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Abstract.  Piezoelectric coefficient and dielectric constant of PZT-5H vary with electric field. In this work, 
variations of these coefficients with electric field are included in finite element modelling of a cantilevered 
plate instrumented with piezoelectric patches. Finite element model is reduced using modal truncation and 
then converted into state-space. First three modal displacements and velocities are estimated using Kalman 
observer. Negative first modal velocity feedback is used to control the vibrations of the smart plate. Three 
cases are considered v.i.z case 1: in which variation of piezoelectric coefficient and dielectric constant with 
electric field is not considered in finite element model and not considered in Kalman observer, case 2: in 
which variation of piezoelectric coefficient and dielectric constant with electric field is considered in finite 
element model and not considered in Kalman observer and case 3: in which variation of piezoelectric 
coefficient and dielectric constant with electric field is considered in finite element model as well as in 
Kalman observer. Simulation results show that appreciable amount of change would appear if variation of 
piezoelectric coefficient and dielectric constant with r.m.s. value of electric field is considered. 
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1. Introduction 
 

Technique of controlling structural vibrations by using external source of energy is called 

“Active Vibration Control” (AVC). Such structures exhibit desired dynamic characteristics even in 

presence of external load or changes in environment and are called smart structures (Cao et al. 

1999). A smart structure (actively controlled structure) essentially consists of sensors to capture 

structural displacements, processor to manipulate sensor signal and actuators to bring about 

change in smart structure as per orders of the processor (Malgaca et al. 2009). In smart structures 

piezoelectric patches have been widely used as sensors as well as actuators. Piezoelectric materials 

have coupled electromechanical properties. When mechanical stress is applied on a piezoelectric 

material, electrical voltage is generated and when electrical voltage is applied across a 

piezoelectric material, mechanical strain is produced. Electromechanics of piezoelectric materials 

is expressed in form of constitutive equations (ANSI/IEEE std. 1987, Cady 1964, Ikeda 1996). 

Stress and electric displacement developed in a piezoelectric material are also dependent on 
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variables such as temperature, electric field, humidity (moisture), age, hysteresis etc (Apte and 

Ganguly 2009, Birman 2005, Smittakorn and Heyliger 2000, Wang et al. 1998). Piezoelectric 

coefficient and dielectric constant of piezoelectric materials vary with change in these parameters. 

Active vibration control of a cantilevered plate instrumented with piezoelectric patches can be 

made robust to variations in temperature by considering variation of piezoelectric coefficient and 

permittivity with temperature in Kalman observer (Gupta et al 2011, Gupta et al. 2012). 

Piezoelectric coefficient and dielectric constant primarily determine applicability of a piezoelectric 

material as a sensor or an actuator. These constants also vary with change in electric field (Apte 

and Ganguli 2009, Wang et al. 2003, Zhang et al. 1995). A piezoelectric sensor or an actuator 

would not perform as expected if variation in values of piezoelectric coefficient and dielectric 

constant with electric field is ignored. 

Permittivity and relative amplitudes of piezoelectric coefficient „d31‟ increases with increase in 

applied electric field for PZT-5H (Kugal and Cross 1998, Masys et al. 2003, Sirohi and Chopra 

2000). Relative change in „d31‟ i.e. „K1‟ of PZT-5H piezoelectric ceramic can be expressed as a 

function of r.m.s value of applied AC electric field �̃� (kv/cm) as (Apte and Ganguly 2009) 

K1= 1+ 0.1013 �̃� + 0.4125 �̃�2
 - 0.3928 �̃�3

 + 0.1313 �̃�4                   
(1.1) 

Similarly percent increase in dielectric constant (permittivity) i.e., „Ke‟ can be expressed as 

(Apte and Ganguly 2009) 

Ke = 7.32 – 5.9754 �̃� + 5.3187 �̃�2                    (1.2) 

In a smart structure, actuators deform the host structure as per control law. For control laws 

based upon full state feedback knowledge of all the states is required. Many times full state is 

constructed from time response of limited number of sensors using Kalman observer. Responses of 

a piezoelectric actuator and sensor of a smart structure would be wrongly calculated if variation of 

piezoelectric coefficient and permittivity with electric field is ignored in Kalman observer. There is 

no work in literature where in variation of piezoelectric coefficient and permittivity with electric 

field has been considered in structural vibration control of structures using piezoelectric patches. 

Work done in AVC is without considering variation of piezoelectric coefficient and permittivity 

with electric field (Bruant et al. 2001, Hu et al. 2007, Hu 2012, Kim et al. 2013, Li et al. 2014, Lin 

and Huang 1999, Lin and Chan 2013, Li and Narita 2014, Raja et al. 2002, Sharma et al. 2005, 

Shin et al. 2013, Zabihollah 2007, Zhang et al. 2013). There are numerous works in which finite 

element method has been employed to create a mathematical model of smart structure 

instrumented with piezoelectric patches and Kalman observer has been employed to estimate states 

of the smart structure. In all these works, variation of piezoelectric coefficient and permittivity 

with electric field has been ignored. In present work, structural vibrations of a cantilevered square 

plate instrumented with piezoelectric sensor and piezoelectric actuator have been controlled using 

finite element model and Kalman observer which consider variation of piezoelectric coefficient 

and permittivity with electric field. Finite element method based upon Hamilton‟s principle has 

been used to create a mathematical model. Modal truncation has been used to reduce the model 

considering only first three modes of vibration. This reduced model has then been converted into a 

state space model. Kalman observer having knowledge of variation of piezoelectric coefficient and 

permittivity with electric field has been used to estimate all the states of the system. Traditionally, 

control matrix and sensor vector used in the Kalman observer are taken invariant with respect to 

electric field. Present work proposes a novel technique in which control matrix and sensor vector 

of the Kalman observer are made electric-field dependent. Thereafter, negative first modal velocity 
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feedback has been used to control the structural vibrations of the smart structure. Newmark-β 

method has been used to solve system of coupled second order ordinary differential equations. 

Section-2 presents finite element modelling of a smart plate considering variation of piezoelectric 

coefficient „d31‟ and dielectric constant „∊33‟ with respect to r.m.s. value of electric field. Section-3 

has simulation results and in section-4 conclusions are drawn.  

In simulations three distinct cases are possible and therefore have been presented. Case 1 

presents simulations such that variation of piezoelectric coefficient and permittivity with electric 

field is ignored in finite element model as well as in Kalman observer. This case presents 

simulations of smart piezostructure as being done as of now by researchers worldwide. Case 2 

presents simulations such that variation of piezoelectric coefficient and permittivity with electric 

field is considered in finite element model and ignored in Kalman observer. Case 3 presents 

simulations such that variation of piezoelectric coefficient and permittivity with electric field is 

included in finite element model as well as in Kalman observer. 

 

 

2. Mathematical modelling of the smart plate 
 

Consider a cantilevered square plate of length 16 cm, width 16 cm and thickness 0.6 mm as 

shown in Fig. 1. Plate is instrumented with a piezoelectric sensor-actuator pair, polarized in 

thickness direction. The top and bottom surface of each piezoelectric is covered by electrodes. At 

the device location, structure is composite in thickness direction, with two piezoelectric and one 

elastic layer. The arbitrary quadrilateral bending element of plate is adopted in this work for finite 

element formulation and the plate is divided into 64 elements having 81 nodes. Fig. 2 shows the 

element with four node points, one at each corner. At each node three degrees of freedom are 

considered v.i.z displacement „w‟ normal to the plate and two rotations θx and θy. Constitutive 

equations of piezoelectricity in e-form can be written as 

𝐷𝑛 = 𝑒𝑛𝑘𝑙𝜀𝑘𝑙 +∈𝑛𝑚 𝐸𝑚                       (2.1) 

𝜎𝑘𝑙 = 𝑐𝑖𝑗𝑘𝑙 𝜀𝑖𝑗 − 𝑒𝑛𝑘𝑙𝐸𝑛                       (2.2) 

where „𝐷𝑛‟ is electric displacement in „n
th
‟ direction, „𝑒𝑛𝑘𝑙‟ is piezoelectric stress coefficient, „𝜀𝑘𝑙‟ 

is shear strain in „l
th
‟ direction in plane perpendicular to the „k

th
‟ direction, „∈𝑛𝑚‟ is permittivity 

coefficient, „𝜎𝑘𝑙‟ is stress in „l
th
‟ direction in plane perpendicular to „k

th
‟ direction, „𝑐𝑖𝑗𝑘𝑙‟ is 

coefficient of elasticity, „𝐸𝑚‟ is electric field in „m
th
‟ direction and „𝐸𝑛‟ is electric field in „n

th
‟ 

direction. Here „ij‟ & „kl‟ varies from 1to 6 and „n‟ & „m‟ varies from 1 to 3. For thin plate, 

𝜀3 = 0, 𝜀4 = 0 and 𝜀5 = 0. In present case electric field is applied only in 3
rd

 direction therefore 

𝐸1 = 0 and 𝐸2 = 0. Some piezoelectric stress coefficients are zero and 𝑒31 = 𝑒32 for PZT-5H. 

Value of piezoelectric coefficients and permittivity of PZT-5H changes with change in r.m.s 

value of applied electric field. To incorporate this fact in Eqs. (2.1) and (2.2) let us take 𝑒31 =
𝑒31̅̅ ̅̅ +  𝑒31̃, where „𝑒31̅̅ ̅̅ ‟ is the initial value of the piezoelectric coefficient at zero electric field and 

„𝑒31̃‟ is increment in value of the piezoelectric coefficient as  electric field increases. „𝑒31̃‟ is 

function of r.m.s value of applied electric field and can be written using constants „𝑎1‟ and „𝑎2‟ as 

𝑒31̃ = 𝑎1𝐸𝑟𝑚𝑠 + 𝑎2𝐸𝑟𝑚𝑠
2  ,  i.e 

𝑒31 = 𝑒31̅̅ ̅̅ +  𝑒31̃ = 𝑒31̅̅ ̅̅ + (𝑎1𝐸𝑟𝑚𝑠 + 𝑎2𝐸𝑟𝑚𝑠
2 )               (2.3) 

 

1093



 

 

 

 

 

 

Sukesha Sharma, Renu Vig and Navin Kumar 

 

 

 

Fig. 1 Cantilevered smart plate 
 

 

 

 

Fig. 2 Quadrilateral plate element 
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Similarly using constants „𝑎3‟ and „𝑎4‟ 

∈33=∈33̅̅ ̅̅̅+ ∈33̃=∈33̅̅ ̅̅̅+ (𝑎3𝐸𝑟𝑚𝑠 + 𝑎4𝐸𝑟𝑚𝑠
2 )             (2.4) 

where „∈33̅̅ ̅̅ ̅‟ is value of permittivity at zero electric field and „∈33̃‟ is increment in value of 

permittivity as electric field increases. For PZT-5H numerical value of „𝑎1‟ is -4.6e-05, „𝑎2‟ is 

-1.8e-10, „𝑎3‟ is 6.4e-14, „𝑎4‟ is 6.11e-20 and is obtained from graph of variation of piezoelectric 

coefficient „𝑒31‟ and dielectric constant „∈33‟ w.r.t. electric field (Apte and Ganguly 2009). 

Substituting values of „𝒆𝟑𝟏‟ and „∈𝟑𝟑‟ in Eqs. (2.1) and (2.2), we get 

*𝐷+3𝑋1 = ,𝑒1-3𝑋3 *𝜀+3𝑋1 + ,∈1-3𝑋1 𝐸3        (2.5) 

*𝜎+3𝑋1 = ,𝐶-3𝑋3 *𝜀+3𝑋1 − ,𝑒2-3𝑋1 𝐸3                 (2.6) 

Where ,𝑒1- = [
0                                                       0                                                    0
0                                                      0                                                    0 
(𝑒31̅̅ ̅̅ + 𝑎1𝐸𝑟𝑚𝑠 + 𝑎2𝐸𝑟𝑚𝑠

2  )    (𝑒31̅̅ ̅̅ + 𝑎1𝐸𝑟𝑚𝑠 + 𝑎2𝐸𝑟𝑚𝑠
2  )     0 

],  

,∈1- = [
   0                

       0                     
(∈33̅̅ ̅̅̅+ 𝑎3𝐸𝑟𝑚𝑠 + 𝑎4𝐸𝑟𝑚𝑠

2  )     
] , ,𝑒2- = [

(𝑒31̅̅ ̅̅ + 𝑎1𝐸𝑟𝑚𝑠 + 𝑎2𝐸𝑟𝑚𝑠
2 ) 

(𝑒31̅̅ ̅̅ + 𝑎1𝐸𝑟𝑚𝑠 + 𝑎2𝐸𝑟𝑚𝑠
2 ) 

0

],    

,𝐶- = [
𝐶11  𝐶12  0
𝐶12  𝐶22   0
0   0  𝐶66 

] 

Applying Hamilton‟s principle to smart plate shown in Fig. 1 and solving further we get 

equation of motion of one finite element (Gupta et al. 2011, Petyt 1998). As shown in Fig. 1, 

cantilevered plate has 64 elements and 81 nodes. Nine nodes lying on the cantilevered edge of the 

plate can not experience any displacement or rotation. Transverse displacement, rotation about 

x-axis and rotation about y-axis are experienced by each of the remaining 72 nodes. Therefore, 

cantilevered plate has 216 degrees of freedom (3 × 72 = 216). Following the assembly procedure, 

global equations of motion can be expressed as 

,𝑀-216𝑋216 *�̈�+216𝑋1 + ,𝐶-216𝑋216 *�̇�+216𝑋1 + ,𝐾-216𝑋216 *𝑥+216𝑋1 = *𝐹+216𝑋1    (2.7) 

where „,𝑀-‟ is mass matrix, „,𝐶-‟ is damping matrix, „,𝐾-‟ is stiffness matrix and „*𝑥+‟ is 

displacement vector. „*𝐹+‟ is force vector and consists of „*𝐹1+‟ which is the force applied by a 

piezoelectric actuator at element number 11 and is given as 

*𝐹1+=,𝑘𝑢𝑣
𝑒-,𝑘𝑣𝑣

𝑒-−1𝑄𝑒𝑥𝑡                   (2.8)    

where 

 ,𝑘𝑢𝑣
e- = −∫

𝑧

2𝑑
   ,𝐵𝑢-

𝑇,𝑒2-  𝑝
 𝑑𝜏 −  ∫

𝑧

2 
,𝐵𝑢-

𝑇  ,𝑒1-
𝑇*𝐵𝑣+ 𝑝

 𝑑𝜏 , is the electromechanical 

interaction matrix. 

,𝑘𝑣𝑣
𝑒- = ∫

1

𝑑
*𝐵𝑣+

𝑇  ,∈1-𝑝
 𝑑𝜏 ,  ,𝐵𝑢- = − {

𝜕2

𝜕𝑥2
      

𝜕2

𝜕𝑦2
    2

𝜕2

𝜕𝑥𝜕𝑦
}
T

,𝑁- 

𝑄𝑒𝑥𝑡 = ∫ 𝑞
𝐴𝑝

 𝑑𝐴𝑝 ,  *𝐸+ =  − *0      0    1/𝑑+T 𝑣 = − *𝐵𝑣+ 𝑣.  
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where subscript „p’ refers to piezoelectric patch, „𝐴𝑝‟ is the surface area of piezoelectric patch, 

„,𝑁-‟ is Hermite‟s interpolation shape function, ‘𝑞’ is charge, '𝑑‟ is thickness of piezoelectric patch 

and „𝑣‟ is the voltage. Matrix Eq. (2.7) has coupled second order ordinary differential equations. 

These equations can be uncoupled using following modal transformation.  

*𝑥+216𝑋1 = ,𝑈-216𝑋3*𝜂+3𝑋1                    (2.9) 

where „,𝑈-216𝑋3‟ is orthonormal modal matrix and „*𝜂+3𝑋1‟ is a vector of first three vibration 

modes. In state space, modal equations of the smart plate can be written as 

*�̇�+ = ,𝐴-*𝑠+ + ,𝐵-𝑉𝑐𝑜𝑛𝑡𝑟𝑜𝑙                      (2.10) 

where „A‟  is system matrix, „B‟ is control matrix and *�̇�+ is given as 

*�̇�+ = *𝜂1̇ 𝜂2 ̇ 𝜂3 ̇ 𝜂1̈ 𝜂2̈ 𝜂3̈+
𝑇
6𝑋1

                  (2.11) 

In this work, first modal displacement is controlled by taking first modal force proportional to 

negative of first modal velocity, i.e  

     f1 ∝ −𝜂1̇                           (2.12) 

External voltage applied on the piezoelectric actuator is therefore calculated as (Baz 1988, 

Sharma et al. 2007) 

𝑉𝑐𝑜𝑛𝑡𝑟𝑜𝑙 =
−g 𝜂1̇

*,𝑈-𝑇*𝑓𝑐+ 𝑍𝑎𝑐𝑡𝑢𝑎𝑡𝑜𝑟+1,1
                    (2.13) 

where 𝑓𝑐 = ,𝑘𝑢𝑣
𝑒-,𝑘𝑣𝑣

𝑒-−1, „𝑍𝑎𝑐𝑡𝑢𝑎𝑡𝑜𝑟‟ is capacitance of actuator and „g‟ is the gain of simple 

negative velocity feedback which is taken by hit and trial method. Present work uses first modal 

velocity in control law which can be either measured or estimated. Measurement of modal velocity 

is difficult as it requires special type of modal sensors (Friswell 2003, Zenz el al. 2013). In this 

work entire state vector is estimated using one piezoelectric sensor and Kalman observer. 

Thereafter, first modal velocity has been picked from estimated state vector so as to be used in the 

control law. Estimated state vector „*𝑠ė+‟ is given by (Gopal 2010)  

*𝑠ė+6X1 = ,dA-6X6 *𝑠e+6X1 + ,dB-6X1  𝑉𝑐𝑜𝑛𝑡𝑟𝑜𝑙 + *𝐿𝑘𝑎𝑙+6𝑋1 ( 𝑉𝑠𝑒𝑛𝑠𝑜𝑟 − *𝐶𝑠𝑒𝑛𝑠𝑜𝑟+1𝑋6 *𝑠e+6X1)  
                (2.14) 

*𝑠ė+6X1 = *𝑠e+6X1 + *𝑀𝑘𝑎𝑙 +6𝑋1( 𝑉𝑠𝑒𝑛𝑠𝑜𝑟 − *𝐶𝑠𝑒𝑛𝑠𝑜𝑟+1𝑋6 *𝑠e+6X1)         (2.15) 

where  ,dA- and ,dB- are discrete forms of „A‟ and „B‟ matrices. „*𝑀𝑘𝑎𝑙+‟ and „*𝐿𝑘𝑎𝑙+‟ are 

Kalman gain matrices.  𝐶𝑠𝑒𝑛𝑠𝑜𝑟 = −,𝑘𝑣𝑣
𝑒-−1,𝑘𝑣𝑢

𝑒- and „𝑉𝑠𝑒𝑛𝑠𝑜𝑟‟ is the sensor voltage. Matrix 

[dB] and vector 𝐶𝑠𝑒𝑛𝑠𝑜𝑟 are dependent upon matrices [𝑘𝑢𝑣
𝑒
] and [𝑘𝑣𝑣

𝑒
]. From Eq. (2.8) it is clear 

that [𝑘𝑢𝑣
𝑒

] and [𝑘𝑣𝑣
𝑒
] are dependent on piezoelectric coefficient and permittivity. Kalman 

observer in case 3 considers electric field dependence of piezoelectric coefficient and permittivity 

in Eqs. (2.14) and (2.15), whereas Kalman observer in case 1 and case 2 ignores this fact. 

 

2.1 Comparison of control voltages applied by case 2 and case 3 control for a given 
control gain and a given initial condition 

 

Control voltage applied on the actuator has dependence on factors as shown below: 
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𝑉𝑐𝑜𝑛𝑡𝑟𝑜𝑙 ∝
− 𝜂1̇

*,𝑈-𝑇*𝑓𝑐+ 𝑍𝑎𝑐𝑡𝑢𝑎𝑡𝑜𝑟+1,1
                                                                                                      

As used in Eq. (2.13),  *𝑓𝑐+ = ,𝑘𝑢𝑣
𝑒-,𝑘𝑣𝑣

𝑒-−1 

Substituting values of ,𝑘𝑢𝑣
𝑒- and ,𝑘𝑣𝑣

𝑒- from Eq. (2.8), we get for case 3: 

𝑉𝑐𝑜𝑛𝑡𝑟𝑜𝑙_𝑐𝑎𝑠𝑒3 ∝
− 𝜂1̇

{,𝑈-𝑇.−∫
𝑧

2𝑑
   ,𝐵𝑢-

𝑇,𝑒2-  𝑝
 𝑑𝜏−  ∫

𝑧

2 
,𝐵𝑢-

𝑇  ,𝑒1-
𝑇*𝐵𝑣+𝑑𝜏 𝑝

/.∫
1

𝑑
*𝐵𝑣+

𝑇  ,∈1-𝑝
 𝑑𝜏/ 𝑍𝑎𝑐𝑡𝑢𝑎𝑡𝑜𝑟}

1,1

  

Substituting values of ,𝑒2-, ,𝑒1- and ,∈1- from Eqs. (2.5) and (2.6), we get case 3 voltage: 

𝑉𝑐𝑜𝑛𝑡𝑟𝑜𝑙_𝑐𝑎𝑠𝑒3 ∝

− 𝜂1̇

{
 
 
 
 

 
 
 
 

,𝑈-𝑇

(

 
 
 
 
 
 
 

(

 
 
 
 −∫

𝑧

2𝑑
   ,𝐵𝑢-

𝑇
𝑝

[
(𝑒31̅̅ ̅̅ ̅+𝑎1𝐸𝑟𝑚𝑠+𝑎2𝐸𝑟𝑚𝑠

2 ) 

(𝑒31̅̅ ̅̅ ̅+𝑎1𝐸𝑟𝑚𝑠+𝑎2𝐸𝑟𝑚𝑠
2 ) 

0

] 𝑑𝜏

−  ∫
𝑧

2 
,𝐵𝑢-

𝑇  [
0                                                       0                                                    0
0                                                      0                                                    0 
(𝑒31̅̅ ̅̅ ̅+𝑎1𝐸𝑟𝑚𝑠+𝑎2𝐸𝑟𝑚𝑠

2  )    (𝑒31̅̅ ̅̅ ̅+𝑎1𝐸𝑟𝑚𝑠+𝑎2𝐸𝑟𝑚𝑠
2  )     0 

]

𝑇

*𝐵𝑣+𝑑𝜏 𝑝
)

 
 
 
 

(∫
1

𝑑
*𝐵𝑣+

𝑇  [
   0                

       0                     
(∈33̅̅ ̅̅ ̅+𝑎3𝐸𝑟𝑚𝑠+𝑎4𝐸𝑟𝑚𝑠

2  )     
]𝑝
 𝑑𝜏) 

)

 
 
 
 
 
 
 

Zactuator

}
 
 
 
 

 
 
 
 

1,1

  

From above relation it can be easily reasoned that for case 3 control 

𝑉𝑐𝑜𝑛𝑡𝑟𝑜𝑙_𝑐𝑎𝑠𝑒3 ∝
1

(C1 𝑒31̅̅ ̅̅ ̅+C2𝑎1𝐸𝑟𝑚𝑠+C3𝑎2𝐸𝑟𝑚𝑠
2  )(C4∈33̅̅ ̅̅ ̅+C5𝑎3𝐸𝑟𝑚𝑠+C6𝑎4𝐸𝑟𝑚𝑠

2  )
       (2.16) 

whereas for case 2 control 

𝑉𝑐𝑜𝑛𝑡𝑟𝑜𝑙_𝑐𝑎𝑠𝑒2 ∝
1

(𝑒31̅̅ ̅̅ ̅ )(∈33̅̅ ̅̅ ̅ )
                          (2.17) 

where C1, C2, C3, C4, C5 and C6 are constants. 𝜂1̇ initially for both case 2 and case 3 control 

is almost same for same initial condition. It can be seen from Eqs. (2.16) and (2.17) that for a 

given control gain and a given initial condition „𝑉𝑐𝑜𝑛𝑡𝑟𝑜𝑙_𝑐𝑎𝑠𝑒3‟ will be lesser than „𝑉𝑐𝑜𝑛𝑡𝑟𝑜𝑙_𝑐𝑎𝑠𝑒2‟. 

As a result, for a given control gain and given initial condition more actuation moments will be 

applied by case 2 control resulting in more vibration suppression in case 2 control. 

 

2.2 Controllability and observability test 
 

1. Necessary and sufficient condition for the system to be completely controllable is that n×n 

controllability matrix, 𝑈 = ,𝐵 𝐴𝐵 𝐴2𝐵………𝐴𝑛−1𝐵 - has rank equal to n, where „A‟ is 

system matrix and „B‟ is control matrix (Gopal 2010). In this system controllability matrix 

size is 6×6 and it has rank equal to 6. Hence this system is completely controllable. 

2. Necessary and sufficient condition for the system to be completely observable is that n×n 

observability matrix, 𝑉 = ,𝐶  𝐶𝐴  𝐶𝐴2………𝐶𝐴𝑛−1 -𝑇 has rank equal to n, where „A‟ is 

system matrix and „C‟ is output matrix (Gopal 2010). In this system observability matrix 

size is 6×6 and it has rank equal to 6. Hence this system is completely observable. 

 

2.3 Stability  
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The present system being a mechanical structure has inherent structural damping ratio of 0.004. 

In present work negative first modal velocity feedback has been employed to control the structural 

vibrations. Usage of this control law is well known to be stable as it further increases system 

damping. All the roots of characteristic equation of closed loop transfer function are in left half of 

the complex plane (for controlled as well as uncontrolled response). 

 

 

3. Simulations and results 
 

Cantilevered plate of size 16 cm ×16 cm × 0.6 mm is considered and this plate is divided into 

64 finite elements as shown in Fig. 1. Plate is equipped with two piezoelectric patches in 

collocated fashion at element no. 11, one above and one below the plate. Material properties of 

host structure and piezoelectric patch are tabulated in Table (1). Using finite element procedures as 

detailed in section 2, a system of 216 second order ordinary differential coupled equations is 

obtained. These coupled equations are solved using Newmark-β method. Kalman observer is used 

to estimate first three modes of the plate in time domain. Modal force in first mode is taken 

proportional to negative of modal velocity of first mode. Simulations are divided into sections as: 

In section 3.1 free edge of the plate is disturbed with initial displacement of 1.1 mm for collocated 

sensor actuator pair at element number 11. In section 3.2 harmonic disturbance is given to plate 

through one actuator at element number 14 for collocated sensor actuator pair at element number 

11. In section 3.3 free edge of the plate is disturbed with initial displacement of 1.1 mm with 

concurrent sensing at element number 11. In section 3.4 harmonic disturbance is given to plate 

through one actuator at element number 14 with concurrent sensing at element number 11.  

 

3.1 Response to initial displacement (collocated sensor-actuator pair) 
 

Cantilevered plate as shown in Fig. 1 is considered in which a piezoelectric sensor patch is 

instrumented on top surface of plate over entire element no 11 and a piezoelectric actuator patch is 

instrumented on bottom surface of plate below entire element no 11. Fig. 3 shows time response of 

first modal displacement when edge opposite to cantilevered edge of smart plate is given initial 

displacement of 1.1 mm and is controlled by simple negative first modal velocity feedback. As 

explained in last paragraph of „introduction‟, three distinct cases of simulation are possible. Decay 

curve of case 1 has damping ratio of 0.015 and that of case 2 has damping ratio of 0.032. Decay 

curve of case 3 with damping ratio of 0.015 overlaps with that of case 1. This implies that a 

researcher who ignores variation of piezoelectric coefficient and permittivity with electric field 

will obtain the same decay curve in simulations as obtained by researcher who considers this 

variation in simulations. This result is attributed to the control law which applies same modal 

forces on the structure as there is no error between Kalman observer and finite element model (in 

case 1 and case 3). It has to be observed here that although due to no error between Kalman 

observer and finite element model (in case 1 and case 3) same modal forces get applied on the 

structure but the control voltages are different (in case 1 and case 3). Fig. 4 shows time response of 

control voltage applied on the actuator. It can be clearly seen that for a given gain of the negative 

velocity feedback, a researcher who ignores variation of piezoelectric coefficient and permittivity 

with electric field will predict larger control voltages. On the other hand researcher who considers 

these variations in finite element model as well as in Kalman observer, will obtain lesser control 

voltages.  
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Table 1 Material properties of host structure and piezoelectric patch 

Property Host structure Piezoceramic (PZT-5H) 

Density (kg/m
3
) 7800 7500 

Young‟ Modulus (N/m
2
) 2.07 × 10

11
 6.76 × 10

10
 

Poisson‟s ratio 0.3 0.3 

Dielectric constant - 3200 

Length (m) 0.16 0.02 

Width (m) 0.16 0.02 

Thickness (m) 0.0006 0.00106 

 

 

 

Fig. 3 Time response of first modal displacement when plate is controlled using negative modal velocity 

feedback 
 

 

Fig. 4 Time response of control voltage when plate is controlled using negative modal velocity feedback 
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(a) (b) 

Fig. 5 (a) Time response of first modal displacement (harmonic disturbance) and (b) Comparison of case 1 

controlled, case 2 controlled and case 3 controlled responses (zoomed part of Fig. 5 (a)) 

 
 

3.2 Response to harmonic disturbance (collocated sensor-actuator pair) 
 

In this case two piezoelectric patches are pasted in collocated fashion over/below location of 

element no 11 and one piezoelectric actuator is pasted over location of element no 14 for providing 

harmonic disturbance to the plate. Fig. 5 shows time response of first modal displacement when 

smart plate is disturbed by a harmonic disturbance with frequency that of first mode. Again, first 

modal displacement is suppressed more in case 2 control than case 3 control and modal 

displacement of case 1 overlaps with that of case 3. Fig. 6 shows time-response of control voltage 

applied on the actuator when plate is disturbed by harmonic disturbance with frequency that of 

first mode. Voltages applied in case 1 are greater than that applied in case 2 and voltages applied in 

case 2 are greater than that applied in case 3. It is worth noting that although voltages applied in 

case 1 are largest but still the modal displacement in case 1 is not least. This is due to the fact that 

in case 3 and case 2 both piezoelectric coefficient and permittivity increase with increase in 

electric field resulting in more net actuation force applied by actuator per unit applied control 

voltage. 

 
3.3 Response to initial displacement (Concurrent sensing) 
 

In this case same piezoelectric patch is used for sensing as well as actuation (concurrent 

sensing) i.e., only one piezoelectric patch is instrumented over location of element number 11. 

Edge of the plate opposite to the cantilevered edge is given initial displacement of 1.1 mm. Fig. 7 

gives time response of first modal displacement in open loop (uncontrolled response) and closed 

loop. It can be seen in Fig. 7 that damping ratio of uncontrolled response is 0.0040, of case 1 

controlled response is 0.015 , of case 2 controlled response is 0.021 and of case 3 controlled 

response is 0.015. Decay curve of modal displacement in case 1 overlaps with that in case 3. Fig. 8 
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shows time response of control voltage in case 1, case 2 and case 3. Control voltages applied in 

case 1 are larger than that applied in case 2 and case 3. It is clear from figure that upto about 0.4 

seconds control voltage in case 2 is greater than that in case 3. After 0.4 seconds control voltage in 

case 3 is greater than that in case 2. This behaviour is attributed to the fact that in initial time upto 

0.4 seconds electric-field on actuator is large and therefore appreciably increases „d31‟ and „∈𝟑𝟑‟ of 

the actuator. Therefore upto 0.4 seconds lower voltages are applied in case 3.  

 

 

 

Fig. 6 Time response of control voltage (harmonic disturbance) 
 

 

 

Fig. 7 Time response of first modal displacement when plate is controlled using negative modal velocity 

feedback (concurrent sensing) 
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Fig. 8 Time response of control voltage for concurrent sensing when smart plate is disturbed by initial 

displacement of 1.1 mm 
 

 

3.4 Response to harmonic disturbance (concurrent sensing) 
 
Fig. 9 shows time response of first modal displacement when smart plate is disturbed by a 

harmonic disturbance with frequency that of first mode and controlled using a concurrent sensor at 

element number 11. Similar to previous study on harmonic disturbance, modal displacement in 

case 1 overlaps with that in case 3 and modal displacement in case 2 is suppressed more than that 

in case 3/case1. From Fig. 10 it is evident that voltages applied in case1 are greater than that in 

case2 and voltages applied in case2 are greater than that in case3.   

 

  
(a) (b) 

Fig. 9 (a) Time response of first modal displacement (harmonic disturbance and concurrent sensing) and 

(b) Comparison of case 1, case 2 and case 3 controlled response (zoomed part of Fig. 9 (a)) 
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Fig. 10 Time response of control voltage in case of harmonic disturbance and concurrent sensing 
 

 

  
(a) Case 2 (b) Case 3 

Fig. 11 Comparison of actual and estimated sensor voltage 

 

 

 

3.5 Comparison of sensor voltage (in case of initial displacement of 1.1 mm, 
non-concurrent sensing) 

 

Fig. 11 shows time response of actual sensor voltage and estimated sensor voltage in case 2 

control and case 3 control. Actual sensor voltage almost matches with estimated sensor voltage in 

case 3 (Fig. 11(b)) and there is considerable difference between actual and estimated sensor 

voltage in case 2 (Fig. 11(a)). 
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4. Conclusions 

 

This work considered a cantilevered plate instrumented with piezoelectric patches. Constitutive 

equations of piezoelectricity were modified by including the variation of piezoelectric coefficient 

and permittivity with r.m.s value of applied electric field. Using these modified constitutive 

equations, a finite element model of thin plate was derived systematically using Hamilton‟s 

principle. FE model was reduced using modal truncation, converted into state space model and 

simple negative first modal velocity feedback was used as control approach. For a given initial 

displacement/harmonic disturbance given to smart plate and a given gain of negative velocity 

feedback, it can be concluded that: 

 Time response of first modal displacement obtained by completely ignoring variation of 

piezoelectric coefficient and permittivity with electric field, overlaps with that obtained by 

considering this variation in finite element model and Kalman observer. Important 

difference is that lesser control voltages get applied in the latter case. 

 If variation of piezoelectric coefficient and permittivity with electric field is completely 

ignored then vibration suppression is less than the case when this variation is considered in 

finite element model and ignored in Kalman observer. Lesser control voltages get applied 

in the latter case. 

 In active vibration control, appreciable amount of difference appears in simulations if 

variation of piezoelectric coefficient and dielectric constant w.r.t. electric field is 

considered. 
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