
 

 

 

 

 

 

 

Smart Structures and Systems, Vol. 16, No. 6 (2015) 1147-1167 

DOI: http://dx.doi.org/10.12989/sss.2015.16.6.1147                                               1147 

Copyright ©  2015 Techno-Press, Ltd. 

http://www.techno-press.org/?journal=sss&subpage=8         ISSN: 1738-1584 (Print), 1738-1991 (Online) 
 
 

 

 
 
 
 

Closed-loop structural control with real-time smart sensors 
 

Lauren E. Linderman
1 and Billie F. Spencer Jr.2a 

 
1
Department of Civil, Environmental, and Geo- Engineering, University of Minnesota,  

500 Pillsbury Drive S.E., Minneapolis, MN 55455, USA  
2
Department of Civil and Environmental Engineering, University of Illinois,  

205 N. Mathews Ave., Urbana, IL 61801, USA 

 
(Received April 22, 2014, Revised June 4, 2015, Accepted November 15, 2015) 

 
Abstract.  Wireless smart sensors, which have become popular for monitoring applications, are an 
attractive option for implementing structural control systems, due to their onboard sensing, processing, and 
communication capabilities. However, wireless smart sensors pose inherent challenges for control, including 
delays from communication, acquisition hardware, and processing time. Previous research in wireless 
control, which focused on semi-active systems, has found that sampling rate along with time delays can 
significantly impact control performance. However, because semi-active systems are guaranteed stable, 
these issues are typically neglected in the control design. This work achieves active control with smart 
sensors in an experimental setting. Because active systems are not inherently stable, all the elements of the 
control loop must be addressed, including data acquisition hardware, processing performance, and control 
design at slow sampling rates. The sensing hardware is shown to have a significant impact on the control 
design and performance. Ultimately, the smart sensor active control system achieves comparable 
performance to the traditional tethered system. 
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1. Introduction 
 

Structural control systems offer an alternative to traditional design to limit structural response 

to extreme loading, including earthquake and wind. In feedback control systems, a supplemental 

device is used in conjunction with measurement feedback to offer improved performance over a 

larger frequency bandwidth and variety of loading (Housner et al. 1997). Independent of the 

supplemental device used, the closed-loop digital control system consists of sensors, i.e., 

displacement or acceleration, sensor processing, control calculation, and control application. Early 

research in the field of structural control addressed challenges in the digital control loop, including 

quantization, time delay, and model size, to successfully implement and improve performance of 

control strategies (Soong 1990, Sain et al. 1992, Chu et al. 1995, Dyke et al. 1996). However, as 

computer and sensor performance has improved, the initial challenges of implementing digital, 

structural control have become avoidable.   
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Recently, wireless smart sensors have become an exciting approach for monitoring of civil 
infrastructure. As smart sensors become cheaper and research in the area continues, dense 
deployments have been encouraged (Jo et al. 2011). These wireless smart sensors include onboard 
processing, memory, communication, and sensor interfaces. Their onboard capabilities in 
combination with an actuation interface make wireless sensor networks (WSN) an attractive 
alternative to tethered systems for control applications as well (Lynch and Loh 2006). However, 
wireless smart sensors pose inherent challenges for control, including communication delays, 
processing time, and unreliable communication. Thus, the use of WSN for structural control 
requires reexamination of challenges in the digital control loop, particularly sample rate, system 
model for design, and delay compensation. 

One key challenge for wireless control is the sampling rate performance of the system. Several 
components of the wireless control loop impact the overall sampling rate: wireless communication, 
data acquisition, and processing time. For centralized wireless sensor data feedback, a 
time-division-multiple-access approach (TDMA) is often used to improve communication 
reliability and offer consistent performance (Linderman et al. 2013). Consequently, as the number 
of nodes in the network increases, the overall sampling rate goes down. Independent of wireless 
feedback, the type of analog to digital converter (ADC) and processing performance can have a 
significant impact on sampling rate performance. A pipeline style ADC can introduce as much as 
30 milliseconds of latency in data acquisition (Linderman et al. 2015). Lynch et al. (2008) present 
the resulting wireless control sampling rate on a three-story structure fitted with MR dampers 
when communication and processing are considered. The sampling rate for the wireless system, 
12.5 Hz, is significantly lower than the tethered system, 200 Hz. 

As illustrated by Lynch et al. (2008), a slow sampling rate can negatively impact the 
performance of your control system. An absolute minimum for control is to sample at a rate at 
least twice the system bandwidth to avoid aliasing of the higher dynamics (Franklin et al. 1998). 
However, to approximate a discrete control system as continuous, the sample rate should be about 
thirty to fifty times the highest mode of interest (Hirata and Powell 1990; Franklin et al. 1998). 
Otherwise, the discrete sample time should be considered in the modeling, because lower sampling 
rates can lead to poor disturbance rejection and may result in a large time delay between the 
measurement and control application (Hirata and Powell 1990). For active control systems, the 
results of slow sampling rates and delays can be more severe, causing the control system to go 
unstable (Chu et al. 2002).  

Research in wireless control has focused on semi-active systems, which are guaranteed to be 
stable, so the sampling performance does not need to be directly accounted for in the design. 
However, the impact of the sampling rate is evident in the performance of the controllers. Despite 
more system knowledge, the experimental wireless systems with communication do not perform 
as well as wired due to the low sampling rates (Wang et al. 2006, Lynch et al. 2008). A 
decentralized control system, which requires little to no communication feedback, often offers 
comparable performance to the wired system because of the higher sampling rate (Wang et al. 
2006, Wang et al. 2007). In general, consideration of the sampling rate and time delay in the 
design also offers an improvement in performance (Loh et al. 2007, Wang et al. 2007). Therefore, 
even for stable systems, sampling rate is not the sole consideration, but time delays and acquisition 
should be considered in the design as well. 

To date, the only reported use of wireless sensors for active structural control has been by 
Casciati and Chen (2012), who examined centralized control of a three-story, steel structure fitted 
with an active mass driver (AMD). The wireless system is able to achieve comparable 
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2.1 Sensing interface 
 
The Imote2 platform does not provide an onboard ADC, instead allowing it to interface with a 

user-selected sensor board over its basic connectors. Two sensor boards are considered in this 
study to compare performance for control applications. The first, designed for SHM applications, 
offers high-sensitivity accelerometers and high-resolution analog-to digital conversion (ADC). The 
second is tailored for low-latency, real-time applications. 

 
2.1.1 SHM-A sensor board 
Although designed for monitoring applications, the SHM-A was selected for this work among 

commercially available sensor boards due to its high-sensitivity accelerometers, high-resolution 
ADC, and user-selectable sensing parameters (Rice and Spencer 2009). The sensor board, shown 
in Fig. 2(a), includes a three-axis accelerometer (ST Microelectronics LIS344ALH), temperature 
and humidity sensor (Sensiron SHT11), light sensor (TAOS 2561), and an external 16-bit analog 
input. The four analog signals interface with a 16-bit oversampling, pipeline type ADC 
(QF4A512), which offers user selectable anti-aliasing filters and sampling rates. 

 
2.1.2 SHM-SAR sensor board 
The SHM-SAR, designed for low-latency applications, is considered for this work due to its 

ADC architecture, user selectable sampling rate, and the flexibility of the sensor interface 
(Linderman et al. 2015). The SHM-SAR, shown in Fig. 2(b), offers four analog inputs or an 
onboard three-axis accelerometer (ST Microelectronics LIS344ALH), which can be selected using 
a switch. The onboard ADC is a Successive Approximation Register (SAR) type, which completes 
the conversion within one sampling interval using a binary search algorithm. In comparison to 
pipeline-style ADCs that are more common in SHM applications, the latency due to the hardware 
alone is reduced from 30 milliseconds to on the order of a couple hundred microseconds 
(Linderman et al. 2015). Therefore, this ADC introduces almost no latency in the control system. 

 
2.2 Actuation Interface 
 
The control loop is completed with an actuation board that interfaces with the Imote2. The 

SHM-D2A, shown in Fig. 3, converts a command calculated on the Imote2 to an analog output 
voltage. The board uses a four-channel DAC (TI AD8565) that offers comparable resolution and 
speed to the SHM-SAR; thus, no performance is lost by the actuation interface (Linderman et al. 
2015). Because the Imote2 offers two SPI interfaces, the actuation board can easily be combined 
with a data acquisition board by stacking them. Fig. 3 illustrates the SHM-D2A stacked on the 
SHM-SAR and Imote2 for combined sensing and actuation. 

 
2.3 Embedded software 
 
As with many wireless sensor platforms (Lynch and Loh 2006), the Imote2 uses the TinyOS 

operating system, which is tailored to the specific requirements of wireless sensor network 
applications. The TinyOS operating system supports an event-driven concurrency model, in which 
tasks are completed in a first-in-first-out (FIFO) manner along with interrupts (Levis et al. 2005). 
Thus, two main execution methods are possible: a task posted to a queue and an asynchronous 
interrupt. 
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as shown in Fig. 5 for the SHM-A, a tightly timed approach is used to maintain consistent 
actuation command intervals. Alarms are set at a specified interval after the sensing event to 
maintain better scheduling of the actuations. Additionally, the estimation and control gain 
calculations were broken up to limit the processing time of each task and care was taken to ensure 
their accuracy. The predictor-corrector formulation of the Kalman filter allows the time update of 
the estimate, or prediction, to be calculated separately from the measurement update, or correction. 
This application framework maintains consistent sampling and actuation times while addressing 
the limitations of the operating system. 

 
 

 
Fig. 4 Application Flowchart for Localized Control on WSN 

 
 

 
Fig. 5 Sensing and Command Flowchart for Controller Node within Localized Control with an SHM-A 
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3.2 Control design sampling rates 
 
Three control systems are compared on the experimental setup: wired, Imote2+SHM-A, 

Imote2+SHM-SAR. Each system will operate at a different sampling rate based on the data 
acquisition approach and processing requirements. The wired system has no significant limitations 
on the possible sampling rate, so the wired control system will operate at 1000 Hz and can be 
approximated as continuous. As a result, this section will focus on the sampling rates for the two 
smart sensor systems. 

As discussed in Section 2, the major difference between the two smart sensor systems is the 
data acquisition approach and the resulting sampling rate performance. The oversampling, pipeline 
style ADC on the SHM-A results in at least a 30 millisecond delay between a sample being taken 
and its availability on the processor (Linderman et al. 2015). On the other hand, the single-shot 
style ADC on the SHM-SAR limits the latency to about 200 microseconds (Linderman et al. 2015). 
This variation is sample availability on the processor impacts both the control software design on 
the Imote2 and the overall sampling rate of the control system. Ultimately, the sampling rate on 
the Imote2+SHM-A system is 25 Hz, which accounts for the 30-millisecond sampling delay, 
processing time, and any additional timing variations on the processor. On the other hand, the 
sampling latency on the SHM-SAR is almost negligible, so the sampling interval is entirely 
dependent on the processing time required; the resulting sampling rate for the Imote2+SHM-SAR 
is 950 Hz. 

 
 
4. Discrete control design at slow sampling rates 
 

An experimental control implementation typically requires a discrete-time representation of the 
controller. For systems with slow sampling rates or delays, a discrete-time control design can be 
essential. Because the Imote2+SHM-A smart sensor control system runs at a slow sampling rate, a 
discrete-time controller is necessary. Beyond ensuring the bandwidth of the system to be 
controlled is below the Nyquist frequency, the two important considerations for the performance 
of the discrete control design include: a discrete-time representation of the system and the 
inclusion of delays within the system model.  

 
4.1 Discrete-time representation of the system to be controlled 
 
Three common transformation techniques are used to develop discrete-time equivalents based 

on numerical integration (Franklin 1998); these techniques are illustrated in Fig. 8. The forward 
rectangular rule, or zero-order hold (ZOH), can create an unstable system because the resulting 
discrete-time poles do not necessarily lie within the unit circle. The backward rectangular rule 
forces the poles within the right-half plane of the unit circle. The trapezoid rule, commonly known 
as the Tustin method, always results in a stable system because the resulting poles must lie within 
the unit circle; however, this transformation can result in significant distortion. Another approach 
is an algorithm that tries to match the zero-pole equivalent in a discrete system and match the gain 
at the origin. All these approaches have advantages and disadvantages, but the two most common 
transformation approaches that will be addressed in this section is the ZOH and Tustin 
transformation. 
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                (1) 

where ud is the delayed input,  is the discrete-time state transition matrix,  is the discrete-time 
input matrix, x is the system state, and y is the measurement output at each step, k . Although the 
augmented state transition matrix is no longer full rank, the augmented system does satisfy the 
conditions for a solution to the linear quadratic regulator (LQR) control problem. This 
discrete-time state augmentation approach is the best solution for implementing an input delay 
within the system model and results in good compensation performance in simulation and 
experiments, as illustrated in section 6. 

 
 

5. Control designs 
 
5.1 Wired continuous control design 
 
A wired control system is developed for comparison with the smart sensor implementation. 

Because the wired system operates at 1000 Hz, the wired system can be approximated as 
continuous. Therefore, this section presents the continuous control design that is implemented on 
the wired system. 

Acceleration feedback has been shown to be effective in active structural control (Dyke et al. 
1996, Spencer et al. 1998). Because acceleration measurements can be reliable and inexpensive, 
the system will use the story acceleration response as the primary measurement for control of the 
structure. Therefore, the control design will combine a Kalman estimator and linear quadratic 
regulator control design. A block diagram of the complete closed-loop system is given in Fig. 12. 
Furthermore, because the capacitive accelerometer provides a flat frequency response over the 
range of interest and zero phase lag, the sensor dynamics will be neglected in the design. 

The LQR control design uses acceleration weighting to minimize the acceleration. To 
implement the acceleration weighting, the traditional LQR cost function is altered to 

J  yQy  uRu dt
0




 

                            (2) 

 

Fig. 12 Block Diagram of the Active Feedback Control System 
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where y is the acceleration output, Q is the relative weighting on the measurement, u is the control 
effort, and R is the weighting on the control effort. For the control design in this case, the ratio of 
Q/R is varied and the root-mean-square (RMS) of the acceleration response and the control effort 
are determined based on numerical simulation. In simulation, the AMD is used to excite the 
structure prior to switching from excitation to control. The RMS of the acceleration normalized by 
the uncontrolled response is plotted versus the RMS of the control effort in Fig. 13. As the control 
force weighting, R, decreases, the additional control effort actually causes a worse response than 
the uncontrolled. The control design that resulted in a minimum response was selected; the 
selected controller design is highlighted with a red ‘x’ in Fig. 13. The associated Q and R values 
are 

 Q  1      R  0.9955  
An estimator is required to reconstruct the full-state response of the system based on the 

acceleration measurement. Because the process noise is hard to estimate within the system, the 
final estimator design is determined experimentally. A range of estimator designs is determined 
analytically and then applied experimentally with the same LQR control design. The estimator 
weightings that results in the best performance of the complete control system is selected as 

 
 
5.2 Discrete control design for smart sensor implementation with the SHM-A 
 
A discrete control design was developed for the Imote2 wireless smart sensor fitted with an 

SHM-A. As described in section 3.3, after combining the sensor latency with processing latency, a 
sampling interval of 40 milliseconds was selected, or a sampling rate of 25 Hz. Due to this slow 
sampling rate, a discrete control design is necessary. Following the design guidelines presented in 
section 4, a zero-order-hold discrete transformation of the system was determined that included an 
input delay through state augmentation. 

Similar to the continuous control design, accelerometer weighting was used for the optimal 
discrete LQR control design. In numerical simulation, the AMD was again used to excite the 
structure prior to switching to control. The RMS acceleration normalized to the RMS uncontrolled 
response and RMS control effort is tabulated for a range of Q/R ratios. The normalized RMS 
acceleration response is plotted against the RMS control effort in Fig. 14. The control design 
selected minimizes the normalized RMS acceleration and is highlighted in Fig. 14 with a red ‘x’. 
The control design response weighting, Q, and control effort weighting, R, are 

 

Therefore, the discrete control design results in a significantly different weighting design and 
subsequent control gain than the continuous system. 

The accelerometer on the SHM-A was used for control feedback, due to its ease of 
implementation and the previous success with acceleration feedback in active structural control. A 
predictor-corrector formulation of the discrete-time Kalman filter was used for estimation. Similar 
to the continuous design, a range of estimators determined analytically were experimentally 
implemented to determine the best estimator given the process and sensor noise in the system. The 
estimator that resulted in the best overall control performance was selected. The resulting process 

Sw  1     Sv  10 

Q  1      R  2.6727 
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and sensor noise weightings are 

 

The larger noise weighting is due to the higher noise floor of the accelerometer on the SHM-A in 
addition to the noise added through aliasing during decimation. As expected, the resulting 
discrete-time design differs from the continuous control design. 

 
 

 
Fig. 13 Summary of Continuous LQR Control Designs with Selected Design Highlighted 

 
 

 

Fig. 14 Summary of Discrete LQR Control Designs for SHM-A with Selected Design Highlighted 
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5.3 Discrete control design for smart sensor implementation with SHM-SAR 
 

In addition, a discrete control design was developed for the Imote2 wireless smart sensor fitted 
with an SHM-SAR data acquisition board. Given the limited latency in data acquisition, a 
sampling rate of 950 Hz was selected. Although this sampling rate is comparable to the wired 
system, a discrete control design approach was used because it will ultimately be implemented on 
the smart sensor platform. The control application uses the discrete-time predictor-corrector 
formulation of the Kalman Filter. In addition, an input delay was included in the design to account 
for the one sample delay in the control application. Following the design guidelines presented in 
section 4, a zero-order-hold discrete transformation of the system that included an input delay 
through state augmentation was used for design. 

Similar to the previous discrete control design, the normalized RMS acceleration response and 
the corresponding RMS control effort was determined. The control design that minimized the 
normalized RMS acceleration response was selected. The control design response weighting, Q, 
and control effort weighting, R, are 

 

As the sampling rate increases, the control design will approximate the continuous control design 
with an input delay. 

A wired accelerometer was used for control feedback in conjunction with the SHM-SAR, due 
to its ease of implementation, previous success, and for comparison with the other control systems. 
A predictor-corrector formulation of the Kalman filter was used for estimation on the Imote2. 
Similar to the previous designs, the estimator that resulted in the best overall control performance 
was selected. The resulting process and sensor noise weightings are 

 

The noise weighting is the same as the wired design, because the same accelerometer is used and 
little additional noise is added due to the SAR-based data acquisition. However, the resulting 
estimator gain matrix is different due to the discrete-time time design, as expected. 
 
 
6. Experimental results 
 

The previous control designs have been implemented on the single-story experimental structure 
to validate the use of the smart sensor platform for active structural control. Five different 
configurations were considered for the validation: uncontrolled, zeroed control, wired control, 
smart sensor control with the SHM-A, and smart sensor control with the SHM-SAR. For the 
uncontrolled configuration, the AMD was fixed to the side of the structure; therefore, the 
additional mass due to the cart was still present but otherwise did not influence the response. In 
zeroed control, a zero displacement command was issued to the AMD.  Schematics of the wired 
and smart sensor control experimental setups are provided in Figs. 15(a)-15(c), respectively. In the 
schematics, the solid red lines represent analog signals and the dashed red line represents the 
digital encoder signal. The blue lines represent the computer control calculations and the green 
lines represent the smart sensor node. 

 

Q  1     R  1.1697 

Sw  1     Sv  10 
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accelerometer calibration and the resolution of the MultiQ A/D. The offset and scale factors of the 
x-axis on the SHM-A accelerometer were determined using static calibration (Jang and Rice 2009). 
Because the model was not originally identified using the SHM-A, the accelerometer 
measurements must be scaled appropriately for successful control implementation. The second 
consideration is the resolution of the MultiQ A/D. Because the required AMD displacements are 
small values when scaled in meters, the full voltage range of the MultiQ A/D input is not used; 
therefore, the 12-bit resolution of the MultiQ ADC is an issue. The output was multiplied by 10 on 
the Imote2 prior to conversion to obtain better resolution of the command input and stay within the 
output range of the SHM-D2A. 

Similarly, for the smart sensor experimental implementation with the SHM-SAR (Fig. 15(c)), 
the wired accelerometer output, span of the SHM-SAR A/D, and the resolution of the MultiQ A/D 
need to be considered. In this case, a wired accelerometer is used and output has to be 
appropriately shifted and scaled for use with the data acquisition board. The capacitive 
accelerometer offers the ability to shift the DC offset to 1.25 V, or the mean of the input voltage 
range. The mean value is then removed in software on the Imote2 prior to control calculations. The 
control output is again multiplied by 10 on the Imote2 prior to conversion to obtain better 
resolution of the command input on the MultiQ A/D and stay within the output range of the 
SHM-D2A. 

In the experiment, an initial displacement was applied to the structure and then released to 
obtain the free response of the structure for each control configuration. A comparison of the 
responses for the five configurations is provided in Fig. 16 and the normalized RMS acceleration 
response is given in Table 2. The uncontrolled response, shown in blue, reflects the general 
damped free response of a structure. The zeroed response, shown in red, has a significantly faster 
decay in the response than the uncontrolled. Therefore, the AMD with a zero command introduces 
significant damping to the system due to the friction and slight motion of the AMD. The wired 
system, shown in cyan, achieves a significant reduction in the response. The smart sensor system 
with the SHM-A, shown in green, achieves comparable performance to the wired system; however, 
the performance is not as good initially. This result is likely due to the slow sampling rate. The 
smart sensor system with the SHM-SAR, shown in pink, performs as well as the wired system. 
Thus, the discrete-time control implementation on the smart sensor was able to achieve a similar 
reduction in the response as the continuous-time wired controller. Additionally, the new data 
acquisition hardware developed for wireless structural control (SHM-SAR) outperforms the 
SHM-A. 

In both controlled cases, the control predominantly occurs during the beginning of the response. 
As shown in Fig. 16(b), the control effort alters both the magnitude and frequency of the response 
for both the wired and smart sensor systems. The responses during the initial period lie within the 
zeroed control response and then are reduced further. At about three seconds, the control efforts 
are within the friction of the device and the systems return to free response. The smart sensor 
control efforts are significantly lower than the wired system and still achieve comparable 
performance (Fig. 16(c)).  

Overall, the experimental results highlight the successful implementation of active structural 
control using a wireless smart sensor platform. By properly accounting for discrete-time control 
design at slow sampling rates, the smart sensor implementation achieves comparable performance 
to the wired system and no instability occurred. 
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(a) 

(b) 

(c) 

Fig. 16 (a) Comparison of Experimental Response of Small-Scale Setup (b) Zoom Over the Region of 
Control (c) Corresponding Control Command 
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Table 2 Normalized RMS Acceleration Responses for Single-story Experimental Setup 

Experimental Configuration RMS Acceleration Response Normalized to 
Uncontrolled 

Zeroed Control 0.642 

Smart Sensor Control - SHM-A 0.482 

Smart Sensor Control - SHM-SAR 0.398 

Wired Control 0.399 

 
 
7. Conclusions 
 

This work addresses control design at slow sampling rates, compensation for time delays, and 
the significance of data acquisition hardware in achieving smart sensor based active control. 
Because active control systems do not guarantee stability, their application requires attention to all 
the elements of the control loop, including the design at slow sampling rates, data acquisition 
hardware, and processing performance, which are typically neglected. These elements of an active 
control loop are presented in the context of a single-story structure fitted with an active mass 
damper. Two different types of digital-to-analog converters are considered to highlight the 
significance of data acquisition and hardware in using wireless sensor networks for control. The 
resulting slow sampling rate of smart sensor nodes requires careful consideration of the system 
model and delay representation used for design. The two smart sensor control systems offer good 
experimental control performance. In addition, the lower-latency data acquisition approach 
achieves equal performance to the wired system used as a baseline, underscoring the importance of 
thoughtful control design and hardware selection. 
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