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Abstract.  This paper addresses the free and transient responses of a SDOF linear complex stiffness system 
by making use of the Hilbert transform and the convolution integral. Because the second-order differential 
equation of motion having the complex stiffness give rise to the conjugate complex eigen values, its 
time-domain analysis using the standard time integration scheme suffers from the numerical instability and 
divergence. In order to overcome this problem, the transient response of the linear complex stiffness system 
is obtained by the convolution integral of a green function which corresponds to the unit-impulse free 
vibration response of the complex system. The damped free vibration of the complex system is theoretically 
derived by making use of the state-space formulation and the Hilbert transform. The convolution integral is 
implemented by piecewise-linearly interpolating the external force and by superimposing the transient 
responses of discretized piecewise impulse forces. The numerical experiments are carried out to verify the 
proposed time-domain analysis method, and the correlation between the real and imaginary parts in the free 
and transient responses is also investigated. 
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1. Introduction 
 

Viscoelastic materials such as elastomer are widely used in various engineering applications to 

reduce the structural vibration and noise, to protect the interior contents from the outside, to 

maintain the ground traction force, and so on. For example, in the structural vibration field, rubber 

mounts are used to isolate the structural system from the external excitation and the damped 

sandwich beams in which rubber layers are inserted between metallic layers absorb the structural 

vibration energy via the hysteretic loss of the rubber layers (Mead and Markus 1969, Sainsbury 

and Masti 2007, Mohammandi and Sedaghati 2012, Hajianmaleki and Qatu 2013, Won et al. 2013). 

These damped structures are not so difficult to manufacture by current manufacturing technology, 

but, differing from the elastic structures, their mathematic analysis still remains as an important 

research subject owing to the existence of damping (Crandall 1995, Chen and You 1997, Genta 

and Amati 2010, Cho et al. 2012, Zhu et al. 2014). There have been introduced various 
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mathematic models to express the damping characteristics of viscoelastic materials, among which 

the hysteretic damping model (Meirovitch 1986, Chen et al. 1994) is widely used to express the 

complex stiffness. A complex number gives rise to the phase difference in the frequency response 

which causes the energy dissipation, so that the characteristic of complex stiffness is consistent 

well with the hysteretic damping. 

Meanwhile, most of previous theoretical and numerical studies on the complex stiffness 

systems were made in the frequency domain, in which the external excitation is expressed as 

harmonic force so that the imaginary part is automatically defined. However, in case of the 

time-domain analysis, the external force is real contrary to the complex-valued equations of 

motion. What is worse, a state-space formulation of complex stiffness system for obtaining the 

complex time response leads to two poles in the radial symmetry in the complex plane (Inaudi and 

Makris 1996). One pole is stable but the other pole having a positive real eigen value is unstable 

such that the time response obtained by the standard time integration techniques suffers from the 

unbounded growth with the lapse of time. In order to obtain the consistent time-domain 

formulation and the stable bounded time response, Inaudi and Markis (1996) used the Hilbert 

transform and the inverse Fourier transform (IFT) and employed the time reversal technique (Fink 

1992). Salehi et al. (2008) applied the inverse Fourier transform (IFT) to solve the time response 

of damped sandwich structures. But, the Hilbert transform of external excitation using the discrete 

Fourier transform and inverse Fourier transform (IFT) may produce the imaginary force signal that 

is different from the analytically derived exact one, because the external excitation is considered as 

a periodic function in the course of Fourier transform. This periodicity assumption of external 

force strongly affects the time response, which results in the incorrect time response of complex 

stiffness system (Bae et al. 2014a). 

In the time reversal technique (Nguyen et al. 2005, Padois et al. 2012, Li et al. 2012), where 

the time differential equation corresponding to the unstable pole is converted to one running 

backwards in time, the initial conditions of the system at the negative infinity are assumed to be 

clearly identified. In acoustic and medical applications where the time responses are obtained 

based on the outdoor measurements, the identification of initial conditions at negative infinity is 

not difficulty but straightforward. But, it becomes a highly difficult and troublesome task in case 

of the complex stiffness system which is not relied on measurements. In our previous work aiming 

at the development of a reliable time-domain analysis method for five-layered damped sandwich 

beams (Bae et al. 2014a, b), a discrete convolutional Hilbert transform using the consistent 

imaginary initial conditions and its time-duration extended superposition scheme have been 

introduced to overcome the above-mentioned problems. Where, the focus was made only on the 

free response-dominated vibration behavior of damped beam structures by applying the impulse 

loading.  

In other words, whether the transient response to the non-impulse force could be successfully 

obtained or not and the characteristic difference between the free and transient responses obtained 

by the proposed method still remains in doubt. In this context, this paper extends our previous 

work to the transient response of linear dynamic problem having the complex stiffness, in order to 

investigate the above-mentioned subject using a less complicated single-degree-of-freedom 

(SDOF) problem. In particular, the correlation between the real and imaginary parts in the free and 

transient responses, its useful usage, and the limitation of the proposed time-domain analysis 

method are examined. The free response of the complex system which is divided into the real and 

imaginary parts, where the imaginary part is assumed to be the Hilbert transform of the real part, is 

theoretically derived in the state-space formulation by considering the initial conditions and by 
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excluding the positive real eigen values. An arbitrary non-impulse force is divided into piecewise 

linear impulses and the transient response of complex dynamic system is numerically obtained by 

superimposing the piecewise transient responses. Here, The piecewise transient responses are 

calculated by the convolution integral of the piecewise impulse and the unit impulse response 

which is derived by applying the unit initial velocity to the system free response. 

As an extension of our previous work (Bae et al. 2014a, c), we in this paper intends to 

investigate in depth the above-mentioned characteristics of the free and transient responses of 

complex stiffness SDOF system that are obtained by the Hilbert transform and convolution 

integral. This paper is organized as follows. The relation between the Hilbert transform and the 

Fourier transform (FT) and the equation of motion of a SDOF linear dynamic system having the 

complex stiffness are introduced in Section 2. Next, the theoretical derivation of the free response 

of complex stiffness system in the state-space formulation by utilizing the Hilbert transform is 

described in Section 3. The convolution integral of the unit-impulse free response and its 

numerical implementation for obtaining the complex transient response are explained in Section 4. 

The numerical experiments illustrating the proposed method, together with the investigation on the 

correlation between the real and imaginary parts in the free and transient responses, are presented 

in Section 5, and the conclusion is made in Section 6. 

 

 

2. Hilbert transform and a SDOF linear complex stiffness system 
 

The Hilbert transform   tfH  of a signal  tf  is a phase-shifting but magnitude-conserving 

linear operator (Johansson 1999, Luo et al. 2009, Wang et al. 2015) defined by the convolution of 

 tf  such that 

    
 
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t
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with P  being the Cauchy principal value given by 
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Since the Hilbert transform is defined by the convolution:      t/tftf̂ 1  and the Fourier 

transform (FT) of  t/ 1  becomes 

    sgnj1 FT t/                            (3) 

with   1sgn   for 0 , 0 for 0  and 1 for 0 , the Fourier transform  F̂  of the 

Hilbert transform  tf̂  can be obtained using the Fourier transform  F  of the original signal 

 tf  such that 

         FF̂tf̂ sgnj FT                        (4) 

Thus, the Fourier transform of a strong analytic signal      tf̂tftfa j  which is composed 

of the real and imaginary parts becomes 
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           FFFtf aa sgn FT                      (5) 

Furthermore, from the relation given in Eq. (4), the strong analytic signal      tf̂tftfa j  can 

be obtained by the inverse Fourier transform (IFT) of the one-side-spectrum 

    0  ,FF : 

    tfF a 2 IFT                            (6) 

In this manner, the analytic signal of the real applied load for the time-domain analysis of linear 

complex stiffness system could be obtained by a combined use of FT and IFT. 

The equations of motion for the complex dynamic system are usually expressed in the 

frequency domain, so that we convert the form into the time domain using the inverse Fourier 

transform and the Hilbert transform. The equation of motion in the frequency domain for a SDOF 

linear complex stiffness system having the loss factor   is expressed by 

         FXkkXm  sgn j2                     (7) 

with  X  being the frequency response function. Using the relation (4), it can be rewritten as 

        FX̂kXkXm  2                      (8) 

and taking the Hilbert transform leads to 

        F̂XkX̂kX̂m  2                     (9) 

Multiplying j  to Eq. (9) and combining Eqs. (8) and (9), one can obtain the equation of motion in 

the frequency domain given by 

        aaaa FXkXkXm  j2                 (10) 

in the form of Fourier transform of analytic functions. Then, by taking the inverse Fourier 

transform, one can derive the equation of motion in the time domain given by 

       tftxktxm aaa  j1                       (11) 

to obtain the complex time response  txa  of a SDOF linear complex stiffness system. 

 

 

3. State-space formulation for the free vibration response 
 

In this section, the free response of a SDOF problem in Eq. (11) in the time domain is derived 

according to the state-space formulation. Differing from the time reversal technique in which the 

initial conditions at the negative infinity (i.e., at t ) should be specified, this approach allows 

one to derive the consistent imaginary initial conditions at 0t . Furthermore, the unstable pole 

causing the unbounded growth in the time response could be excluded in the course of derivation. 

By letting  txa  be    tvtu j , the free vibration problem (11) is split into two ordinary 

differential equations given by 
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      0 tvktkutum                             (12) 

      0 tkvtuktvm                             (13) 

with the prescribed initial conditions   00 uu   and   00 uu   .  

Here, it is assumed that     tuHtv   be a Hilbert transform of  tu  by letting 

     tvtutxa j . One can solve Eq. (11) by deriving the analytic external force  tf a  and by 

employing the time-reversal technique to obtain two stable differential equations which are 

expressed in terms of the analytic modal coordinates  tq1  and  tq2 , as represented in (Inaudi 

and Makris 1996). However, we in this study let     tuHtv   to derive the consistent imaginary 

initial conditions  0v  and  0v  through the state-space formulation, and to get  tv  that is 

expected to satisfy   tuH  by specifying the derived imaginary initial conditions, as represented 

in our previous paper in detail (Bae et al. 2014a). These two differential equations are not 

completely separated but correlated via the phase shift, so those are rewritten in the following 

matrix defined by 
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according to the state-space formulation. For the sake of concise expression, it is further written in 

a simple form given by 

    aa xLx                                (15) 

In the mode coordinates, a general solution    T

a v,v,u,ut x  is expanded in terms of the 

matrix  V  of complex mode vectors and the analytic modal coordinates  p  as 

    pVx a                              (16) 

Substituting Eq. (16) into Eq. (15) ends up with the complex eigen-value problem given by 

          ppVLVp 
1                       (17) 

For the SDOF linear complex stiffness system in Eq. (11), the matrix of complex eigen values 

is defined by 
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with IRnz  jj1  . Here, the real and imaginary parts of the complex eigen values 

are defined by 211 222 /nR  




   and 211 222 /nI  





   respectively. And, by 

letting s22   be r  with 22
IRs   , the matrix  V  is expressed by four complex column 

mode vectors iV  as follows 

   
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Then, referring to our previous work (Bae et al. 2014a), the general solution    T

a v,v,u,ut x  

in Eq. (16) is expressed by 

  *tz*tz*tz*tz
a cccct 42322111 eeee XXXXx

                 (20) 

with complex constants 111 jbac  , 222 jbac   and their conjugates 1c  and 2c . Here, 

four complex eigen vectors **** ,,, 4321 XXXX  are defined by 2121 VVX j*
,   and 

4343 VVX j*
,  . By expanding Eq. (20), it is not hard to obtain a complex-valued vector equation 

given by 

       432211 jeRe2jeRe2 VVVVx   tztz
a cct                (21) 

Letting 211 222 aC,bB,aA   and 22bD  , Eq. (21) ends up with a real-valued sinusoidal 

function 
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Two constants A  and B  should vanish because  tx  vanishes as t  goes to infinity, and 

the following coupled equation system for determining the imaginary initial conditions for  tv  is 

obtained 
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Using the given initial conditions 0y  and 0y  of the real part  tu , one can get two constants: 

  IR /rusuC  00
  and 0urD   and the imaginary initial conditions given by 
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By substituting these four constants into Eqs. (19) and (22), one can get the complex free 

response given by 
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This form of solution justifies our assumption that      tvtutxa j  is related to the Hilbert 

transform. In order words,  tu  and  tu  are expressed by a product of the low- and high-pass 

signals with non-overlapping spectra, and their Hilbert transforms  tv  and  tv  are defined by a 

product of the low-pass signal and the Hilbert transform of high-pass signal. And, the Fourier 

transforms of these functions are defined over the upper half-plane  ,0  in accordance with 

the problem definition in Eq. (7). 

 

 
4. Convolution integral for the transient time response 

 

The transient time response           T

a tv,tv,tu,tut x  of a SDOF complex stiffness system 

subject to the external excitation  tf  is obtained by the convolution integral given by 

       dtft
t

a   gx
0

                          (26) 

where           T
tv,tv,tu,tut g indicates the unit impulse response of the complex stiffness 

system. The unit impulse response  tg  can be obtained from Eq. (25) using m/u,u 10 00   , 

Im/v 10   and IR m/v 0
  (Rao 1995), where m  indicates the mass of the dynamic 

system. The analytic convolution integral (26) is numerically implemented by three different 

methods in the current study, the superposition method and the zero- and first-order approximation 

methods. For the numerical convolution integral, a continuous external force  tf  is firstly 

approximated by a discrete one  tDf  as shown in Fig. 1, where the divided discrete forces are 

either piecewise constant or piecewise linear. 

In the superposition method, individual piecewise constant forces are considered as an impulse 

force with the magnitude of   ttftf kk    and their contributions to the entire transient 

response are superimposed as following 

     kk

n

k

kka tff,tttft 




1

1

gx                   (27) 

Eq. (27) is nothing but a numerical integration form (Rao 1995) of the mathematical 
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convolution integral (26). The zero-order approximation method does also use the piecewise 

constant impulse forces like the superposition method, but the convolution integral is differently 

implemented based on the time-incremental approach. In other words, the transient response 1kx  

at the next time step is obtained by adding the additional convolution integral of the discrete 

impulse force 1kf  applied during the time interval t  to the free response given in Eq. (25) at 

the current time step. This approach is based on the fact that the solution of a linear second-order 

differential equation is composed of the homogeneous free response and the particular solution to 

the external force. For the sake of convenience, let us introduce two functions  tesi  and 

 teco  defined by 
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Then, the transient response  Tkkkkk v,v,u,u 11111   x  at the next time step 1kt  is calculated 

using the iterative incremental form given by 
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with               IRuIvIu m/tm/ttEV,m/ttED,m/ttED  esiecoecoesi   

and       IRv m/tm/ttEV  ecoesi  . The first term at the RHS of Eq. (29) indicates the 

additional convolution integral due to the discrete impulse force 1kf  while the second term is 

the free response increment. 

Meanwhile, in the first-order approximation, the discrete impulse force 1kf  at time state 1kt  

consists of kf  and the linear increment kkk fff  1  as represented in Fig. 1. Thus, the force 

increment kf  gives rise to the additional contribution to the convolution integral of the 

zero-order approximation. By introducing two additional exponential harmonic functions defined 

by 

 

 

Fig. 1 Discretization of a continuous signal into a finite number of discrete impulses 
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to compute the additional convolution contribution by the force increment kf , the iterative 

incremental form (29) is modified as follows 
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where, kFRI  indicates the free response increment (i.e., the second term at the RHS of Eq. (29)), 

and the new quantities are defined by         ,tm/ttLED,tm/ttLED IvIu  lecolesi   

      tm/ttm/ttLEV IRu  lesileco   and       tm/ttm/ttLEV IRv  lecolesi   

respectively. 

 

 
5. Numerical results 
 

In order to illustrate the fact that the solution  tax  given in Eq. (25) is related to the Hilbert 

transform, we revisit a SDOF complex stiffness system (Bae et al. 2014c) given by 

        0j20150
2

 tx.tx aa
                       (32) 

with the predefined initial conditions:   00 u  and   10 u . The real and imaginary parts of the 

dynamic displacement and velocity are represented in Fig. 2. It is observed that each component is 

exponentially decaying at the beginning and then the sinusoidal free response, that is, a product of 

the low- and high-pass signals. Further, it is found from the comparison between the real and 

imaginary parts that the phases are shifted by 2/  but the magnitudes are conserved. 

 

 

  

(a) (b) 

Fig. 2 Free vibration response of the problem (Bae et al. 2014c): (a) displacement and (b) velocity 
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A trajectory of  tu  and  tv  on the complex plane is shown in Fig. 3, where the solution 

characteristic of a SDOF complex stiffness system is well observed. The complex displacement 

   tvjtu   is characterized by the exponentially decaying behavior and the rotation behavior, 

which is consistent with the fact that the complex solution is expressed by 
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with   tIR  being a rotation matrix. A useful fact is that the complex eigen values R  and 

I  of a SDOF complex stiffness system can be determined from the trajectory of  tu  and  tv . 

Fig. 4(a) represents the time variation of the trajectory radius  tr  which is calculated by 

      2
0

2
0

22 e vutvtutr
tR 

                      (34) 

Thus, the real eign value R  can be determined from the relation given by 

    2lnln 2
0

2
0 /vutr R                         (35) 

between the real eigen value R  and the trajectory radius r . Meanwhile, Fig. 4(b) represents the 

time variation of the trajectory phase in radian with respect to the u -axis. Since the trajectory 

angle is expressed by 
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the imaginary eigen value I  can be determined from the time variation of trajectory angle. One 

can confirm that the slopes of two plots in Figs. 4 are consistent with the two values 0754.R   

and 12350.I   which are analytically calculated using the formulae given below Eq. (18). Here, 

the trajectory phase indicates the accumulated value from 0t , and its accumulated value up to 

sec.t 02  corresponds to about 12 cycles of  tu  and  tv , as can be justified from Fig. 2(a). 

 

 

 

Fig. 3 Trajectory of the real and imaginary parts on the complex plane 
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(a) (b) 

Fig. 4 Time histories: (a) the trajectory radius and (b) the trajectory phase (rad) 

 

 

Next, the damped forced time response  tu  of the problem (32) to a triangular force having 

the peak value of N.05  and the duration of sec.50  is considered in order to compare the 

above-mentioned three numerical convolution integration methods and to select the suitable time 

step size. The convolution integrals in Eqs. (28) and (30) are directly solved by MATHEMATICA 

to derive the analytically integrated functions of t . The damped time responses obtained using 

the time interval sec.t 250  are comparatively represented in Fig. 5(a). Except for the 

first-order approximation method, the other two methods lead to quite inaccurate responses. The 

superposition method provides almost the vanishing transient response while the zero-order 

approximation method shows the smaller transient response having a significant time delay. The 

transient responses of two methods are observed to be improved when the time interval is reduced 

to sec.050  as represented in Fig. 5(b), but still both methods lead to the unacceptable time 

responses with the inaccurate amplitudes and the time delay. But, the inaccuracy in the amplitude 

and time delay of two methods disappears when the time interval is further reduced to sec.020 as 

shown in Fig. 5(c), where all three methods provide the time responses which are in excellent 

agreement with the exact solution. Thus, it has been confirmed that the first-order approximation 

method provides the time response quite better than the other two methods which exhibit the 

remarkably inaccurate time integration unless the time interval is sufficiently small. For the current 

study, the first-order approximation method is used for the next transient response analyses. 

We next investigate the correlation between the real and imaginary parts of transient response 

and compare  tv  and   tuH . Here,  tv  denotes the solution obtained by the present 

convolution integral (26) while   tuH  indicates the Hilbert transform of  tu . It is not hard to 

obtain the correlation between the real and imaginary parts of the free response given by 
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using Eqs. (24) and (25), together with the relation of 22
IRs   . In other words,  tv  and 

 tv  can be obtained from  tu  and  tu  using the linear transformation matrix, and vice versa. 

As well, one can also have the linear correlation given by 
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(a) (b) 

 
(c) 

Fig. 5 Transient responses to a triangular force (Bae et al. 2014c): (a) sec.t 250 , (b) sec.t 050  

and (c) sec.t 020  
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between the real and imaginary parts of the transient response, which can be clearly justified from 

Figs. 6(a) and 6(b). 

Figs. 7(a) and 7(b) represent the complex forced responses to the triangular forces with the 

peak value of N.05  and the durations of sec.50  and sec.010  respectively, where  tu  and 

 tv  are obtained directly by the first-order convolution integral (31). It is observed that  tv  is 

significantly different from   tuH  for sec.50 , but this difference completely disappears when 

the duration of triangular force is reduced from sec.50  to sec.010 . The difference between two 

complex responses is that Fig. 7(a) is dominated by the forced vibration while Fig. 7(b) is by the 

free vibration. This comparison implies that the imaginary part  tv  becomes the Hilbert 

transform of the real part  tu  only when the transient response is not dominated by the forced 

vibration but by the free response. The physical meaning of the imaginary part  tv  obtained by 

the present convolution integral will be discussed below in detail. 
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(a) (b) 

Fig. 6 Correlation between the real and imaginary parts: (a) displacement  tv  and (b) velocity  tv  

 

 

  
(a) (b) 

Fig. 7 Comparison between  tv  and   tuH : (a) at the forced vibration and (b) at the free vibration 

 

 

As represented in Fig. 7(a),   tuH  contains the oscillation component but     tvtu H  

shows a smooth response without the oscillation component. Thus, it is found that  tv  

corresponds to the oscillation component which is contained in the Hilbert transform   tuH . It 

can be also confirmed from the comparison between       tvtu HHH  and  tu  that the 

oscillation component contained in  tu  is not contained in       tvtu HHH . Due to this 

feature,  tv  becomes consistent with the Hilbert transform of  tu  only for the free vibration 

response, as illustrated in Fig. 7(b). One can analytically justify this fact by examining the 

correlation between   tuH  and  tv  of the following general transient response given by 

           tsinvtcosudtsineFtu
t
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              (40) 

of the SDOF forced vibration problem in Eq. (11). The last two terms on RHS in each equation 

correspond to the free response, and those are clear in the relation of Hilbert transform. On the 

other hand, the transient response by the first integral form on RHS in both equations violates the 

relation of Hilbert transform, which can be justified by letting    2
210  cccF , by 

integrating term by term, and by comparing the Hilbert transforms of integrated terms in  tu  

with their counter parts in  tv . One can find out that the harmonic oscillation parts in  tv  and 

  tuH  are identical but the remaining parts are different. 

Next, we investigate whether the direct mathematical differentiation of transient displacements 

 tu  and  tv  coincide with the transient velocities  tu  and  tv  or not. In case of the real part, 

dt/du  is exactly the same with  tu  as represented in Fig. 8(a). But, it is observed from Fig. 8(b) 

that this exact correlation does not hold any more for the imaginary part. That is 

         dtvfdtvf
dt

d tt
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00

                   (41) 

It can be proved by substituting the free responses     ,/ttv II
tR 
cose


  

      IIRI
t

/tttv R 
cossine 

  into Eq. (41) for arbitrary external force  tf  (for 

example, a constant force). In Eq. (41), the left formula does not leave integration constant 

differing from the right formula, so the difference may occur whenever the integration constant 

appears. 

Next, we applied a harmonic force    tsinatf   with N.a 05  and Hz.03  to the 

problem (32), in order to examine once again the correlation between  tu  and  tv  and the 

other useful relations. Fig. 9(a) compares the transient responses that were obtained by three 

different numerical integration methods using the time interval t  of sec.020 . 

 

 

  
(a) (b) 

Fig. 8 Comparison at the level of velocity: (a) real part  tu  and (b) imaginary part  tv  
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(a) (b) 

Fig. 9 (a) Transient responses to a harmonic force ( sec.t 020 ) and (b) relation between the real and 

imaginary parts 

 

 

As in the previous case for the triangular impulse force, all three methods provide the forced 

transient responses that are in excellent agreement with the analytic solution, except for a slight 

difference at the first peak. We use the numerical solution obtained by the first-order 

approximation method for further investigation. Fig. 9(b) comparatively represents the real and 

imaginary parts, the Hilbert transform   tuH  and the differences between them. First of all, the 

phase difference 2/  but the equal amplitude between  tu  and   tuH  are clearly observed, 

except at the beginning. This correlation is also observed from     tvtuH   and its Hilbert 

transform      tvtuHH  . Regarding the relation between   tuH  and  tv , it is clear that 

both exhibit the same harmonic oscillation response with the same phase angle, except at the 

beginning, which confirms that  tv  becomes the oscillation component contained in   tuH . 

Meanwhile, both shows the remarkable difference in their amplitudes, which is because  tu  in 

this case is not free response but forced one, differing from Fig. 7(b). 

We next examine the relation in Eq. (38) for alternatively obtaining  tv  and  tv  from  tu  

and  tu . It is clear from Fig. 10 that the relation (38) provides the responses that are exactly same 

with  tv  and  tv . Next, we examine whether the direct mathematical differentiation of 

transient displacements  tu  and  tv  coincide with the transient velocities  tu  and  tv  or 

not. As represented in Fig. 11, it is found that dt/du  is exactly the same with  tu  but dt/dv  

is totally different from  tv . Thus, it has been confirmed that both relations also hold for the 

forced transient response by the harmonic force, as in the previous case for the triangular impulse 

force. 

The above-mentioned characteristics of the transient response           T

a tv,tv,tu,tut x  of a 

SDOF complex stiffness system which is obtained by the convolution integral (26) are 

summarized in the diagram shown in Fig. 12.  
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(a) (b) 

Fig. 10 Correlation between the real and imaginary parts: (a) displacement  tv  and (b) velocity  tv  

 

 

  
(a) (b) 

Fig. 11 Comparison at the level of velocity: (a) real part  tu  and (b) imaginary part  tv  

 

 

First of all, the real and imaginary parts are in the correlation via a linear matrix of complex 

eigen values, such that one part can be obtained from the counter part using this linear correlation. 

But, the imaginary part  tv  is identical only with the oscillation component contained in the 

Hilbert transform   tuH  of the real part, and vice versa, so that the correlation with the Hilbert 

transform holds only when the transient response is dominated by the harmonic response. 

Meanwhile, the direct mathematical differentiation does hold only for the real part  tu  of the 

complex transient response 

Thus, these characteristics explained above could help one to model and simulate the free and 

transient responses of linear complex system using Simulink and MATHEMATICA. The relation 

between the real and imaginary parts could be implemented by Simulink while the numerical 

integration could be obtained by MATHEMATICA. 
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Fig. 12 Diagram showing the correlation between the real and imaginary parts 

 

 

6. Conclusions 
 

In this paper, a numerical convolution integral by utilizing the Hilbert transform for obtaining 

the transient response of SDOF complex stiffness system was introduced, and the characteristics of 

transient response obtained by the proposed method were investigated. By assuming the imaginary 

part to be the Hilbert transform of the real part, the analytic solution was expressed by a sum of 

real and imaginary parts. The free response of SDOF complex stiffness system and the consistent 

imaginary initial conditions were derived in the state-space formulation. And, the transient 

response was obtained by the numerical convolution integration of the discrete impulse forces and 

the unit impulse response. 

Through the preliminary numerical experiments, it was justified that the solution is expressed 

by a product of time-exponential and time-harmonic functions and the imaginary part exhibits the 

phase delay of 2/ . It was also observed that the real and imaginary eigen values of the complex 

system can be determined from the time variations of the radius and phase of the trajectory of  tu  

and  tv  on the complex plane. Meanwhile, from the comparative experiments of three numerical 

convolution integral methods, it was found that the first-order approximation method provides the 

numerical accuracy much better than the other two methods. 

From the characteristic investigation of the transient responses, it was found that the real and 

imaginary parts are in correlation via a linear matrix of complex eigen values, so that either part 

can be obtained from its counter part using this linear correlation. But, the imaginary part of 

transient response coincides with the Hilbert transform of the real part only when the response is 

not dominated by the forced vibration, because it corresponds to the oscillation contained in the 

Hilbert transform. Furthermore, the direct mathematical differentiation of the imaginary transient 

response does not coincide with the convolution integral of free response  tv , because it does not 

leave the integration constant, differing from the convolution integral. 

Meanwhile, the cases in which the forced vibration is dominated would be worthwhile, and the 

development of accurate time-domain analysis method for such cases, together with its 

characteristic investigation, represents a topic that deserves future work. 
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