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Abstract.  In this paper, dynamic displacement is estimated with high accuracy by blending high-sampling 
rate acceleration data with low-sampling rate displacement measurement using a two-stage Kalman 
estimator. In Stage 1, the two-stage Kalman estimator first approximates dynamic displacement. Then, the 
estimator in Stage 2 estimates a bias with high accuracy and refines the displacement estimate from Stage 1. 
In the previous Kalman filter based displacement techniques, the estimation accuracy can deteriorate due to 
(1) the discontinuities produced when the estimate is adjusted by displacement measurement and (2) slow 
convergence at the beginning of estimation. To resolve these drawbacks, the previous techniques adopt 
smoothing techniques, which involve additional future measurements in the estimation. However, the 
smoothing techniques require more computational time and resources and hamper real-time estimation. The 
proposed technique addresses the drawbacks of the previous techniques without smoothing. The 
performance of the proposed technique is verified under various dynamic loading, sampling rate and noise 
level conditions via a series of numerical simulations and experiments. Its performance is also compared 
with those of the existing Kalman filter based techniques. 
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1. Introduction 

 
Dynamic displacement is one of the most important physical parameters that are crucial to 

understand dynamic characteristics of vibrating structural systems. Many theoretical approaches 

aim to calculate the displacement of a structure, and other types of responses can be derived from 

the displacement. For example, deflection, strain and stress of a structure can be estimated from 

displacement measurements if the material properties and geometric information are given. 

Measurement of dynamic displacement is also useful in structural control (Ruiz-Sandoval and 

Morales 2013) and system identification applications (Jiang and Adeli 2005, Kim et al. 2013a, 

Kim et al. 2013b). In addition, displacement measurements have been used for bridge rating 

(Wang et al. 2011), seismic risk assessment (Esposito et al. 2014), structural health monitoring (Li 

et al. 2014, He et al. 2009, Zhou et al. 2013), etc. 
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In spite of its importance, it is challenging to measure dynamic displacement because 

displacement is a relative quantity and requires a fixed reference point. One of the most reliable 

ways to directly measure displacement is to use a linear variable differential transformer (LVDT). 

However, LVDT requires a direct contact of the device with a target surface at one end, and the 

other end needs to be firmly fixed to a support. These requirements make the installation of LVDT 

for field applications challenging. For example, scaffoldings are often required to measure the 

vertical deflection of a bride deck, and it becomes even more challenging to measure the lateral 

deflection. To resolve the limitation, a few noncontact displacement sensors such as GPS, vision 

based sensor, radar based sensor, FBG sensor and LiDAR (light detection and ranging) have been 

developed (Tamura et al. 2002, Park et al. 2007, Kim and Kim 2011, Yang et al. 2012, Park et al. 

2013, Jo et al. 2013, Shin et al. 2012). However, they still suffer from a low sampling rate, low 

precision and limited applicability. 

Alternatively, displacement is often estimated from the double integration of an acceleration 

measurement. However, the double integration brings out error accumulation in the displacement 

due to a bias in the acceleration measurement and integration constant. Since this type of error is 

unbounded and causes the lack of long-term stability, the treatment of the error is crucial to the 

accuracy of an estimate (Hong et al. 2000, Faruqi and Turner 2000, Yun et al. 2012), and there 

have been several studies to correct the error effectively. For example, baseline correction 

techniques such as highpass filter (Trifunac 1971), least squares based bias estimation (Chiu 1997), 

state-space model approach (Gindy et al. 2008) and velocity estimation (Park et al. 2005), 

polynomial data fitting (Zhu 2003) and combination of these techniques (Boore 2002) have been 

proposed, assuming that the displacement has a zero-mean value and the measured acceleration 

has a linear or polynomial bias. However, when the bias is not a constant, it is hard to properly 

estimate displacement solely based on the acceleration measurement. Furthermore, these baseline 

correction techniques do not guarantee convergence to a unique solution (Boore 2001). 

Displacement estimation based on multi-rate data fusion augments acceleration data with 

intermittent displacement measurement to minimize bias accumulation and numerical integration 

errors during double integration of acceleration. Noncontact sensors such as a global positioning 

system (GPS) and a vision based sensor, which measure intermittent displacement at a sampling 

rate lower than the sampling rate of acceleration, can be used to correct bias accumulation and 

numerical integration errors. For example, GPS can measure displacement at a sampling rate of 4 

Hz with the help of RTK technology, and the sampling rate of a vision based sensor is typically 

limited to 60 Hz due to the frame rate of a video recorder. Chan et al. (2006) fused high sampling 

rate acceleration with low sampling rate GPS displacement using empirical mode decomposition 

and an adaptive filter. Another study on multi-rate data fusion was conducted by Hong et al. 

(2013). They formulated an optimization problem to estimate displacement based on acceleration 

and intermittent displacement measurements, and solved the optimization problem in the 

frequency domain. Park et al. (2013) and Cho et al. (2015) extracted displacement from strain 

measurement using the strain-displacement relation calculated from the geometry of a structure, 

and fused measured acceleration with the extracted displacement by solving the optimization 

problem proposed by Hong et al.(2013). Moschas and Stiros (2010) proposed a filtering technique 

to de-noise the displacement measured by GPS. First, the filter parameters are selected based on 

the acceleration measurement, and the filter is applied to GPS displacement to filter out noise 

components without enhancing the low sampling rate of GPS. 

One of the most effective multi-rate data fusion techniques is Kalman filter (Kalman 1960). 

Contrary to the multi-rate data fusion techniques discussed previously, Kalman filtering explicitly 
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considers the noise process in measurements and minimizes the uncertainty caused by the noise. 

Furthermore, Kalman filter enables real-time displacement estimation, and all the necessary 

parameters of Kalman filter are automatically adjusted without user intervention. Smyth and Wu 

(2007) formulated a state-space model for multi-rate data fusion by defining only physical 

responses (i.e., displacement and velocity) as state variables. Because the bias in acceleration 

measurement is not included in the state-space model, the estimation accuracy deteriorates with a 

large bias. Kim et al. (2014) overcame this problem by constructing a new state-space model for 

error dynamics. The bias in acceleration measurement and the integration error, which is the sum 

of numerical integration error and accumulated bias, are estimated from this state-space model. 

Then, displacement is estimated by subtracting the estimated integration error from the double 

integration of the acceleration measurement. Due to its direct estimation of the integration error, 

the technique by Kim et al. (2014) is more robust against the bias and noise compared to the 

technique proposed by Smyth and Wu (2007).  

Kalman filter estimates displacement in two steps: prior prediction and posterior correction 

steps. The prior prediction step is executed every time acceleration is measured, and the 

acceleration is double integrated through the transition equation of a state-space model. Then, the 

integration error accumulated during the prior prediction steps is corrected in the posterior 

correction step where intermittent displacement data becomes available. One major issue with 

Kalman filter is slow convergence. In the posterior correction step, the posterior estimate of 

displacement is calculated as a weighted average of the prior displacement estimate and the 

intermittent displacement measurement. Here, the weighting is a function of Kalman gain, which 

slowly converges to its steady state value as the number of measurement samples increases. It is 

well known that the performance of Kalman filter heavily depends on the convergence rate of 

Kalman gain to the optimal value (Cao and Schwartz 2003). Another problem is discontinuities 

observed when the posterior correction step is executed intermittently. The integration error is 

rapidly accumulated during the prior prediction steps and corrected all at once in the posterior 

prediction step. This sudden correction leads to discontinuities in displacement estimate. When the 

integration error is large, the discontinuity also increases, deteriorating the accuracy of the 

displacement estimation. 

To further advance Kalman filter based displacement estimation, smoothing algorithms such as 

fixed point and fixed lag smoothing have been introduced (Rauch 1963, Moore 1973). The 

fundamental concept of smoothing is to involve additional future measurement data into the 

displacement estimation at the current time point. By incorporating future measurements into the 

displacement estimation at the current time point, the convergence rate of Kalman gain is 

improved and the level of discontinuities is reduced. However, smoothing has its own drawbacks. 

Firstly, the involvement of additional future measurements results in a time delay in displacement 

estimation. It is theoretically shown that only 8 time steps of delay are required for 80% 

improvement in estimation accuracy when measurement noise is very small (Simon 2006). In 

practice, the typical time delay required for 80% accuracy improvement is, however, much longer 

than the theoretical value because of high noise level and low sampling rate of commercial 

noncontact displacement sensors. Another complication is additional computational complexity. 

Suppose that the size of the state vector is 𝑚 × 1, and 𝑁 future measurements are used. Then, 

fixed point smoothing requires a 2 𝑚 × 1 state vector and a 2 𝑚 × 2 𝑚 transition matrix, and 

additional 𝑁 recursions to incorporate the future measurements into the estimation of the current 

state. On the other hand, fixed lag smoothing involves a 𝑚(𝑁 + 1) × 𝑚(𝑁 + 1) transition matrix 

and a 𝑚(𝑁 + 1) × 1 state vector. Therefore, Kalman filter smoothing requires more memory 
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spaces and processing time than Kalman filter, especially under high noise and low sampling rate 

conditions.  

This study presents a new dynamic displacement estimation technique based on two-stage 

Kalman estimator (Friedland 1969, Ignagni 1981) to further improve the accuracy of dynamic 

displacement. By adopting two-stage Kalman estimator, the proposed technique improves the 

convergence rate of Kalman gain and minimizes the level of discontinuities without Kalman filter 

smoothing. The exclusion of smoothing brings out the following two advantages: (1) real time 

displacement estimation is feasible since no time delay is needed, and (2) memory space and the 

computational time for displacement estimation are much reduced. 

This paper is organized as follows: Section 2 presents a state-space model and a strategy for 

applying two-stage Kalman estimator to dynamic displacement estimation in the framework of 

multi-rate data fusion. In Section 3, a series of numerical simulations with varying noise-to-signal 

ratios (NSR) and sampling rates are performed to examine the performance of the proposed 

technique. In Section 4, experimental tests using an accelerometer and a laser Doppler vibrometer 

(LDV) are conducted to verify the effectiveness of the technique in real applications. The major 

findings and concluding remarks are provided in Section 5. 

 

 

2. Theoretical formulation of two-stage Kalman estimator for dynamic displacement 
estimation 
 

In this section, a two-stage Kalman estimator, which deals with state estimation of a dynamic 

system with an explicit bias in acceleration measurement, is proposed. Conventionally, the bias is 

included in the state vector of an augmented state-space model, but computational efficiency is 

compromised by the increased matrix size of the augmented model. Instead of increasing the 

matrix size, the proposed two-stage Kalman estimator divides the estimation process into two 

parallel stages which are denoted as Stage 1 and 2, respectively, in this paper.  

The overview of data fusion procedure in the proposed technique is shown in Fig. 1. In the 

proposed technique, an acceleration and a displacement measurement are fused to produce a 

displacement estimate with high sampling rate, high precision and no integration error. The 

acceleration measurement has a high sampling rate and precision, but the bias is accumulated 

through double integration for conversion to displacement. On the other hand, the displacement 

measurement has a low sampling rate and precision, and its bias can be neglected since no 

integration is required and bias does not accumulate. In Stage 1, dynamic displacement is 

estimated without considering the bias. Here, an integration error is only partially corrected, and 

discontinuities appear in the posterior correction steps of Kalman filter. The Kalman gain obtained 

in Stage 1 is transferred to Stage 2. In Stage 2, the remaining integration error and the 

discontinuities in the displacement estimate of Stage 1 are estimated. The final displacement is 

estimated by subtracting the integration error and discontinuity estimates of Stage 2 from the 

displacement estimate of Stage 1. In Section 2.1, a state-space model for two-stage Kalman 

estimator is proposed. The detailed displacement estimation procedure using the two-stage Kalman 

estimator and the proposed state-space model is discussed in Section 2.2. 
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Fig. 1 Overview of the proposed two-stage Kalman estimator technique 

 
 

2.1 Formation of a state-space model 
 

Suppose 𝑥̈(𝑘), 𝑥̇(𝑘) and 𝑥(𝑘) are true acceleration, velocity and displacement at discrete 

time steps 𝑘 = 0, 1, 2, ⋯, respectively, and the time increment is Δ𝑡. Also, if Δ𝑡 is small enough, 

𝑥̈(𝑘) can be assumed to be piecewise constant. When a process is piecewise constant, a state (i.e., 

true acceleration) in a Kalman filter has no system dynamics; i.e., 𝑥̈(𝑘 + 1)does not differ from 

𝑥̈(𝑘) before a measurement participates in estimation (Rajbhandary and Zhang 2013). Then, the 

acceleration 𝑥̈(𝑘 + 1) at the time step 𝑘 + 1 can be expressed as the sum of 𝑥̈(𝑘) and process 

noise 𝑤(𝑘) 

𝑥̈(𝑘 + 1) = 𝑥̈(𝑘) + 𝑤(𝑘)                         (1) 

Then, velocity 𝑥̇(𝑘 + 1) is approximated as a discrete integration of 𝑥̈(𝑘) 

𝑥̇(𝑘 + 1) ≈ 𝑥̇(𝑘) + 𝑥̈(𝑘)Δ𝑡 + 𝑤(𝑘)Δ𝑡                   (2) 

Similarly, displacement 𝑥(𝑘 + 1) is obtained by double integrating 𝑥̈(𝑘) 

𝑥(𝑘 + 1) ≈ 𝑥(𝑘) + 𝑥̇(𝑘)Δ𝑡 +
1

2
𝑥̈(𝑘)Δ𝑡2 +

1

2
𝑤(𝑘)Δ𝑡2            (3) 

Setting up a state vector as 𝐱(𝑘) = *𝑥(𝑘) 𝑥̇(𝑘) 𝑥̈(𝑘)+𝑇, the system transition equation for 

the double integration process can be constructed by incorporating Eqs. (1)-(3) 

Acceleration measurement Displacement measurement

• High sampling rate

• High precision

• Bias accumulation

• Low samplng rate

• Low precision

• No bias accumulation

Stage 1 Stage 2

Displacement estimate with 

discontinuities and partially 

corrected integration error

Estimate of discontinuities and 

uncorrected integration error

Kalman

gain

Final displacement estimate

• Displacement estimate with high sampling rate, 

high precision and no integration error

• Fully corrected discontinuities and integration 

error

+ -
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𝐱(𝑘 + 1) = 𝐀𝐱(𝑘) + 𝐁𝑤(𝑘)                       (4) 

where 

𝐀 = [
1 Δ𝑡

1

2
Δ𝑡2

0 1 Δ𝑡
0 0 1

] , 𝐁 = [

1

2
Δ𝑡2

Δ𝑡
1

]                      (5) 

Note that vectors and matrices are denoted by bold-type characters hereafter. 

Let the actual acceleration measurement 𝑥̈𝑚(𝑘) and displacement measurement 𝑥𝑚(𝑘) be 

sampled at two different intervals Δ𝑡 and 𝑁Δ𝑡, respectively. Here, 𝑁 is a sampling rate ratio of 

displacement measurement to acceleration measurement, and this rate is assumed to be an integer 

greater than 1 in the proposed multi-rate data fusion scheme. The acceleration measurement 

𝑥̈𝑚(𝑘) can be expressed as the sum of true acceleration 𝑥̈(𝑘), zero-mean Gaussian noise 𝑣𝑥̈(𝑘) 

and bias 𝑏(𝑘). 

𝑥̈𝑚(𝑘) = 𝑥̈(𝑘) + 𝑣𝑥̈(𝑘)  + 𝑏(𝑘)                     (6) 

On the other hand, the intermittent displacement measurement 𝑥𝑚(𝑘) is expressed as the sum 

of true displacement and zero-mean Gaussian measurement noise 𝑤𝑥(𝑘) 

𝑥𝑚(𝑘) = 𝑥(𝑘) + 𝑤𝑥(𝑘)                        (7) 

When both acceleration and displacement measurements become available (𝑘 = 𝑗𝑁, 𝑗 =
0, 1, 2, …) at the posterior correction step (we did not define what posterior correction step is yet), 

the observation equation is obtained from Eqs. (6) and (7) as follows 

𝐲(𝑘) = 𝐇𝐱(𝑘) + 𝐂𝑏(𝑘) + 𝐯(𝑘)                    (8) 

where 

𝐇 = [
1 0 0
0 0 1

] , 𝐂 = [
0
1

] ,         𝐲(𝑘) = (
𝑥𝑚(𝑘)

𝑥̈𝑚(𝑘)
) , 𝐯(𝑘) = (

𝑣𝑥(𝑘)

𝑣𝑥̈(𝑘)
)       (9) 

On the other hand, when the acceleration measurement is the only observation of the 

state-space model at the time steps 𝑘 ≠ 𝑁𝑗, the matrices 𝐇, 𝐂, 𝐲(𝑘), 𝐯(𝑘) in Eq. (8) become 

𝐇 = ,0 0 1-, 𝐂 = 1, 𝐲(𝑘) = 𝑥̈𝑚(𝑘), 𝐯(𝑘) = 𝑣𝑥̈(𝑘)           (10) 

Unlike the state-space models of the previous studies in which the observation equation does 

not exist when 𝑘 ≠ 𝑁𝑗, the proposed model accommodates a multi-rate data fusion scheme by 

changing its observation equation as shown in Fig. 2. 

 

2.2 Dynamic displacement estimation using two-stage Kalman estimator 
 

Using the state-space model shown in Eqs. (4) and (8), 𝐱(𝑘) is estimated using a two-stage 

Kalman estimator. In Stage 1, 𝐱(𝑘) is estimated ignoring 𝑏(𝑘), and Eq. (8) is reduced to the 

following form 

𝐲(𝑘) = 𝐇𝐱(𝑘) + 𝐯(𝑘)                        (11) 
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Fig. 2 Multi-rate data fusion scheme based on the proposed state-space model 
 

 

where 𝐱(𝑘) is estimated in two steps – prior prediction and posterior correction steps. Define 

𝐱̃(𝑘 − 1) as the Stage 1 estimate of 𝐱(𝑘 − 1) in the posterior correction step at time step 𝑘 − 1. 

In the prior prediction step at time step 𝑘, the prior estimate 𝐱̃−(𝑘) is estimated using Eq. (12), 

and its uncertainty is expressed using its error covariance matrix 𝐏𝐱
−(𝑘) in Eq. (13). 

𝐱̃−(𝑘) = 𝐀𝐱̃(𝑘 − 1)                            (12) 

𝐏𝐱
−(𝑘) = 𝐀𝐏𝐱(𝑘 − 1)𝐀𝑇 + 𝑄(𝑘)𝐁𝐁𝑇                     (13) 

where 𝐏𝐱
−(𝑘) and 𝑄(𝑘) are defined as 

𝐏𝐱
−(𝑘) = 𝐸[(𝐱(𝑘) − 𝐱̃−(𝑘))(𝐱(𝑘) − 𝐱̃(𝑘)−)𝑇]               (14) 

𝑄(𝑘) = 𝐸,𝑤(𝑘)𝑤(𝑘)𝑇-                      (15) 

Note that 𝑄(𝑘) is identical to the variance of 𝑤(𝑘) because 𝑤(𝑘) is a zero-mean process. 

Therefore, 𝑄(𝑘) is treated as a constant under the assumption of wide-sense stationarity. 

In the posterior step, Kalman gain 𝐊𝐱(𝑘) is first calculated using Eq. (16). Then, 𝐱̃(𝑘) is 

calculated as a weighted average of 𝐱̃−(𝑘) and 𝑥𝑚(𝑘) as shown in Eq. (17) with respective 

weights of 𝐈 − 𝐊𝐱(𝑘)𝐇 and 𝐊𝐱(𝑘). The posterior error covariance 𝐏𝐱(𝑘) in Eq. (18) decreases 

as 𝐊𝐱(𝑘) increases. The covariance matrix 𝑟(𝑘) in Eq. (18) is equivalent to the variance of 

𝑣𝑥(𝑘), and assumed to be constant similar to 𝑄(𝑘). 

 

𝐊𝐱(𝑘) = 𝐏𝐱
−(𝑘)𝐂𝑇,𝐇𝐏𝐱

−(𝑘)𝐇𝑇 + 𝑟(𝑘)-−1                 (16) 

Y

N

Prior prediction step

Posterior correction step
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𝐱̃(𝑘) = ,𝐈 − 𝐊𝐱(𝑘)𝐇-𝐱̃−(𝑘) + 𝐊𝐱(𝑘)𝐲(𝑘)                   (17) 

𝐏𝐱(𝑘) = 𝐸 [(𝐱(𝑘) − 𝐱̃(𝑘))(𝐱(𝑘) − 𝐱̃(𝑘))
𝑇

] = 𝐏𝐱
−(𝑘) − 𝐊𝐱(𝑘)𝐇𝐏𝐱

−(𝑘)  (18) 

𝐑(𝑘) = 𝐸,𝐯(𝑘)𝐯(𝑘)𝑇-                        (19) 

Note that Stage 1 estimator obtained from Eqs. (14) to (19) is a biased estimator, because 𝑏(𝑘) 

is ignored in Eq. (11) and 𝐸,𝐱(𝑘) − 𝐱̃(𝑘)- is non zero. This implies that the integration errors still 

remains in Stage 1 estimator, and 𝐱̃(𝑘) is biased. Let 𝐱̂−(𝑘) and 𝐱̂(𝑘) the final prior and 

posterior estimates of 𝐱(𝑘). To ensure that 𝐱̂−(𝑘) and 𝐱̂(𝑘) are unbiased, they should be 

estimated using Eqs. (20) and (21) instead of Eqs. (12) and (17). 

𝐱̂−(𝑘) = 𝐀𝐱̂(𝑘 − 1)                         (20) 

𝐱̂(𝑘) = 𝐱̂−(𝑘) + 𝐊𝐱(𝑘),𝐲(𝑘) − 𝐇𝐱̂−(𝑘) − 𝐂𝑏(𝑘)-               (21) 

Note that 𝐊𝐱(𝑘) is not influenced by 𝑏(𝑘), since 𝐏𝐱
−(𝑘) and 𝐏𝐱(𝑘) in Eqs. (14) and (18) do 

not change as long as the initial value of 𝐏𝐱(𝑘) is identical. Therefore, 𝐊𝐱(𝑘) obtained in Stage 

1 can be directly used in Eq. (21). 

In Stage 2, 𝐱̂(𝑘) and 𝐱̃(𝑘) are assumed to be related to each other as follows 

𝐱̂−(𝑘) = 𝐱̃−(𝑘) + 𝐔(𝑘)𝑏(𝑘)                       (22) 

𝐱̂(𝑘) = 𝐱̃(𝑘) + 𝐕(𝑘)𝑏(𝑘)                     (23) 

where 𝐔(𝑘) and 𝐕(𝑘) are 2×1 prior and posterior sensitivity matrices, which need to be 

estimated at time step 𝑘. 

𝐔(𝑘) and 𝐕(𝑘) can be estimated through a recursion process using 𝐊𝐱(𝑘) as follows. 

Substituting Eqs. (12) and (20) into Eq. (22) produces the following recursive equation 

𝐔(𝑘) = 𝐀𝐕(𝑘 − 1)                           (24) 

Similarly, another recursive equation is obtained by substituting Eqs. (17) and (21) into Eq. 

(23). 

𝐕(𝑘) = 𝐔(𝑘) − 𝐊𝐱(𝑘)𝐒(𝑘)                      (25) 

where 𝐒(𝑘) = 𝐇𝐔(𝑘) + 𝐂. Eqs. (24) and (25) construct a recursion process for obtaining 𝐔(𝑘) 

and 𝐕(𝑘) using 𝐊𝐱(𝑘). 

Once 𝐔(𝑘) and 𝐕(𝑘) are estimated, 𝑏(𝑘) is estimated using the relation made in Eqs. (22) 

and (23). Let us define the measurement residual, 𝐫(𝑘), as 

𝐫(𝑘) = 𝐲(𝑘) − 𝐇𝐱̃−(𝑘)                       (26) 

Then, substituting Eq. (22) into Eq. (26) results in an observation equation of another 

state-space model. 

𝐫(𝑘) = 𝐒(𝑘)𝑏(𝑘) + 𝐳(𝑛)                      (27) 

where 𝐳(𝑛) is another zero-mean Gaussian random process defined as 𝐳(𝑛) = 𝐲(𝑘) − 𝐂𝐱̂−(𝑘), 

and its covariance matrix is calculated as 𝐂𝐏̃𝐱
−(𝑘)𝐂𝑇 + 𝐫(𝑘). Suppose 𝑏(𝑘) is a piecewise 

constant process without noise (i.e., 𝑏(𝑘) = 𝑏(𝑘 − 1)). Then, the recursive Kalman filter for the 

estimation of 𝑏(𝑘) is summarized as 
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𝑏̂−(𝑘) = 𝑏̂(𝑘 − 1)                        (28) 

𝑃𝑏
−(𝑘) = 𝑃𝑏(𝑘 − 1)                       (29) 

𝐊𝑏(𝑘) = 𝑃𝑏
−(𝑘)𝐒𝑇(𝑘),𝐇𝐏𝐱

−(𝑘)𝐇𝑇 + 𝐒(𝑘)𝑃𝑏
−(𝑘)𝐒𝑇(𝑘) + 𝐑(𝑘)-−1        (30) 

𝑏̂(𝑘) = (1 − 𝐊𝑏(𝑘)𝐒(𝑘))𝑏̂−(𝑘) + 𝐊𝑏(𝑘)𝐫(𝑘)           (31) 

𝑃𝑏(𝑘) = 𝑃𝑏
−(𝑘) − 𝑃𝑏

−(𝑘)𝐊𝑏(𝑘)𝐒(𝑘)               (32) 

where 𝑏̂−(𝑘) and 𝑏̂(𝑘) are the prior and posterior estimates of 𝑏(𝑘), respectively, and 𝑃𝑏
−(𝑘) 

and 𝑃𝑏(𝑘) are the error covariance matrices of the prior and posterior estimations, respectively. 

Also, 𝐊𝑏(𝑘) is the Kalman gain of the bias estimation.  

Finally, 𝐱̂(𝑘) is obtained by replacing 𝑏(𝑘) in Eq. (27) with 𝑏̂(𝑘) obtained from Eq. (23) 

𝐱̂(𝑘) = 𝐱̃(𝑘) + 𝐕(𝑘)𝑏̂(𝑘)                       (33) 

Note that Stage 2 cannot be executed without 𝐊𝐱(𝑘). Since 𝐊𝐱(𝑘) is acquired at the posterior 

correction step, a state-space model for two-stage Kalman estimator needs to have an observation 

equation at every time step. The state-space models proposed in the previous studies do not have 

observation equation when 𝑘 ≠ 𝑁𝑗, and two-stage Kalman estimator can be applied only when 

intermittent displacement data are measured. However, using the proposed state-space model in 

this study, 𝐕(𝑘) and 𝑏̂(𝑘) in Eq. (32) can be updated continuously, and this is a major advantage 

of the proposed technique in terms of accuracy enhancement. The process of two-stage Kalman 

estimator is summarized in Fig. 3. 

 

 

 

Fig. 3 Two-stage Kalman estimator for displacement estimation 

 

 
3. Numerical simulation 

 

A series of numerical simulations were conducted using a 3-DOF spring-mass system in Fig. 4 
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(a) with various noise conditions and sampling rates. 𝑚1, 𝑚2 and 𝑚3 are set to 100 kg, and 𝑘1, 

𝑘2 and 𝑘3 are set to 40426, 20213, 1579.1 N/m, so that the undamped natural frequencies of the 

system are 0.59, 1.84 and 4.19 Hz. All the damping coefficients, 𝑐1, 𝑐2 and 𝑐3, are set to 30 

N/m·sec. The accelerogram recorded during Tohoku earthquake was applied to the support next to 

𝑚1  and denoted as 𝑦̈(𝑡) . The accelerogram was measured in E-W direction at Tsukidate 

(MYG004) station for 300 seconds with a sampling rate of 100Hz. However, only the initial 150 

second record was used in this study (Fig. 4(b)), since acceleration and displacement are negligible 

after 150 second. 

The accelerations 𝑥̈1 , 𝑥̈2  and 𝑥̈3  and displacements 𝑥1 , 𝑥2  and 𝑥3  of the three masses 

shown in Fig. 5 are calculated using discrete-time state-space equations under the zero-order hold 

condition (Chen 1999) and the same sampling rate as the base acceleration. The calculated 

displacements are used as the reference values for later comparison with estimated values. 

Acceleration responses measured by accelerometers are simulated by adding zero-mean Gaussian 

white noise and bias components to the previous reference responses in Fig. 5(a). The white noises 

are added so that all simulated acceleration measurements have NSR (noise-to-signal ratio) of 

0.1%. In addition, the simulated acceleration responses are adjusted to have -5 mm/sec
2
 bias, 

which is identical to the bias in the base accelerogram in Fig. 4(b). The sampling rate of the 

simulated acceleration measurements is unchanged from the sampling rate of the reference signals.  

 

 

 

Fig. 4 Structure and external input used in numerical simulations: (a) 3-DOF spring-mass system and (b) 

Base acceleration signal 𝑦̈(𝑡) from Tohoku earthquake, Japan, 2011 

 

0 50 100 150
-3
-2

-1
0

1
2
3

Time (s)

A
c
c
e

le
ra

ti
o

n

  
  

 (
m

/s
2
)

(a)

(b)

656



 

 

 

 

 

 

Dynamic displacement estimation by fusing biased high-sampling rate acceleration… 

 

 

Fig. 5 Reference acceleration and displacement responses of the 3-DOF system obtained by numerical 

simulations: (a) acceleration responses 𝑥̈1, 𝑥̈2 and 𝑥̈3 and (b) displacement responses 𝑥1, 𝑥2 and 𝑥3 

 

 

For the simulation of displacement measurements, a total of 25 signals are simulated at each 

DOF by varying NSR and the sampling rate. The NSR value is varied from 0 to 0.5, 1.0, 1.5 and 

2.0 %, and the sampling rate from 10 to 5, 3.3, 2.5, 2 Hz. These sampling rates are equivalent to 𝑁 

values of 10, 20, 30, 40 and 50, respectively. Bias in the displacement measurement is not 

considered because its contribution to displacement estimation is negligible. When the precision 

and sampling rate of typical laser distance-meters (2-3 mm precision, and below 10 Hz sampling 

rate) are considered, the characteristics of these laser distance-meters are similar to the simulation 

case with 𝑁 = 10 and NSR = 1.0% (Blais 2004). 

The performance of the proposed technique is compared with those of the previous techniques 

proposed by Smyth and Wu (2007) and Kim et al. (2014), which are denoted as Technique I and 

Technique II respectively hereafter. Note that Techniques I and II include online and offline 

smoothing algorithms, respectively. However, the smoothing algorithms in these techniques are 

not included in the accuracy comparison of the three techniques performed in this study. The 

smoothing algorithms are applied to Techniques I and II only when the computational times for 

achieving the same level of accuracy as the proposed technique are compared.  

The displacement estimation performances of the proposed technique, Techniques I and II are 

compared. Fig. 6 shows the root mean square (RMS) error between the displacement estimated by 

one of these estimation techniques and the reference displacement. The RMS error of the proposed 

technique is smaller than those of Techniques I and II. Even for the worst case scenario (i.e., 𝑁 = 

50 and NSR = 2%), the RMS error of the proposed technique does not exceed 0.25 mm, which 

corresponds to 4.26% of the overall response level. On the other hand, the RMS error of Technique 

I rapidly increases as NSR and 𝑁 increase. (Fig. 6(a)). This indicates that the estimate of 

Technique I is more sensitive to both NSR and 𝑁 than the other techniques. Technique II is less 

sensitive to 𝑁 and NSR, but its estimation accuracy is not as good as that of the proposed 

technique. 

One of the advantages of the proposed technique is that it reduces the RMS error especially at 

the beginning of the estimated displacement signal compared to Techniques I and II. As discussed 

in Section 1, the estimation error at the beginning of the time signal can not only deteriorate 

estimation accuracy, but also result in a permanent drift especially when NSR and 𝑁 are high. In 

Fig. 7(a), Technique I produces a drift error, since the estimation error at the beginning of the 

displacement estimate is accumulated during estimation. Also, Technique II shows a higher initial 

estimation error than the proposed technique, as shown in Figs. 7(b) and 7(c).  
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Fig. 6 RMS error between the reference displacement and the displacement estimated by (a) Technique I, 

(b) Technique II, and (c) the proposed technique 
 

 

Next, the computational times of the techniques required to achieve the same level of 

displacement accuracy are compared. In the comparison, CPU times of the proposed technique are 

first measured without smoothing using MATLAB in a 64 bit computer environment for all cases. 

Then, CPU times of Techniques I and II incorporated with online Rauch-Tung-Striebel (RTS) 

smoothing algorithm are measured for the same cases. Here, the time delays for the smoothing 

algorithm are determined so that the RMS errors of Techniques I and II are closest to that of the 

proposed technique. Considering the average of all compared cases, the CPU time of the proposed 

technique is 0.526 second on average, while the CPU times of the Techniques I and II are 1.258 

and 0.865 sec. The result indicates that the proposed technique reduces the CPU time by 58.2% 

and 39.2% compared to those of Techniques I and II, respectively. 

Because the acceleration bias at the beginning of the estimate is double integrated and affects 

the displacement estimation, the bias error accumulates over time in the displacement estimate, 

and produces a permanent drift error. Therefore, it is also important to make sure that the estimated 

bias value converges to the exact one as soon as possible. Fig. 8 shows the bias estimated by the 

proposed technique converges to the exact bias value of -5 mm/s
2
 faster than the bias estimated by 

Technique II. 
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Fig. 7 Displacement 𝑥1 estimated by (a) Technique I, (b) Technique II and (c) the proposed technique 

(left) and their magnified plots in 0 to 10 s (right), when 𝑁 = 10 and NSR = 1% 

 

 

 

Fig. 8 The bias estimated by (a) Technique II and (b) the proposed technique 
 

 

Another advantage of the proposed technique is that it alleviates sudden discontinuities at the 

posterior correction steps where estimates are corrected by intermittent displacement 

measurements. The discontinuities are unavoidable in the previous techniques, and the only 

remedy to remove the discontinuities is the application of a smoothing algorithm, which raises the 

other problems as discussed in Section 1. Fig. 9 shows the discontinuities in the displacement 

estimated by the three techniques when no smoothing algorithm is applied. Technique I shows the 

highest level of discontinuities. The sudden discontinuities are reduced in Technique II, because 

the bias estimate remains constant and does not grow until the next posterior correction step. By 

estimating the bias more precisely and faster in Stage 2, the proposed technique further lessens the 

discontinuities successfully. The RMS errors for Techniques I and II and the proposed technique 

are 0.87, 0.17, 0.15 mm, respectively. 
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Fig. 9 Discontinuities in the displacement observed at the posterior correction time steps (marked with 

dashed circles) by (a) Technique I, (b) Technique II and (c) the proposed technique. (𝑥2, 𝑁 = 50 and NSR 

= 0.5%) 

 

 

Fig. 10 Before explaining each subfigure. We need an overall description of Fig 10: (a) Displacement 

estimate in Stage 1, (b) 𝑉(𝑘) estimate in Stage 2, (c) bias estimate in Stage 2, (d) the product of bias and 

discontinuities (𝑉(𝑘)𝑏(𝑘)), and (e) the final estimate of displacement (𝑥̃2(𝑘) − 𝑉(𝑘)𝑏(𝑘)) 
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Fig. 10 shows the estimation results of Stages 1 and 2 and the final displacement estimate 

obtained by the proposed technique. Stage 1 estimates the displacement, which is technically the 

same as the estimate of Technique I, since both estimators do not consider the bias in acceleration 

measurement. Similar to Fig. 7(a), the displacement estimate of Stage 1 has a permanent drift error 

and discontinuities as shown in Fig. 10(a). However, Stage 2 precisely estimates not only the drift 

error but also the discontinuities. Figs. 10(b) and 10(c) shows 𝐕(𝑘) and 𝑏(𝑘) estimated in Stage 

2. Here, the discontinuities and the bias in acceleration measurement are effectively estimated 

through 𝐕(𝑘) and 𝑏(𝑘). As a result, the error in Stage 1 is estimated as the form of 𝐕(𝑘)𝑏(𝑘) 

(Fig. 10(d)), and removed from Stage 1 estimate for the final displacement estimate (Fig. 10(e)). 

 

 

4. Experimental verification 
 

A series of experiments were conducted to verify the performance of the proposed technique 

for various types of displacements in practice. The structure and sensors used in the experiments 

are shown in Fig. 11. Target displacement was measured from a cantilever beam, which has a 

dimension of 40 cm × 2 cm × 2 mm and made of mild steel. A mass of 0.21 kg is attached on the 

top of the beam, and the displacement of the mass is measured. APS 400 Electro-seis vibration 

exciter is connected to the beam via a slender steel rod. A PCB Piezotronics 352C33 accelerometer, 

which has a mass of 21.8 g including the mass of its magnet mount, is attached on the mass for 

acceleration measurement. To measure displacement of the mass, Polytec PSV-400 scanning 

vibrometer is used. This laser Doppler vibrometry (LDV) emits a laser beam to the opposite side 

of the mass where the accelerometer is attached. The displacement measured by Optex-FA CD-4 

350 laser displacement sensor (LDS), which is installed on the same side as the accelerometer, is 

used as the reference (ground true) displacement. The sampling rate of the accelerometer and the 

LDS is set to 1280 Hz. On the other hand, the displacement measured by LDV is down sampled at 

128 Hz (𝑁 = 10) to mimic the low sampling rate of other typical noncontact displacement sensors 

such as GPS and commercial laser distance-meter. 

 

 

 

Fig. 11 Sensors and actuator used in the experiments: (a) overall configuration, (b) cantilever beam and 

accelerometer, (c) vibration exciter, (d) LDV and (e) LDS 
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Fig. 12 The measured acceleration and displacement responses corresponding to nine different loading 

cases: (a) measured acceleration, (b) LDV displacement measurement and (c) LDS displacement 

measurement 

 

 

 
Table 1 Loading cases in the experiments 

Loading case Description 

1 2 Hz sinusoidal excitation 

2 Random excitation with 0 – 20 Hz frequency band 

3 Chirp excitation of 1 – 8 Hz 

4 0.05 Hz sinusoidal excitation to represent pseudo-static excitation 

5 Impulse excitation 

6 2Hz sinusoidal excitation + pseudostatic excitation 

7 Random excitation + pseudostatic excitation  

8 2Hz sinusoidal excitation + permanent displacement 

9 Random excitation + permanent displacement 
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The dynamic response of the mass is generated by exciting the cantilever beam using the 

vibration exciter. Nine different loading cases are generated as shown in Table 1. Each loading 

case is designed carefully to verify the performance of the proposed technique. A sinusoidal input 

is applied to the beam in Case 1. Cases 2 and 3 are designed to examine the performance of the 

proposed technique for a broadband frequency range. Pseudo-static and impact loadings are 

applied in Cases 4 and 5, respectively. Mixtures of dynamic and pseudo-static loadings are applied 

in Cases 6 to 9. Here, pseudo-static loadings are generated by pushing the mass manually, and the 

permanent displacements shown in Cases 8 and 9 are formed by removing rubber bands which 

provide restoration force to the vibration exciter and applying manual force to the vibrating part of 

the exciter. Note that the displacements corresponding to loading Cases 4 to 9 may have nonzero 

mean displacements, which do not satisfy the assumptions made in the baseline correction and 

displacement reconstruction techniques mentioned in Section 1. Fig. 12 presents the acceleration 

records measured by the accelerometer and the displacements measured by LDV and LDS. 

Fig. 13 demonstrates that the proposed technique closely trace the reference displacements in 

all loading cases despite of the nonzero-mean displacement. Table 2 compares the RMS error of 

the proposed technique with the ones by Techniques I and II. The RMS error of the proposed 

technique is reduced by 86% and 57% compared to the RMS errors of Technique I and II, 

respectively. Technique I does not estimate the displacement properly due to its limitation 

discussed in Section 3. Also, Technique II makes less accurate estimates than the proposed 

technique, because of its relatively high initial estimation error and remaining discontinuities. Fig. 

14 shows that the initial overshooting of the bias estimate is significantly reduced when the 

proposed technique is used over Technique II. The reduction of this bias error has the biggest 

contribution to the performance improvement of the proposed techniques as illustrated in Table 2. 

 

 
Table 2 Comparison of the RMS errors and relative errors of the displacements estimated by three 

techniques 

Case # 

Technique I Technique II Proposed technique 

RMS error 

(mm) 

(%) RMS error (mm) (%) RMS error 

(mm) 

(%) 

1 0.937 621 0.293 194 0.151 100 

2 0.364 1916 0.035 184 0.019 100 

3 0.247 1300 0.039 205 0.019 100 

4 0.185 370 0.098 196 0.050 100 

5 0.287 2870 0.022 220 0.010 100 

6 0.410 423 0.160 165 0.097 100 

7 0.246 273 0.010 111 0.009 100 

8 2.400 764 0.979 312 0.314 100 

9 0.446 314 0.204 144 0.142 100 

Avg 0.614 714 0.199 231 0.086 100 
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Fig. 13 Comparison of the displacements estimated by the proposed technique and the reference 

displacements measured by LDS 
 

 

 

Fig. 14 Comparison of the bias estimated for Case 4 by (a) Technique II and (b) the proposed technique 
 

 

5. Conclusions 
 

This study presents a two-stage Kalman estimator, which estimates high-accuracy dynamic 

displacement by combining high-sampling rate acceleration data with low-sampling rate 

displacement measurement. The proposed technique (1) effectively reduces the estimation error 
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particularly at the beginning of the estimated displacement time signal and the resultant permanent 

drift error, (2) allows faster convergence of the estimated bias in acceleration measurement into the 

true value, (3) minimizes the signal discontinuities in the estimated displacement at the posterior 

correction steps where intermitted displacement is measured, and (4) allows real-time dynamic 

displacement estimation without smoothing. The performance of the proposed technique is 

verified and compared with the performance of the previous Kalman filter based techniques under 

various conditions via a series of numerical simulations and experiments. When the proposed 

technique is applied to experimental test data obtained from a cantilever beam, the accuracy of the 

displacement estimation is improved by 86% and 57% compared to the ones estimated by 

Technique I (Smyth and Wu 2007) and II (Kim et al. 2014), respectively. 
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