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Abstract. The classical Kalman filter (KF) provides a practical and efficient state estimation approach for
structural identification and vibration control. However, the classical KF approach is applicable only when
external inputs are assumed known. Over the years, some approaches based on Kalman filter with unknown
inputs (KF-UI) have been presented. However, these approaches based solely on acceleration measurements
are inherently unstable which leads poor tracking and so-called drifts in the estimated unknown inputs and
structural displacement in the presence of measurement noises. Either on-line regularization schemes or post
signal processing is required to treat the drifts in the identification results, which prohibits the real-time
identification of joint structural state and unknown inputs. In this paper, it is aimed to extend the classical KF
approach to circumvent the above limitation for real time joint estimation of structural states and the
unknown inputs. Based on the scheme of the classical KF, analytical recursive solutions of an improved
Kalman filter with unknown excitations (KF-UI) are derived and presented. Moreover, data fusion of
partially measured displacement and acceleration responses is used to prevent in real time the so-called drifts
in the estimated structural state vector and unknown external inputs. The effectiveness and performance of
the proposed approach are demonstrated by some numerical examples.
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1. Introduction

The state estimation of a dynamic system in a stochastic frame is important for structural health
monitoring and vibration control (Azam et al. 2015). In practical cases, it is impossible to measure
all structural responses; hence a state estimation of partially observed dynamic system is essential.
In this regard, the Kalman filter (KF), which was proposed by R. E. Kalman in the early sixties
(Kalman 1960), provides a particularly practical and efficient state estimation algorithm with
partial measurements of structural responses. Moreover, KF has the ability to inherently take the
uncertainty in the model into account, which is not possible in the deterministic approaches (Naets
et al. 2015). However, in the classical KF approach, the external input forces are assumed either
known or broadband, so that they can be modeled as a zero mean stationary white process. In
many cases, no measurements of the input forces are available or the broadband assumption is
violated.
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Over the years, some researchers have proposed various improved KF with unknown inputs to
circumvent the above limitation of the classical KF approach, e.g., Gillijns and Moor (2007)
derived a recursive filter with the structure of the Kalman filter for joint input and state
identification using linear minimum-variance unbiased estimation for optimal control applications;
Pan et al. (2010) also derived a Kalman filter with unknown inputs approach by the weighted
least-squares estimation method. The least-squares estimators for states and unknown inputs are
proven inherently optimal in the minimum-variance and unbiased sense. Wu et al. (2009)
employed the Kalman filter to establish a regression model between the residual innovation and
the input excitation. Based on the regression model, a recursive least-squares estimator is proposed
to identify the input excitation forces. Lin et al. (Lin et al. 2010, Ma et al. 2003) also studied input
force estimation of linear and nonlinear structural systems based on the Kalman filter (KF) with a
recursive estimator, in which the KF generates the residual innovation sequences and the estimator
uses a least-squares algorithm to evaluate the time histories of the exciting forces; Lourens et al.
(2012) developed an augmented Kalman filter (AFK) for force identification in structural
dynamics, in which the unknown forces are included in the state vector and estimated in
conjunction with the states. Ding et al. (2013) presented a discrete force identification method
based on average acceleration discrete algorithm. The method is formulated in state space and the
external excitation acting on a structure is estimated with regularization method; Liu et al. (2014)
transferred the implicit Newmark- algorithm to an explicit form in the inverse analysis of dynamic
force identification with better performance; Wang et al. (2015) developed a novel method for
force identification based on the Galerkin weak formulation in which the conventional implicit
Newmark method for the forward dynamic analysis was transformed into an equivalent explicit
form for more accurate force identification. The authors (Lei et al. 2012, 2014, 2015) also
investigated the identification of structures as well as the unknown external excitations. However,
many of previous approaches are not based on the direct extension of the classical KF and the
derivations of the analytical solutions are quite complex (Gillijns and Moor 2007; Pan et al. 2010).
Moreover, it has been demonstrated that most previous KF-UI approaches based solely on
acceleration measurements are inherently unstable which leads poor tracking and so-called drifts
in the estimated unknown external inputs and structural displacements. These drifts are caused by
acceleration’s insensitivity to any quasi-static component in the inputs (Azam et al. 2015).
Although regularization approaches (Mao et al. 2010, Liu et al. 2015, Wang and Xie 2015, Sun et
al. 2015) or post-signal processing schemes (Lei et al. 2012, 2014, 2015) can be used to treat the
drift in the identified results, these treatments prohibits the on-line and real-time identification of
coupled structural state and unknown inputs. Naets et al. (2015) introduced the addition of
dummy-measurements on a position level to circumvent the unreliable identification results. Azam
et al. (2015) proposed a dual Kalman filter approach, in which a fictitious process equation serving
for calibration of the input force is introduced. However, the selections of proper
dummy-measurements and the fine-tuning the regularization parameters in fictitious process are
quite subjective.

In this paper, it is aimed to extend the classical KF approach to circumvent the limitation of the
classical KF and the drawbacks of previous KF-UI based approaches for real time estimation of
structural states and unknown inputs. Based on the scheme of the classical KF, an improved
Kalman filter with unknown excitations (KF-UI) is derived. Since acceleration and displacement
measurements contains high and low frequencies vibration characteristics respectively, data fusion
of measured acceleration and displacement can make full use of these two types of measured
signals (Jiang et al. 2011). Therefore, data fusion of partially measured displacement and
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acceleration responses is used to avoid in real time the so-called drifts in the identified state and
unknown external inputs in the presence of measurement noises. Some numerical examples are
used to demonstrate the effectiveness and versatilities of the proposed approach.

2. Brief review of the classical KF

The derivation of the improved Kalman filter with unknown excitations (KF-UI) is based on
the scheme of the classical KF. Therefore, the classical KF is briefly reviewed in this section.

The equation of motion for a linear structural system can be expressed in the discrete form in
state space as

X = A X +B, f+w, (D

where Xy is the state vector at time t=KkAt with At being the sampling time step. Ay is the state
transformation matrix, f, is the external excitation vector with influence matrix By, and W is the

model noise (uncertainty) with zero mean and a covariance matrix Q.
In practice, only partial structural responses can be measured. The discrete form of the
observation equation can be expressed as

Y =CiXi+Difitwe (2)

where Yy is the measured response vector, Cyx and Dy are two known measurement matrices
associated with structural state and external force vectors, respectively, and V, is the measurement

noise vector, which is assumed a Gaussian white noise vector with zero mean and a covariance
matrix Ry.

The classical KF consists of the two procedures. The first one is the time update (prediction)
procedure, in which

>~(k+1\k =A X + B f, 3)
where XkHIk and )Zk‘k denote the predicted X,,, and estimated X, at time at time t=KAt,

respectively. Then, the prediction error of Xk+”k is §k+”k =Xy — )~(k ak  With the prediction error

covariance matrix |:~’k+”k =E [ékﬂ‘k égﬂlk] . From Egs. (1) and (3), it is known that

I5k+1\k = A, Fsk\kAkT +Q, 4)

A o a7 . .
where B, =E [ek‘k ek‘k] and €y =X, — Xy .

The second process of KF is the measurement update (correction) procedure, in which

)Zk+l\k+l = )~(k+1\k + Kk+1(Yk+1 _Ck+l>~<k+1\k - Dk+1 fk+1) (5)

A

.....
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matrix which can be derived as

- < =
K = Pk+1|kCl-<r+l (Ck+1 Pk+1|kaT+1 + Rk+1) (6)

By

and the covariance matrix of the error ékﬂ‘k+1 = X1 = X 18 obtained by

Pk+1\k+1 =(I- Kk+1Hk+1)Pk+1\k ™)

in which | denotes a unit matrix
In the above scheme of the classical KF, the external input vector f is assumed to be known.
This is the limitation of the classical KF.

3. Data fusion based KF-Ul

When the external inputs to a linear structural system are unknown, the state equation of the
system in the discrete form can be expressed as

Xy =AX, + B £ +w (®)
where f" denotes the unmeasured external input vector.

3.1 Derivation of the improved KF-UI from the direct extension of the classical KF

Analogous to the scheme of the classical KF described in the above section, )ZMk is first

predicted as
)~<k+l|k = Ak Xk\k +B, ka\Jk ©

where fkﬁk denotes the estimated f" at time at time t=kAt.

Based on the observation equation at time t=(k+1)At
Yier = Cn Xt + Dy B tvi (10)

and the estimated X, , in the measurement update (correction) procedure is derived as

Xk+1\k+1 = )~(k+1\k + Kk+l (Yk+1 _Ck+l )~(k+1\k - Dk+1 fku+l\k+1) (1 1)

where X is the estimated X,,, given the observations (Y;, Y, Yi+) and Ky is the Kalman

K+1k+1 79 By ARGV Mk ot Y WA MY VDM VARV UL T2,

gain matrix.
Under the condition that the number of response measurements (sensors) is larger than the

number of unknown external excitations in Eq. (10), fkillkﬂ can be estimated by minimizing the
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following error vector as

— 7 fu
Ak+1 = Yin _Ck+1xk+1\k+l - Dk+1 fk+l|k+1

~ - (12)
= (I - Ck+1 Kk+1 )(Yk+1 - Ck+1 xk+1\k ) - (I - Ck+1 Kk+1) Dk+1 1:ku+1|k+1
Then, fku+1|k+1 can be estimated from Eq.(12) based on least-squares estimation as
fku+l|k+1:Sk+l DkTH R:, ( I -Cy, Kyy )(Yk+1 -Ci )Zk+l\k ) (13)

-1

inwhich S, =[D' R (1-C,,,K,.,)D,,, ]

By inserting Y, in Eq. (10) into Eq. (13), the error of the estimated fkuﬂ‘kﬂ can be derived as

éf __Sk+1 D:;] Rk_+l] (I _Ck+1Kk+1)(Ck+le~kX+1\k +Vk+1) (14)

k+1k+1

Af _ fu £u X %
where € e = f — fk+1\k+1 and €., = X\ — Xy -

From Egs. (10) and (11), the error ékxﬂ‘kﬂ can be estimated as

I (I + K1 D S Di, R:lckﬂ )( I -K.Cr )élj(+1\k

K141 k+1

(15)
- Kk+1 [I - Dk+18k+l DKTH R’ (I _Ck+1Kk+1 ):|Vk+1

k+1

Then
A _ ~ T _ T
ijw :(I + Kk+] Dk+lSk+] D;rﬂ Rkjlckﬂ)(l - Kk+lck+] ) Pk:k (I - Kk+1Ck+1) (I + Kk+] Dk+lsk+] DL Rk}lckﬂ) (16)
_ _ T
+ Kk+1 [I - Dk+1sk+1 DkTﬂ Rkj, (I _Ck+1Kk+1 ):I Rk+1[| - Dk+1Sk+1 l, Rkj, (I _Ck+1Kk+1 )]
To minimize the error covariance matrix FA’ki(”h1 , K,,, should be selected as
Kk+1 = f):f”kclirl (CkHP::‘kaTH + Rk+1 )7] (17)
Therefore, the estimated Iski(”k“ in Eq. (19) can be simplified as
ﬁki‘m :( I+ Kk+1Dk+1Sk+1DKT+] R:,Ckﬂ )(I - Kk+1Ck+1 ) lsk:k (18)
The covariance matrix for error é: oy €1 be derived as
A B ~ T
Pk:m = Sk+1 Dl, Rkjl (I _Ck+l Kk+1)<Ck+1Pk)iukClI+1 + Rk+1 )(I _Ck+l Kk+l) RKI DM SL (19)

=S D,L (I —CiiKia )T R'D_S. = Sear

k+1 k+1 k+1
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Also, the error covariance matrix FA’k:fM can be estimated as
X =(PX ) =E|eX (67..) |=—K..D.S 20)
Ktk kelkel - kel \ kel - k+1 =k+1=k+1
From Egs. (8) and (9), the error ékxﬂ‘k is derived as
~ X AX Af
Ceiik = Akek‘k +Bkek‘k W, (21)

and the error covariance matrix kauk can be obtained by

S X PAM): ﬁkff AJ
Pk+l\k = [Ak Bk] B pr |l BT +Q, (22)
k

Kk Kk

In summary, the analytical derivation of the above KF-UI is completely based on the classical
KF and the recursive procedures of the proposed KF-UI are analogous to those of the classical KF
described in the above section. The resulting filter has the structure of the classical Kalman filter,
except that the true value of the input is replaced by an optimal estimate. When the inputs are
available, the proposed KF-UI reduces to the classical Kalman filter Therefore, the proposed
KF-Ul is a direct extension of the classical KF, which greatly simplifies the complex derivations in
previous KF-UI approaches (Gillijns and Moor 2007, Wu et al. 2009, Pan et al. 2010).

3.2 Data fusion of acceleration and displacement measurement in the improved KF-UI

In practice, accelerometers are most often used in structural dynamics applications. However,
previous KF-UI approaches by using sparse noisy acceleration measurements are inherently
unstable which leads poor tracking and the so-called spurious low-frequency drifts in the estimated
of unknown inputs and structural displacement. These drifts are caused by acceleration’s
insensitivity to any quasi-static component in the inputs.

The detectability analysis shows that the typical case where forces are reconstructed from
acceleration measurements through Kalman filtering on a structure will inevitably lead to
divergence issues (Naets et al. 2015). This conclusion can also be considered from a physical point
of view. At any given time it is not clear whether acceleration is the effect of external forces or
from the elastic restoring force due to a certain position. Therefore, the joint input and state
estimation based solely on to sparse noisy acceleration measurements is an ill-posed identification
problem.

Although either regularization scheme or post-signal processing can be used to treat the
spurious low-frequency drift problem, these approaches prohibit the on-line identification of
structural state and unknown inputs. In this paper, it is proposed to add partial measured
displacements to the acceleration measurements since acceleration and displacement
measurements contains high and low frequencies vibration characteristics, respectively. Data
fusion of measured displacement and acceleration responses, are used in the observation equation,
i.e., Eq. (10) is expressed as:
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Y2 _ EX F2|[X G, " _ "
Yk:{Y:d}_|:L: (;:|{Xk}+{O}fk+vk_ckxk+Dkflk+Vk (23)

in which, E; and Fare two measurement matrices associated with the measured accelerations,

G, is the influence matrix of external inputs on the acceleration responses, and L, denotes the
locations of measured displacements.

4. Numerical validations of the proposed KF-Ul

To validate the proposed KF-UI, two numerical examples are used for real time estimation of
structural states and unknown inputs using data fusion of partially measured accelerations and
displacements. The theoretically computed displacement and acceleration responses are
superimposed with corresponding white noises to consider the influence of measurement noises.
These polluted responses are treated as “measured responses” for the identification problem.

4.1 Identification of multi-story shear building and unknown input
A twenty-story shear building is used as an example. Parameters of the building are assumed as:

floor mass m;=60 kg, floor stiffness k=1.2x10° N/m, floor damping ¢;=1000 Ns/m (i=1,2,..,20),
respectively. An input of wide-banded white noise is applied to the top floor of the building.
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Fig. 1 Comparisions of identified structural state and input with unpolluted acceleration measuremnts
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First, only three acceleration measurements at the 6th, 14th and 20th story floors are used in the
proposed KF-UI. If measurement noises are not considered, the joint identification results of
structural displacement and velocity responses as well as the unknown input are very accurate with
comparisons to their exact values as shown in Fig. 1.

However, in the presence of measurement noise in the measured accelerations, significant drifts
occur in the identified displacement and unknown input, as shown in Fig. 2 where measured
accelerations contains noises with a 5% noise- to- signal ratio in RMS.

To circumvent the spurious low-frequency drift problem, partial measured displacements are
added in the improved KF-UI. For this relatively simple structural model, the displacement at the
2nd floor of the shear building is added in the measured signals. Fig. 3 shows the comparisons of
identified structural state and input with their exact values. It is clearly demonstrated that the
so-called drift can be avoided by the improved KF-UI with data fusion of 5% noisy acceleration
and displacement measurements.

To further validate the performances of the proposed KF-UI, measurement noise level is
increased to 10% in RMS. From the comparisons shown in Fig. 4, it is noted that the identified
structural state and the unknown input are still in good agreements with the exact values.
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Fig. 4 Comparisions of identified results with data fusion of 10% noisy measuremnts
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4.2 Identification of a truss-structure and unknown input

To validate the proposed KF-UI for the identification of other type structures with unknown
input, the identification of a plane truss and unknown input is studied. As shown in Fig. 5, the truss

consists of 11 uniform members. The length of each horizontal and inclined bar are 2m,\/§ m,
respectively. Other parameters of the truss are: cross section area A=7.854x10°m’ Young’s
module E=2x10" pa, mass density of truss member p=7.8x10°kg/m> and the mass is

concentrated on each node. The truss is subjected to an unknown input in the vertical direction at
node 4. In this example, Rayleigh damping C=aM+3K is employed with ¢=0.6993 and =0.0011.
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Fig. 5 A plane truss under unknown input

-3
10210 . 0.1
——exact o) ! N ——exact
-~ -identi AR - - -identified
identified . " ‘\ o ; \ ] . /w \‘ 0.05
_ \ 1,
= VAR g
£ E o
-0.05
_ ) 0.1 \ ! \ ! ]
% | 0 1 2 3 4 5
T|me (s) Time (s)
(a) Drift in the identified displacement (b) Comparison of identified velocity
20 T T T T \ T
—exact J i ' . H.w ‘i'/‘,\ !
. . | ! o i
-~ -identified Co p‘ | ’, \‘:‘ :‘\'\\“1““‘“\”“\\‘)J\W“; /‘! 0 \”q f\v" n.n‘\ml\h“ [ \“\‘: mi {"\“‘1"
—_ g Hu M ku b RO W
Zz tor M Jr‘“1,‘3‘1‘.‘m1\"7”"”‘/“ "\HM‘ W " ! '
o / ,\lu‘w”‘um\\”\‘wW\M|J l\ W \W
o Cp w 'w“ ,}/A””““ L
LE 0 ‘w " h “ I
1
_10 | | | | | | | | |

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (s)

(¢) Drift in the identified unknown input

Fig. 6 Comparisions of identified structural state and input with noisy acceleration measuremnts
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Fig. 7 Comparisions of identified results with data fusion of 10% noisy measuremnts

As indicted in Fig. 5, acceleration responses in the vertical directions of nodes 1 and 4 and the
lateral directions of node 3 and 5 are measured. If only these four measured noisy acceleration
responses are used in the identification by the KF-UI, significant drifts in the identified
displacement and unknown input are shown in Fig. 6 where measured accelerations contains
noises with a 5% noise- to- signal ratio in RMS.

To prevent the above drift problem, partial measured displacements are added in combination
with acceleration measurements for the joint identification problem by the proposed KF-UI. For
this relatively small size structural model, the displacement in the vertical direction at node 2 in
Fig. 5 is added as the measured displacement signals. Data fusion of this measured displacement
and the above four accelerations are used in the observation equation, i.e.,Eq.(27). As shown by
the comparisons of identified structural state and input with their exact values in Fig. 7, it is clearly
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demonstrated that the so-called drifts in estimated structural state and input are avoided by the
improved KF-UI with data fusion of 10% noisy acceleration and displacement measurements.

5. Conclusions

In this paper, an improved KF-UI algorithm using data fusion of partial acceleration and
displacement measurements is proposed. The analytical derivation of the proposed KF-UI is a
direct extension of the classical KF and the resulting filter has the structure of the Kalman filter,
except that the true value of the input is replaced by an optimal estimate, so it greatly simplifies
the complex derivations in previous KF-UI approaches. Moreover, the data fusion based KF-UI
prevents the so-called drifts in the estimated structural state vector and unknown external inputs by
previous approaches. Therefore, the proposed KF-UI provides an efficient algorithm of real time
joint estimation of structural states and the unknown inputs, which is also important for optimal
structural vibration control under known external inputs. Such analytical recursive solution for
date fusion based KF-UI is not available in the previous literature. Some numerical examples have
demonstrated the effectiveness and performance of the proposed approach. Even in the presence of
high level of measurement noises, the joint estimations of structural states and the unknown inputs
are still quite accurate.

In the proposed KF-UI, it is requested that (i) the number of response measurements (sensors)
should be larger than the total number of unknown external inputs, and (ii) the acceleration
responses at unknown excitation locations should be measured, The first requirement is reasonable
to avoid the ill-posed identification of unknown inputs while the removal of the later requirement
needs further investigations. Also, displacement measurement may be absent in practical
engineering, but strain data can be easily measured. Displacement measurement can be replaced by
strain data in the proposed KF-UI based on data fusion. These researches are undertaken by the
authors.
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