intermediate state, a suitable reference 

configuration of B must be selected. Since B is taken as hyperelastic, the mathematic relations 

presented subsequently can be shown to hold formally for two different ways of describing the 

small incremental motion, compare e.g., Knops and Wilkes (1973). First, the natural configuration 

may be selected as reference configuration; this case will be denoted as the Lagrange description. 

Secondly, the intermediate configuration, which in general will be pre-stressed and pre-deformed, 

can be used as the reference configuration, a formulation, which we call the up-dated Lagrange 

description. In both descriptions, the subsequent relations have the same mathematical form, but 

there is a difference in the mechanical meaning of the symbols under consideration. E.g., in the 

Lagrange description, incremental body forces b and surface tractions ŝ  must be taken per unit 

volume or per unit surface area of the natural state, respectively. In contrast, unit volume and unit 

surface area of the intermediate state have to be considered when dealing with the up-dated 

Lagrange version. 

In a first step, we formulate the above described incremental initial boundary-value problem in 

mathematical terms by starting with Cauchy's first law of motion, which we write as 

 0B : div S b u, t     (1) 

where time is denoted by t, and the incremental motion starts at 0t  . The density of mass is 

denoted by , being taken per unit volume of the natural state in the Lagrange description, and 

per unit volume of the intermediate state in the up-dated Lagrange version. The rate of time change 

with respect to an inertial frame is indicated by a superimposed dot, and div stands for the 

divergence operator with respect to the place in the natural state or in the intermediate state, 

depending on whether the Lagrange or the up-dated Lagrange description is used. The incremental 

stress S  represents an incremental 1. Piola-Kirchhoff stress, namely the difference between the 

stress in the actual position of B and in the intermediate state. In the Lagrange description, this 

incremental stress difference must be referred to the natural state. In contrast, the incremental 1. 

Piola-Kirchhoff stress S  is to be referred to the intermediate state in the up-dated Lagrange 

version. Subsequently, such differences in the mechanical meaning of symbols used in the two 

descriptions will be mentioned only when it appears to be necessary. Of course, the intermediate 

state may represent a natural state itself, such that the Lagrange and the updated-Lagrange 


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descriptions do coincide. In this case one deals with the linear theory of elasticity, the stress then 

representing the symmetric Cauchy stress, see e.g., Gurtin (1972). The reader who is interested in 

problems of linear elasticity only, thus may follow our derivations directly by leaving aside any 

remark concerning the reference state. 

Since we deal with a small deformation from the intermediate state, we take the incremental 

stress S to be linearly related to the gradient of the incremental displacement. In accordance with 

the literature, we take into account the presence of incremental actuating stresses by writing this 

linear mapping in the form of the following generalization of Hooke’s law, see e.g., Knops and 

Wilkes (1973) for the case of thermal eigenstrains 

   0AB : S C u S , t      (2) 

Here,   denotes the gradient with respect to the place in the natural state, or with respect to 

the place in the intermediate state, respectively, depending on whether the Lagrange or the 

up-dated Lagrange formulation is used. The fourth order tensor of elastic parameters is denoted by 

C , and  C u stands for the second order tensor that represents the linear mapping of u  by 

means of C . For the different physical meanings of C  in the Lagrange and in the up-dated 

Lagrange description, we refer to Knops and Wilkes (1973). Following the derivations presented in 

the latter reference, we take the following major symmetry property of C  to be valid in both, the 

Lagrange and the up-dated Lagrange description 

    TC C E C F F C E    
                     

 (3) 

for any two second-order tensors E and F. The transpose of the fourth-order tensor C  is denoted 

by the superscript T. The dot product in Eq. (3) indicates the contraction of two second order 

tensors to a scalar quantity. The dot product will be subsequently used also for the scalar product 

of two vectors. For further details of the single dot and square bracket notations, see Gurtin (1972). 

Note that we do not use bold face symbols for indicating vectors or tensors. Note also that in the 

case of a pre-strained intermediate state, C  depends on the place in the respective reference 

configuration, even when the body is homogeneous in the natural state. If the intermediate state 

itself represents a natural state, such that one deals with the linear theory of elasticity, the 

fourth-order tensor of elasticities C  admits additional symmetry conditions, see Gurtin (1972).  

The set of field equations governing our problem is formed by Eqs. (1) and (2). The latter 

relations are to be accompanied by means of boundary conditions. We consider the following 

generalized formulation for describing conditions at the boundary B  of the body B, see Gurtin 

(1972) for the linear theory 

B 0,ˆ=)1(ˆ= ≥∀tsnSP anduPu:      -                            (4) 

The entities û  and ŝ are vector fields on B , which are designed such that they reflect the 

above mentioned three types of boundary conditions on the portions 1B , 2B  and 3B , 

respectively. In each point of B  the perpendicular projection tensor P accordingly must be 

formed by one of the three following second-order tensors. If the incremental displacement u  is 

prescribed, i.e. on 1B , P is to be taken as the unit tensor  
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 1 1B : P                                (5) 

such that one has no prescribed traction, 0ŝ   on 1B , see Eq. (4). When the incremental 

surface traction is prescribed, the tensor P must be chosen as the zero tensor 

 2 0B : P                                 (6) 

such that there is no prescribed displacement, 0û   on 2B , see Eq. (4). Finally, on 3B , where 

the normal component of the displacement and the tangential component of the surface traction are 

prescribed, one sets 

 3B : P n n                              (7) 

The unit outer normal vector at B  is denoted by n. In the Lagrange description, n must be 

taken perpendicular to the boundary of the body in the natural state, while in the up-dated 

Lagrange formulation, n is to be understood as perpendicular to the boundary in the intermediate 

state. The sign   indicates the dyadic product of two vectors. No multiplication sign is utilized 

for the linear mapping of a vector by means of a second-order tensor. This convention is also used 

for the second order tensor that follows as the product of two second order tensors, compare 

Gurtin (1972) for notation. Recall that the incremental surface traction is represented by the vector 

S n  according to the Cauchy fundamental theorem on stresses, see again Gurtin (1972), which in 

Eq. (4) however is to be understood as being formulated in the Lagrange or in the up-dated 

Lagrange formulation, respectively. Recall that the second order tensor S represents an incremental 

1. Piola-Kirchhoff stress tensor. For further details, see Knops and Wilkes (1973). Note also that 

the linear mapping of a vector by means of the tensor n n  results in the vectorial component of 

that vector in the direction of n , from which the notion of a perpendicular projection stems. It is 

thus seen from Eqs. (4) and (7) that û  must be taken perpendicular to the boundary on 3B , 

while ŝ  must be a tangential vector there. The portions 1B , 2B  and 3B  must represent 

complementary subsets of B . 

As mentioned above, the initial boundary value problem has to be completed by prescribing 

initial displacements 0u  and initial velocities 0v  from the intermediate configuration 

 0 0 0B : u u , u v , t                           (8) 

The initial data 0u  and 0v  must be compatible with the incremental displacement boundary 

data û  in Eq. (4). Since we here deal with a statically pre-deformed intermediate configuration, 

one requires 0 0u   and also 0 0v  . 

 

 

3. Tracking of displacements by means of actuation stresses 
 

The present contribution is devoted to the solution of the following problem. In the initial 

boundary value problem stated in Section 2 above, assume that the quantities b, 0u , 0v , as well as 

û , ŝ , or proper components of the latter two, are prescribed as functions of time and the place in 
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the respective reference state of the Lagrange or the up-dated Lagrange description. Seek a 

distribution of incremental actuation stresses AS , such that the incremental displacements u  do 

coincide with some given vector field z  everywhere and during the whole observation period 

 0B : u z, t                                (9) 

The magnitude of z  in the respective description is assumed to be sufficiently small, such 

that the formulations given in Section 2 above for small deformations superimposed upon the 

intermediate state do apply for z  also. 

We call the problem introduced by the requirement stated in Eq. (9) as displacement tracking 

problem. The special case of tracking a zero displacement, 0z  , i.e. of designing an incremental 

actuation stress field AS  such that the displacements do vanish in Eq. (9), 0u  , is denoted as 

shape control in the literature. 

In order that the non-zero tracking problem stated in Eq. (9) is solvable from a kinematical 

point of view, we must require, first, that the fields u and z are initially coinciding 

 0 0 0B : z u , z v , t                           (10) 

see Eq. (8) and the subsequent remark. Secondly, it must be assured that there is no conflict with 

the kinematical boundary conditions prescribed on 1B  and 3B  in Eq. (4) 

 1 3 0ˆB , B : P z u, t                            (11) 

We furthermore have to require that the shape of the body B is sufficiently regular, and the 

fields under consideration are sufficiently smooth, such that the subsequently utilized 

mathematical formulations make sense. Under many circumstances, these requirements may 

appear to be rather mild. However, they must be carefully considered, and they should be checked 

from case to case, particularly, when the occurrence of a singular surface is to be expected, on 

which some of the fields under consideration may take on different values when approaching from 

different sides.  

Last but not least, in order to make the goal of tracking the incremental displacement field z  

from a pre-deformed intermediate equilibrium position mechanically meaningful, we require that 

this intermediate state is stable in a proper sense. A substantiation of the latter requirement will be 

given subsequently. In order to keep the corresponding arguments short, we once and for ever 

assume that the kinematical boundary conditions in Eqs. (4) and (11) are such that the case of a 

rigid body motion superimposed upon the intermediate state is excluded. 

As already mentioned, as physical effects for producing the incremental actuation stresses AS  

in Eq. (2), we consider the class of eigenstrains. From a technological point of view, the latter class 

includes various serious candidates for achieving the goal of displacement tracking, such as 

thermal actuation. Due to its rapid action, a technologically important physical effect for producing 

eigenstrains, or actuation stresses AS , respectively, is piezoelectricity, see e.g., Rao and Sunar 

(1994), (1999) for some reviews. The case of small deformations superimposed upon an 

intermediate state of piezoelectric bodies has been thoroughly treated in the memoir by Eringen 

and Maugin (1989), see also Tiersten (1978). It becomes clear from these studies that the influence 

of the electromagnetic fields in the reference states under consideration should be negligible in 
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order that the initial boundary value problem for the superimposed motion can be written in the 

form presented in Section 2 above, i.e. without so-called ponderomotive forces. For a further 

discussion of the latter assumption, which is however often made in the literature, we refer to the 

review article by Kamlah (2001), and to the literature cited there.  

The present contribution is devoted to develop general methods for determining distributions of 

actuation stresses AS  that are able to achieve the goal of displacement tracking. We do not go 

further into the details of the specific physical mechanisms for producing those actuation stresses. 

We only mention that, once a distribution of actuation stresses AS  has been found that solves the 

above displacement tracking problem, in principle a further inverse problem should be tackled, 

namely to find a distribution of temperature, or of electric fields, or of similar physical or 

mechanical mechanisms, respectively, that is able to produce this distribution. Since the solution of 

the displacement tracking problem guarantees the displacement of the body to be known, the 

solution of the mentioned further inverse problem should be feasible, particularly when 

temperature or electric field can be treated as being uncoupled from the incremental deformation. 

When the fields b, û , ŝ and z  are separable in space and time, the corresponding solution of 

course is particularly straightforward. We present a numerical example at the end of the paper. 

 

 

4. Solution of the displacement tracking problem 
 

In order to solve the displacement tracking problem stated in Eq. (9), we extend a method 

originally developed by Neumann for proving the uniqueness of solutions of linear elasto-dynamic 

problems. For a contemporary presentation of Neumann’s proof in the context of a homogeneous 

and isotropic body, see Chandrasekharaiah and Debnath (1994). In a previous contribution by 

Irschik and Pichler (2004), a Neumann-type strategy has been used for solving the elastodynamic 

shape control problem, i.e. the problem of tracking zero displacements, from a natural state. 

Subsequently, we extend the latter derivations with respect to the following two general aspects. 

First, we consider the case of a small deformation superimposed upon a statically pre-deformed 

intermediate state of a hyperelastic body, this intermediate state possibly representing a large 

deformation from a natural state, see the formulations given in Section 2 above. Secondly, and this 

is our main concern, we treat the case of a non-zero field to be tracked, 0z  . 

We start our derivations by introducing an extended Neumann function  N t  in the form of a 

sum of the following spatial integrals 

   
B B

N y C y dv y y dv                               (12) 

where y  denotes the difference between the incremental displacement u  and the field z  to be 

tracked 

 y u z                                  
(13) 

The integration in Eq. (12) is to be performed over the body B in the natural state in the 

Lagrange description, and over the intermediate state in the up-dated Lagrange description. In 

order to assure sufficient stability of the intermediate state, we require the tensor of elastic 
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constants C  and the mass density   to be distributed such that the Neumann function is 

non-negative for all non-vanishing fields y  and y  

 0 0 0y , y N                              (14) 

Note that the second integral on the right hand side of Eq. (12), referring to y  is positive 

definite. In order that Eq. (14) does hold in general, this then should hold true for the first integral 

also, which involves C. If this latter requirement is satisfied, the intermediate state is said to be 

infinitesimally superstable, see Knops and Wilkes (1973) and Wang and Truesdell (1973) for 

further discussions concerning the definition of superstability. Recall also that we have excluded 

the case of rigid body motions superimposed upon the intermediate state. Since the intermediate 

configuration may represent a large deformation from the natural state, infinitesimal superstability 

may not be guaranteed. To require this form of stability of course is not necessary when the 

intermediate configuration itself represents a natural one. That is why this requirement did not play 

a role in the work on shape control by Irschik and Pichler (2004). 

We now perform the rate of time-change of N. Taking into account the symmetry condition of 

Eq. (3), and noting Eq. (13), we obtain from Eq. (12) that 

     
1

2
B

N y C u z u z y dv                             (15) 

From Eq. (2), we have 

    Ay C u y S S     
                        

(16) 

A well-known relation of tensor analysis proves that 

       T

A A Ay S S y div S S div S S y                       (17) 

where T denotes the transpose of a tensor. Substituting Eqs. (1) and (17) into Eq. (16) gives 

       T

A Ay C u y div S b u div S S y                      (18) 

Analogous to Eq. (17), there is 

         T

y C z y div C z div C z y          (19) 

Substituting Eqs. (18) and (19) into Eq. (15) and applying the divergence theorem, leads to 

        1

2

T

A A

B B

N y div S b div C z z dv S C z S y nds


             (20) 

From tensor algebra, we know that 
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       
T

A AS C u S y n S C u S n y        
               

 (21) 

An identical expansion and substitution of Eq. (4) shows that 

       1 ˆS n y P P S n y s PS n y                         (22) 

Analogously, we obtain 

   1 ˆy u z P u z u P z                            (23) 

Substituting Eqs. (21)-(23) into Eq. (20) leads to a form that is appropriate for obtaining a 

solution of the tracking problem 

   
1

2
A

B

N y div S b div C z z dv       

[ ]( ) ( )dszPuzuPPSnsnCnS zA
B

 ---  --- +))(1(.ˆ∇+∫
∂

               (24) 

Namely, if we assume in Eq. (24) that  

  0 0*

AB : divS b , t                         
(25) 

 
2 3 0*

A
ˆB , B : S n s , t                         (26) 

with 

   *b b div C z z   
                     

(27) 

 [ ]nzCss ∇-ˆ=ˆ*                           (28) 

then it follows that  

 0N                                 (29) 

in Eq. (24). This is explained subsequently in more detail. That the volume integral in Eq. (24) 

vanishes, is a consequence of Eqs. (25) and (27). In order to see that the boundary integral in Eq. 

(24) vanishes, we consider first the portion 1B  of the boundary. There we have 1P  , see Eq. 

(5), which, together with Eq. (11) guarantees vanishing of the boundary integral. At 2B , 

vanishing of the boundary integral follows from Eqs. (26) and (28), together with the fact that 

there is 0P  , see Eq. (6). Finally, at 3B , both, Eq. (11) and (26), do apply. Moreover, PS n  

and   1 P u z   are perpendicular vectors, such that the boundary integral in Eq. (24) vanishes 

also on 3B .  

We conclude from Eq. (29) that the Neumann function becomes constant in time, when Eqs. (25) - 

(28) are satisfied, and thus is determined by the initial data 
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         0 0 0 0 0 0 0 0 0

B

N N u z C u z v z v z dv                     (30) 

It is then seen from Eq. (30) that, due to the initial conditions for z  stated in Eq. (10), the 

Neumann function itself does vanish. From the requirement of infinitesimal superstability of the 

intermediate state, see Eq. (14), it is thus concluded that y  in Eq. (13) must vanish. Hence, we 

have arrived at the following solution of the displacement tracking problem: If the actuation stress 

AS  is chosen according to Eqs. (25)-(28), and if Eqs. (10) and (11) do hold for z, together with the 

condition of superstability of the intermediate state, then the displacement becomes the field to be 

tracked: 

 0 0 0N B : y , u z, t                        (31) 

We end the present Section with some explanatory remarks. In the above solution represented 

by Eqs. (25)-(28), the actuation stress AS , although it is time-dependent in general, can be 

interpreted as a statically admissible stress with respect to the auxiliary body force *b  and the 

auxiliary stress-boundary data *ŝ , meaning that AS  is in temporal equilibrium with the latter 

auxiliary forces to be computed from Eqs. (27) and (28), see Eqs. (25) and (26). Note that the 

surface tractions *ŝ  are only prescribed at the portions 2B  and 3B  of the boundary B . The 

required distribution of actuation stresses AS  for displacement tracking is therefore not unique, 

with the rare exception of statically determinate problems. Any divergence-less stress with a 

vanishing boundary stress vector at 2B  and 3B  may be added to AS  in Eqs. (25) and (26), 

without changing the validity of the solution. However, uniqueness can be achieved by assigning 

an auxiliary constitutive relation, and auxiliary displacement boundary data on 1B  and 3B  to 

the statically admissible stress problem. As a main result, it is only necessary to treat an auxiliary 

quasi-static problem in order to solve the above dynamic displacement-tracking problem. The 

auxiliary quasi-static problem needs not to correspond to the more complex original hyperelastic 

initial-boundary-value problem, in the framework of which the displacement tracking problem has 

been stated. E.g., the auxiliary body needs not to be hyperelastic, and the kinematic boundary 

conditions need not to coincide with the original problem. No initial conditions of course need to 

be introduced in the auxiliary quasi-static problem. We come back to the auxiliary problem below, 

when presenting a numerical example. 

As a special case of our above solution, consider now zero-tracking, i.e., 0z  . This requires 

 0 0B : u , t                              (32) 

in Eq. (9). In order that the shape control problem is geometrically compatible with the original 

initial boundary value problem, the kinematical boundary conditions and the initial conditions 

must vanish 

 1 3 0 0B , B : Pu , t                           (33) 

 0 00 0 0B : u , v , t                           (34) 
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see Eqs. (10) and (11). Introducing 0z  into Eqs. (25)-(28) gives 

 0 0AB : div S b , t                           (35) 

 
2 3 0A

ˆB , B : S n s, t                           (36) 

such that AS  must be in temporal equilibrium with the original forces b  and ŝ  only, in order 

that the goal of zero-tracking is reached. Formally, the same result has been obtained earlier by our 

group for shape control under the assumption of a small deformation from a natural state, see the 

references cited above. 

 

 

5. Numerical example 
 

In order to demonstrate the validity of the analytic solution for (non-zero) displacement 

tracking presented in Section 4 above, the following example problem is considered. We study an 

irregularly shaped plane four-corner domain being situated in the  1 2e ,e - plane, see Fig. 1. Unit 

vectors are denoted by e, and 1x  is the coordinate in the direction of 1e . The four corners are 

given by  1 0P : ,h ,  2 0 0P : , ,  3 0 7P : h, . h ,  4 1 2 0 2P : . h, . h . This irregular domain has 

been used in Irschik and Pichler (2004) for the sake of shape control from a natural state, in order 

to demonstrate that the presented concept also does hold, when there are no geometric symmetries 

present. A state of plane strain is considered with respect to the coordinate perpendicular to the 

 1 2e ,e - plane. The body is fixed at the left boundary 1 2PP , i.e. at 1 0x  , see Eqs. (4) and (5) 

with 0û  . The edges 2 4P P  and 3 4P P  are free of stress, see Eq. (6) with 0ŝ  . At the edge 

1 3PP , the domain is loaded by a distributed surface traction in the following form 

 13)(-=ˆ ntpHs                             (37) 

Here, p̂  is a space- and time-wise constant pressure,  H t  is the Heaviside function, and 13n  

denotes the outer unit normal vector at this edge.  

In the present example, the following displacement field shall be tracked by a proper smart 

actuation of the eigenstrain type  

 1
0 2

x
z u q( t )e

h
                          (38) 

Hence, we wish that the desired displacement of the domain takes place in the 2e  direction 

only, and that it is separable in space and time, the space-wise dependence being taken as linear in 

the coordinate 1x . The factor 0u  carries the dimension of length. For the time-wise dependency 

in Eq. (38), we require a smooth ramp-type behavior 
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  
1

1
2

t
q( t ) cos H( t ) H( t T ) H( t T )

T

  
       

  
              (39)  

where T denotes a characteristic time. The gradient of z becomes 

 0
2 1

u
z q( t ) e e

h
                               (40) 

In the following, we restrict ourselves to the case of an incremental deformation from a natural 

state, which we take as isotropic and homogeneous. In this case, the tensor of linear elastic 

constants C yields, see e.g. Gurtin (1972) 

      0
2 1 1 2

u
C z C sym z G q( t ) e e e e

h
                     (41) 

where G is the shear modulus. Moreover, since in the homogeneous case G does not depend on the 

place in the four-corner domain, there is 

    0divC z 
                          (42) 

Also, we have  

  
2

1
0 22

x t
z u cos H( t ) H( t T ) e

h T T

 
                   (43)  

Now, substituting Eqs. (37)-(43) into Eqs. (25)-(28), which constitute our proposed solution of 

the tracking problem, and setting   b  0 , we obtain a quasi-static problem with an auxiliary body 

force of the form 

 
2

* 1
0 22

cos ( ) ( )
x t

b z u H t H t T e
h T T

     
 

             (44) 

 

 

Fig. 1 Example problem: Four-corner domain with imposed loading 
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Additionally, non-vanishing auxiliary surface tractions 
*ŝ  are to be applied at the edges 

2 4P P , 3 4P P  and 
1 3PP , in accordance with Eqs. (28), (37) and (41). It is to be noted that the 

time-evolution of the surface tractions *ŝ  and of the body forces *b  are different. In order to 

close the corresponding quasi-static auxiliary problem stated in Eqs. (25) and (26), we assume that 

the edge 1 2PP  is fixed, like in the original problem, and that the auxiliary problem is linear elastic 

with the tensor of elastic constants C of the original problem. The four-corner domain under 

consideration then is modeled using the commercial Finite Element code ABAQUS, Version 6.12, 

where CPE4R type Finite Elements are used, and a numerically converged solution for the stress 

tensor in the auxiliary problem eventually is derived. In a self-written code formulated in C++, the 

resulting auxiliary stress distribution afterwards is assigned to the ABAQUS Finite Elements as a 

distribution of anisotropic thermal actuation stresses, where the same procedure as described in 

Irschik and Pichler (2004) for shape control is utilized. The fictitious thermal actuation stress is 

used as a smart actuation. A dynamic Finite Element computation is performed, where the transient 

thermal actuation stresses were superposed to the original force loading applied at the edge 1 3PP  

according to Eq. (37). 

As a characteristic result, the time-wise evolution of the horizontal displacement 1u  and the 

vertical displacement 2u  of point 4P  in Fig.1 are presented in Figs. 2 and 3, respectively. The 

displacements are scaled by means of the static displacements due to the pressure p̂  applied at 

the edge 1 3PP , and time is scaled by the fundamental vibration period . Both the displacements 

for the uncontrolled case and in the presence of the additional eigenstrain actuation are shown. 

Excellent agreement of the results and the desired displacements to be tracked, Eqs. (38) and (39), 

is obtained; the vertical displacement shows the desired ramp-type behavior, while the horizontal 

displacement does vanish, as it should be. Note that in this example shape control is required for 

the horizontal displacement only, while a non-vanishing, ramp-type displacement is tracked in the 

vertical direction. 

 

 

 

Fig. 2 Dimensionless horizontal tip deflection 
  
u

1
as a function of time 

  T1
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Fig. 3 Dimensionless horizontal tip deflection 2u as a function of time 

 

 

6. Conclusions 
 

A general solution for displacement tracking of small displacements from a statically 

pre-deformed configuration of a hyperelastic body has been derived, see Eqs. (25)-(28). Smart 

actuation by eigenstrain-type actuation stresses has been considered. It turns out that the actuation 

stresses only need to satisfy a quasi-static equilibrium problem. This result contains earlier results 

of our group concerning zero-displacement tracking, or shape-control, as special cases, see Eqs. 

(35) and (36). The presented exact result for stress tracking has been derived assuming that the 

actuation stresses can be tailored freely and applied everywhere within the body. This exact 

solution can be used as a proper starting point for the actuator design when restrictions with 

respect to spatial distribution and intensity of the actuation have to be taken into account. The 

presented results have been successfully confirmed by a numerical study. 
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