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Abstract.  In this study, the optimal location of the MR fluid segments in a partially treated laminated 
composite sandwich plate has been identified to maximize the natural frequencies and the loss factors. The 
finite element formulation is used to derive the governing differential equations of motion for a partially 
treated laminated composite sandwich plate embedded with MR fluid and rubber material as the core layer 
and laminated composite plate as the face layers. An optimization problem is formulated and solved by 
combining finite element analysis (FEA) and genetic algorithm (GA) to obtain the optimal locations to yield 
maximum natural frequency and loss factor corresponding to first five modes of flexural vibration of the 
sandwich plate with various combinations of weighting factors under various boundary conditions. The 
proposed methodology is validated by comparing the natural frequencies evaluated at optimal locations of 
MR fluid pockets identified through GA coupled with FEA and the experimental measurements. The 
converged results suggest that the optimal location of MR fluid pockets is strongly influenced not only by 
the boundary conditions and modes of vibrations but also by the objectives of maximization of natural 
frequency and loss factors either individually or combined. The optimal layout could be useful to apply the 
MR fluid pockets at critical components of large structure to realize more efficient and compact vibration 
control mechanism with variable damping. 
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1. Introduction 
 

Multi layered composite sandwich plate has been used in aircraft and aerospace engineering 

applications for more than 40 years due to their high bending stiffness and strength to small weight 

ratios, long fatigue life, low maintenance cost and resistance to electrochemical corrosion. It is 

necessary to develop the reliable and practical models to predict the static and dynamic behavior of 

the structure. Semi-active control devices have been proposed for structural control applications 

(Carlson and Weiss 1994, See 2004) because it has more advantages compared to active and 

passive control devices. These devices include controllable fluids such as electro-rheological (ER) 

and magneto-rheological (MR) fluids which exhibit rapid change in their rheological properties 

and thus in the damping and stiffness properties with application of an electric or magnetic field.  

Generally the active control systems requires a significant amount of energy into the system while 

the semi-active control devices involve modifications of mechanical properties of the system in the 
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preferred manner with only modest exterior energy (Dogruer et al. 2008). A lot of research works 

are being carried out to realize the effectiveness of semi-active damping control concepts for 

structural vibration control applications.  

Many researchers have investigated experimentally and numerically the effectiveness of ER 

and MR fluid layers in controlling the vibration of the sandwich structures. Gandhi et al. (1989) 

developed the ER fluid based multi-functional, dynamically tunable semi active control devices to 

improve the structural damping ratio and the natural frequencies of the system. Leng et al. (1995) 

experimentally investigated the vibration analysis of ER fluid composite sandwich beam. It was 

concluded that the first three modes of natural frequencies and damping factors were increased 

with increasing the applied electric field. The vibration analysis of a fully and partially treated ER 

fluid sandwich beam was analyzed by Haiqing and King (1997) under clamped end conditions. 

The study concluded that the natural frequencies and loss factors of the sandwich beam depend on 

the length of ER fluid layer. Qiu and Khajika (1999) studied the vibration analysis of three- 

layered beams and five- layered beams with ER materials. It was concluded that the damping 

factor of a five-layer beam could be larger than that of a three-layer beam. Lee and Jwo (2001) 

experimentally analyzed the effect of spacing of parallel grooves on the local distribution of an 

electric field. Finite element methods were implemented to evaluate the structural stiffness and 

natural frequencies of the ER fluid sandwich plate with constrained layer (Yeh and Chen 2004). It 

was demonstrated that the stiffness of the sandwich plates could be controlled by varying the 

applied electric field and thickness of the ER layer. Yeh and Chen (2007) used the Hamilton’s 

principle to investigate the vibration responses of an ER fluid based orthotropic sandwich plate. 

They concluded that the effect of natural frequencies and loss factor of the sandwich plate could be 

effectively controlled by the applied electric field, thickness of ER fluid layer and the constraining 

layer thickness. Yalcintas and Dai (1999, 2004) reported that MR fluid sandwich beam yields 

much higher natural frequencies with application of magnetic field than those of compared to ER 

under electric field. Sun et al. (2003) used the oscillatory rheometry techniques to develop the 

relationship between magnetic field and complex shear modulus of MR fluid. Also the dynamic 

responses of a MR fluid sandwich beam were analyzed by energy approach under various 

magnetic fields. The dynamic responses and dynamic instability of MR material based adaptive 

beam were studied by Yeh and Shih (2006) using DiTaranto sandwich beam theory and 

incremental harmonic balance method under axial harmonic load. Hu et al. (2006) developed the 

analytical model to predict the structural behavior of a MR fluid based sandwich beam under 

dynamic loading conditions. The natural frequencies and loss factors of the MR fluid sandwich 

beam were controlled by applied magnetic field strength and the vibration amplitudes are 

decreased by increasing applied magnetic field.  

Lara-Prieto et al. (2010) investigated vibration responses of fully treated sandwich beam which 

was partially activated by permanent magnets. The vibration responses of a multi-layered MR 

fluid sandwich beam were investigated by Rajamohan et al. (2010a). Finite element method and 

Ritz formulations were used to derive the equations of motion of MR-fluid sandwich beam and 

validated through experimental test. Rajamohan et al. (2010b)] investigated a partially-treated MR 

fluid sandwich beam using finite element formulations and the natural frequencies were validated 

through the experimental investigation. Further the influence of locations of the MR fluid 

segments of a partially-treated MR fluid sandwich beam were investigated by Rajamohan et al. 

(2010c) using modal strain energy approach and finite element method under different end 

conditions. The optimal layouts of a partially treated MR fluid pocket in a sandwich beam were 

identified using genetic algorithm. It was shown that a relatively simple design could be realized 
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when the MR fluid is contained at a localized region. Rajamohan et al. (2011) investigated the 

optimal vibration control of fully and partially treated MR fluid sandwich beams using the linear 

quadratic regulator and flexible mode shape method. The dynamic responses of a rectangular plate 

with a magnetorheological fluid core and the isotropic constraining face layers were investigated 

using finite element method by Li et al. (2011). They concluded that the natural frequency 

increases while the loss factor decreases by increasing the applied magnetic field. The vibration 

characteristic of MR elastomer sandwich rectangular plates were analysed by Yeh (2013). It was 

concluded that the stiffness of the sandwich plate could be controlled by varying the applied 

magnetic field and the thickness of MR elastomer core layer.  

Manoharan et al. (2014a) analyzed the dynamic characterization of a laminated composite MR 

fluid sandwich plate. The governing differential equations of motion of a sandwich plate were 

developed using finite element formulation and the natural frequency and loss factor were 

analyzed by varying the magnetic field intensities. Manoharan et al. (2014b) presented the finite 

element formulations for a partially-treated laminated composite MR fluid sandwich plate 

comprising various MR-fluid pockets under various boundary conditions. The study suggested that 

the location and size of the MR fluid pockets have significant effect on the natural frequencies and 

the loss factors apart from the intensity of the applied magnetic field and the boundary conditions. 

Even though few research works have been carried out to investigate the effectiveness of partial 

treatment MR fluid in an isotropic and laminated composite plates, the identification of optimal 

locations of a MR fluid pockets in a laminated composite sandwich plate is yet to be explored.  

In the present study, the optimal locations of MR fluid pockets in a partially treated laminated 

composite MR fluid sandwich plates are identified to yield the maximum natural frequencies and 

loss factor. An optimization problem is formulated to identify the optimal location of MR fluid 

pocket in a laminated composite sandwich plate to maximize the natural frequencies and loss 

factors, at individual and combination of modes of transverse vibration. The optimization problem 

is solved using Genetic Algorithm (GA) combined with the finite element formulation developed 

for a partially treated laminated composite MR fluid sandwich plate. The validity and effectiveness 

of GA in capturing the optimal locations of MR fluid pockets to maximize the natural frequencies 

is demonstrated by comparing the results with those obtained using experimental measurements. 

Furthermore, the optimal locations of the MR fluid treatments are identified to maximize the 

natural frequencies and loss factors, either individually or combined, under various boundary 

conditions. 

 

 

2. Finite element modeling of a partially treated laminated composite MR fluid 
sandwich plate 
 

A partially treated laminated composite sandwich plate comprising MR fluid (MRF) and rubber 

segments as core layer (Fig. 1), reported in Manoharan et al. (2014b), is considered for the 

development of the optimization problem and identification of optimal location of MR fluid 

segments. The equivalent single layer theory is implemented to model the top and bottom 

composite layers (Fig. 1(a)) of the MR fluid composite sandwich plate. The composite faces are 

considered to be thin compared to the length and width of the laminate. Hence, Kirchhoff 

hypothesis in conjunction with the classical laminated plate theory is employed to model the 

composite face layers. The mid-layer of the partially treated sandwich plate of thickness hc is 

composed of identical MR fluid layer segments of length LP and width BP at various locations in 
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association with rubber layers at the remaining locations as shown in Figs. 1(b) and 1(c). Since the 

Young’s moduli of the composite layers are very high compared to MR fluid and the rubber 

materials, the normal stresses in the middle layer are neglected. Compared to length L and width B 

of the MR fluid sandwich plate, the face layer thicknesses, ht and hb and core layer thickness, hc 

are assumed to be very small. The slippage between the composite and core (MR fluid + rubber) 

layers is also neglected and there is no slippage between the composite face layers. The composite 

face layers damping and variation in thickness displacement are also negligible. The transverse 

displacement w is considered to be uniform at any given cross-section of the plate. 

 

2.1 Formulation of the energy equations of a partially treated MR fluid composite 
sandwich plate 

 

The governing equations of motion of a partially treated MR fluid composite sandwich plate 

have been formulated using Lagrange’s energy approach (Manoharan et al. 2014b). To accomplish 

this, the total strain and kinetic energy of the system are derived. 

The strain energy due to top and bottom composite layers, btV , can be expressed as 
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where zk the 

distance of each ply k from the middle plane of the laminate along z direction and N is the number 

of plies in each laminate. 

[ ijQ ] is the transformed reduced stiffness matrix and its components can be expressed as 

        T

kijij TQTQ


 1
1

1
,
   (i, j =1, 2, 6)             (2) 
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(a) 

  

(b) (c) 

Fig. 1 (a) Representation of a partially treated MR fluid composite sandwich plate with N-number of 

composite plies, (b) Partially treated MR fluid composite sandwich plate and (c) Schematic top view 

of core (MR fluid and rubber) layer . (    - MR fluid,      - Rubber) 

 

 

[ 1T ] is the transformation matrix and can be specified as 
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kijQ is the constitutive matrix at the lamina level and is given by          
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where )1/( 2112111  EQ , )1/( 211221212   EQ , )1/( 2112222  EQ , 1266 GQ  and   is the 

ply orientation angle, 1E and 2E  are the Young’s moduli of the composite ply along the fiber 

directions, 12G  is the shear moduli and 12  and 21 are the Poisson’s ratios in material axes. 

The strain energy due to core layer (rubber layer + four MR fluid pockets) is presented as 

            Vc= Vcr +Vcf                       
(5)

 

where Vcr is the strain energy of rubber core and Vcf is the strain energy of fluid core. 
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where 
22

b
c

t h
h

h
d 

 
and Gr and Gf  are the shear modulus of the rubber and MR fluid 

respectively. The complex shear modulus of MR fluid (Gf ) can be expressed as, ''' jGGG f 

where 'G  is the storage modulus and ''G  is the loss modulus of MR fluid. 

1028



 

 

 

 

 

 

Optimal layout of a partially treated laminated composite magnetorheological fluid… 

 

Therefore the strain energy of the composite sandwich plate, V  can be expressed as 

cbt VVV  ,              (7)
 

where L and B are the length and width of the plate in x and y directions in composite sandwich 

plate, respectively.  

The total kinetic energy of the MR fluid composite sandwich plate consists of the kinetic 

energy associated with i) the axial deformations of the composite layers (T1); ii) the transverse 

motion of the composite layers, rubber layer and the MR layers (T2); iii) the rotational deformation 

of the MR layer and rubber layer due to the strain displacements (T3).  

The kinetic energy associated with the axial deformations of the laminated composite layers (T1) 

can be expressed as 
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The kinetic energy associated with the transverse motion of the laminated composite layers, 

rubber layer and MR fluid layer (T2) can be expressed as
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The kinetic energy associated with the rotational deformation of the rubber layer and MR fluid 

layer (T3) can be expressed as 
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where t and b  are the mass densities of the top and bottom composite layers, and cf  and 

cr  are the mass densities of the MR fluid and the rubber materials, respectively. cfI  and crI  

are the second moment of inertia with respect to the centroid of the MR fluid layer and the rubber 

materials, respectively. 

The total kinetic energy of the MR fluid composite sandwich plate can thus be obtained as 

                         T  = T1+T2+T3                     (11) 

 
2.2 Finite element formulation 
 

In the finite element formulation, a rectangular plate element with four nodes and seven 

degrees of freedom (DOF) per node is considered for the analysis. The various DOFs considered at 

each node of the rectangular element are ut, ub, vt, vb, w, θx and θy. ut  and ub are considered as the 

in-plane displacements of top and bottom composite layers in x direction, respectively and vt  and 

vb are considered as the in-plane displacements of the top and bottom layers in y direction, 

respectively while w is considered as the transverse displacement of the sandwich plate, and θx and 

θy are the rotational displacements with respect to x -and y direction of the sandwich plate, 

respectively. The in-plane and transverse displacements are presented as 

)(),(),,( tqyxNtyxw wjj 
           

4,3,2,1j  

),(),(),,( tqyxNtyxu uijij 
      

4,3,2,1;,  jbti
          (12)

 

),(),(),,( tqyxNtyxv vijij 
   

4,3,2,1;,  jbti  

where, T
yxbbtt wvuvutq ],,,,,[)( ,  , ),( yxNw , ),( yxNui  and ),( yxNvi  are the shape functions of 

the plate element and are presented in Appendix. Lagrange’s equations are used to develop the 

governing differential equations in finite element form.  

Assembling the mass and stiffness matrices and the force vector for all the elements yields the 

system of governing equations of motion of the MR composite sandwich plate in the finite element  

form, which can be expressed in the following general form 

          
       FdKdM 

          
 (13) 

where [M], [K] and {F} are the system mass and stiffness matrices and the force vector, 

respectively. 
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3. Formulation of the optimization problem and solution methodology 
 

The finite element formulation developed for a partially treated MR fluid composite sandwich 

plate in section 2 is used here to formulate the fitness function. The objectives are to identify the 

optimal location of MR fluid pockets for achieving the maximum natural frequencies and loss 

factors at individual and combination of transverse modes. The loss factor of the laminated 

composite MR fluid sandwich plate is derived as the ratio of the square of the imaginary 

component of the complex natural frequency to that of the real component (Yalcintas and Dai 2004, 

Yeh and Shih 2006). The loss factor is merely the ratio of energy dissipated per radian to the total 

strain energy V, both of which increase with the magnetic field. The objective criterion is 

formulated by considering a partially treated MR fluid composite sandwich plate, as presented in 

Fig. 1(c). As the first few modes are important in structural vibration, the first five modes of 

vibration are considered here. The optimization process is carried for four different cases under the 

various boundary conditions such as clamped (C), simply supported (S) and free (F) along the 

edges of the plate  including CCCC, SSSS, CFCF, SFSF and CFFF and specified starting from 

the left end of the sandwich plate in counter clockwise direction. The various optimization 

problems are formulated as follows: 

Case 1: The objective function is formulated to seek the optimal locations of MR fluid pockets 

to yield the maximum fundamental natural frequency. Then the objective function for Case 1 can 

be specified such that 

                Maximize 1)( Xf                    (14) 

Subject to: ,0 NX   where N  is the number of finite elements of the sandwich plate and X  

defines the location of MR fluid pockets in the sandwich plate, such that 

)},(),,(),,(),,{( 44332211 yxyxyxyxX   specified with starting coordinates of MR fluid pockets with 

length LP and width BP. and 1  
is the fundamental natural frequency. 

Case 2: The objective function is formulated to seek the optimal locations of MR fluid pockets 

to achieve maximum fundamental loss factor. The objective function for Case 2 is such that 

  Maximize 1)( Xf                         (15) 

Subject to: ,0 NX   where 1  is the fundamental loss factor 
Case 3: The objective function is formulated to seek the optimal locations of MR fluid pockets 

to maximize the linear combination of the fundamental natural frequency and the fundamental loss 

factor. Hence, the objective function for Case 3 is 

Maximize 1211)(  Xf
            

   (16) 

Subject to: ,0 NX   where
 1  

and 2 are the weightage factors ranging from 0 to 1 such that  

1  
+ 2 =1, 1 and 1  are the fundamental natural frequency and fundamental loss factor of 

the sandwich plate. 

Case 4: The objective function is formulated to seek the optimal locations of MR fluid pockets 

to maximize the linear combination of summation of the first five modes of natural frequencies 

and loss factors. The objective function for Case 4 is 

Maximize  i
i

i
i

Xf 
5

1
2

5

1
1)(


            (17) 
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Fig. 2 Chromosome structure for a partially treated laminated composite MR fluid sandwich plate 

 

 

Subject to: ,0 NX   where
 1  

and 2 are the weightage factors ranging from 0 to 1 such that  

1 + 2 =1 and i =1,2,…5., ωi and i  are the natural frequency and loss factor at corresponding 

first five modes.  

Genetic Algorithm is used to identify the optimal locations of MR fluid pockets in a partially 

treated laminated composite MR fluid sandwich plate that yield maximum natural frequency and 

loss factor. A partially treated MR fluid composite sandwich plate is considered as one 

chromosome. Each MR fluid pocket in a composite sandwich plate is considered as a substring. So 

each chromosome contains four substrings as shown in Fig. 2. The flow chart shown in Fig. 3 

provides the detailed operational process of GA in identifying the optimal location of MR pockets 

in the partially treated laminated composite MR fluid sandwich plate. 

 

 

4. Results and discussions 
 

The validity of the proposed finite element formulation coupled with the genetic algorithm in 

identifying the optimal locations of MR fluid pockets in a partially treated MR fluid composite 

sandwich plate is demonstrated by comparing the results obtained through laboratory experiments 

on a prototype MR fluid sandwich plate. The present FEA coupled with GA is used to solve the 

optimization problems formulated in section 3 by generating the codes in MATLAB by following 

the steps involved in Fig. 3. The simulation is performed on Case 1 in which the locations of MR 

fluid pockets are identified to maximize the fundamental natural frequency of the partially treated 

MR fluid sandwich plate. A prototype partially treated MR fluid composite sandwich plate was 

fabricated by locating the MR fluid pockets in identical locations obtained using the present FEA 

coupled with GA and the results are compared. The following material and geometrical properties 

were considered for the simulation: mmhh bt 5.1 ; mmhc 5.1 ; 3/34.1779 mkgbt   ; 

3/2812 mkgcf  ; 3/910 mkgcr  ; GPaE 446.311  ; GPaE 435.72  ; 2424.012  ; 0646.021  ; 

GPaG 887.212  ; The variation of shear modulus (G′) and loss modulus (G′′) with respect to the 

magnetic field intensity  is considered as (Manoharan et al. 2014b). 

8.858355.42805035.0 2'  GGG  

35.848105.452057.0 2''  GGG                   (18) 

where G is the magnetic field intensity in Gauss. 

A  partially treated laminated composite MR fluid sandwich plate clamped at right and left 

ends and free at the other ends (CFCF) was fabricated using two thin glass fiber laminated strips of 

300 mm × 300 mm × 1.6 mm. The top and bottom composite laminated plates were fabricated 

using a hand-layup technique. Each laminate consists of seven laminas with fiber angle orientation 

MRF Pocket 4 MRF Pocket 3 MRF Pocket 2 MRF Pocket 1 
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oooo ]09/0/90/0[
 

E-glass unidirectional fibers. Epoxy resins (LY0556) were applied to dry 

plies after laid-up is completed in between all the plies.  

 

 
 

Fig. 3 Block diagram of GA to search optimal location of MR fluid Pockets 
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A vacuums bag with breather assemblies was placed over the layup in order to remove the 

excess resin through vacuum pump from the laminated plate and then it was cured in an autoclave 

at 100ºC to increase strength of laminated plate. The proper volume fraction was maintained 

throughout the manufacturing process to achieve the better mechanical properties of the composite 

plate. 

Two laminated composite plates of ( s

oooo ]09/0/90/0[ and s

oooo ]09/0/90/0[ ), 

respectively were arranged to create a uniform gap of 1mm to fill MR fluid (MRHCCS4-B). The 

MR fluid was filled only at the mid-layer of the sandwich plate with four segments of 50 mm x 50 

mm x 1 mm at identical locations obtained from the simulations. The coordinates Pi(x,y), i = 1, 2, 

3 and 4 at the starting point of each MR fluid pockets are P1(75,75), P2(250,25),  P3(250,175) and  

P4(50,175) as shown in Fig. 4. The dark area shows the location of MR fluid. The high strength 

natural rubber (1mm thickness) is considered to be filled at the remaining locations in order to 

maintain the uniform gap between two laminates. The final configuration of sandwich plate is 

obtained as ( s

oooo ]09/0/90/0[ /core layer/ s

oooo ]09/0/90/0[ ). 

 

 

Fig. 4 Representation of the optimal locations of MR fluid in the middle layer of a partially treated MR fluid 

composite sandwich plate identified in Case I at zero magnetic field. [All dimensions are in mm] 

 

 

Fig. 5 Block diagram of the experimental setup of a partially treated laminated composite MR fluid 

sandwich plate 
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Table 1 Comparison on natural frequencies at optimal layout of a partially treated cantilever laminated 

composite MR fluid sandwich plate identified through GA coupled the finite-element formulations 

with the experimental measured frequencies at zero magnetic field 

Mode 
Natural frequencies (Hz) 

% deviation 
Measured GA coupled with FEM 

1 131.56 141.18 6.8 

2 150.81 154.14 2.1 

3 243.87 230.15 5.6 

 

 
Table 2 Effect of magnetic field on the variation of natural frequency of the partially treated MR fluid 

sandwich plate 

Magnetic  fields (Gauss) Mode Natural frequencies (Hz) 

0 G 

1 141.18 

2 154.14 

3 230.15 

250 G 

 

1 141.25 

2 154.19 

3 230.20 

500 G 

 

1 141.32 

2 154.23 

3 230.25 

 

 

The partially treated laminated composite MR fluid sandwich plate was clamped (CFCF) at the 

left and right edges using a steel fixture. Fig. 5 shows the schematic diagram of the experimental 

set-up. The impulse hammer (Impulse Force Hammer-086C03) was used to excite the sandwich 

plate and the acceleration signal was measured by a single axis accelerometer. This acceleration 

signals were then converted into frequency response function using 4 channel Data Acquisition 

System (Model No. ATA-DAQ042451). The natural frequencies of the MR fluid sandwich plate 

were measured at various modes free vibration responses under zero magnetic field intensities. 

Table 1 shows the comparisons of the first three natural frequencies identified through genetic 

algorithm coupled with finite element formulation with those obtained experimentally under zero 

magnetic field intensity. A very good agreement could be observed between the computed and 

measured frequencies, irrespective of the mode of vibration. The reason for the deviation between 

the results evaluated using FEM and experimental tests could be related to the practical reasons 

including the fabrication of laminated composite plates using hand layup technique and creation of 

partially treated MR fluid segments in the middle layer of sandwich plate. 

As the size of MR fluid sandwich plate is large and unavailability of the permanent magnets to 
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generate the magnetic field over the surface of large size, the results evaluated using FEM were 

validated with those obtained experimentally without applying magnetic field. Further, the effect 

of magnetic field on the variation of natural frequencies of the partially treated MR fluid sandwich 

structures has been already demonstrated in (Rajamohan et al. 2010b, Manoharan et al. 2014b). 

However the variation of natural frequency of the partially treated MR fluid composite sandwich 

plate with applied magnetic field is studied using FEM and the results are presented in Table 2 for 

higher magnetic field. It can be seen that the natural frequency increases with increase in magnetic 

field at all the modes considered. The reason for the minimal variation is due to smaller size of MR 

fluid pockets located in the partially treated MR fluid sandwich plate. Similar variation was also 

observed in (Rajamohan et al. 2010b, Manoharan et al. 2014b). 

The optimal locations of MR fluid pockets were indentified for the four cases of optimization 

problems. In Case 1 and Case 2 of the optimization problems, the whole weightage has given to 

yield the maximization of fundamental natural frequency and fundamental loss factor, respectively. 

In Case 3 and Case 4 of the optimization problems, the weightage factors 1  and 2
 
are 

considered as 0.5 to provide the equal weightage for both natural frequencies and loss factors. 

Tables 3-6 show the optimized locations of MR fluid pockets and the corresponding first five 

natural frequencies and loss factors of the partially treated laminated composite MR fluid 

sandwich plate for various boundary conditions at a magnetic fields of 500 Gauss identified by 

solving the optimization problems presented in Cases 1 - 4, respectively. The coordinates Pi(x,y), i 

= 1, 2, 3 and 4 are the starting points of each MR fluid pockets. The dark area shows the location 

of MR fluid and the high strength natural rubber is considered to be filled at the remaining 

locations. From the tabulated results, it can be understood that the optimal locations of MR fluid 

pockets strongly influence the natural frequencies and loss factors of the sandwich plate, 

irrespective of the boundary conditions and objective functions.  

 

 

  
(a) (b) 

Fig. 6 Comparison of the fundamental mode shape of an optimal layout of a partially treated laminated 

composite MR fluid sandwich plate with the location of MR fluid pockets in the regions of mirror 

image with respect to geometrical centre line x’ and y’ axes under (a) CCCC and (b) SSSS end 

conditions 
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The simulations are also performed to investigate the natural frequency and loss factor by 

locating MR fluid pockets in the regions of mirror image of the optimal locations with respect to 

the geometrical centre lines parallel to x - axis (x’x’) and y - axis (y’y’) of the sandwich plate[Fig. 

4], under various boundary conditions for all cases. It is found that the natural frequencies and loss 

factors are identical under symmetric boundary conditions such as CCCC, SSSS, CFCF and SFSF. 

However, similar observations could not be seen under unsymmetric boundary conditions such as 

CFFF. Further, even though the magnitude of natural frequencies and loss factors are identical at 

regions identified through GA and mirror image with respect to geometrical centre lines, the peak 

deflection in the mode shapes are shifted due to change in location of MR fluid pockets under all 

the cases as presented in Fig. 6. It can also be observed that CCCC end condition yields the highest 

natural frequency and loss factor while CFFF end condition yields the lowest natural frequency 

and loss factor at a applied magnetic field 500 G. Due to the flexibility of the end conditions, 

CCCC and CFFF yield, respectively, the highest and lowest stiffness of the structures with 

identical mass. Hence, the natural frequencies and loss factors of the sandwich plate under CCCC 

end conditions are higher than those with CFFF end conditions. 

It can also be noted from Table 3 that the MR fluid treatments near the support would yield 

higher fundamental natural frequency for symmetric boundary conditions such as CCCC, SSSS, 

CFCF and SFSF. It is also observed in such cases that the solutions of the optimization problem 

converged towards relatively greater distribution of MR fluids. This can be associated with 

greatest stiffness of the structure with symmetric end conditions, which would require larger 

distribution of MR fluid pockets. However, similar variations could not be observed under CFFF 

end conditions where the solutions of the optimization problem converged towards relatively 

greater clustering of MR fluid segments nearer to the fixed ends. This can also be associated with 

yielding highest stiffness where the MR fluid segments are located nearer to the constraint end. 

The results from Table 4 suggests that the optimization problem to maximize the fundamental 

loss factor converged towards greater clustering of MR fluid segments nearer to constraint ends 

under CCCC, SSSS, CFCF and SFSF rather than relatively greater distribution manner as 

presented in Table 3 for maximization of fundamental natural frequency[Case-1]. As it is known 

that the loss factor is merely a ratio of the energy dissipated per radian to the total strain energy, 

greater clustering of MR fluid nearer to constraints yields higher dissipated energy and leads to 

higher loss factors. However, similar observations could not be seen in CFFF end conditions where 

the clustering of MR fluid nearer to the free end yields higher loss factor. This can also be 

associated that greater clustering of MR fluid nearer to the unconstraint ends. 

Table 5 summarizes the optimal layout obtained to maximize the summation of fundamental 

natural frequency and loss factor with identical weightage. The results consistently show that the 

optimal locations of MR fluid segments derived from the consideration of linear combination of 

the fundamental natural frequency and loss factor are much similar to those identified for 

fundamental natural frequency in such a way that the MR fluid segments are distributed relatively 

among the regions under CCCC, SSSS, CFCF and SFSF end conditions while they are located 

relatively greater clustering under CFFF end conditions. This can be associated with the 

convergence towards the fundamental natural frequency. 

Table 6 summarizes the optimal layout obtained to maximize the linear combination of 

summation of the first fives of natural frequencies and loss factors. The results consistently show 

that the optimal locations of MR fluid segments derived from Case (4) are much similar to those 

identified for maximization of fundamental loss factor [Case 2] in such a way that the locations of 

MR fluid segments are converged towards greater clustering nearer to the constraint ends.  This 

1038



 

 

 

 

 

 

Optimal layout of a partially treated laminated composite magnetorheological fluid… 

 

can be associated with the convergence towards the fundamental loss factor. 

 

 
Table 3 Optimal location of MR fluid pockets in a partially treated laminated composite MR fluid sandwich 

plate under various end conditions  at a magnetic field of 500 G identified using GA as in Case – 1 

[Maximization of fundamental natural frequency] 

Boundary 

condition 

Optimal configuration and  co-ordinates of MR 

fluid pockets location 

Mode 

Nos. 

Natural 

frequency 

(Hz) 

Loss 

factor 

CCCC 

 

 

1 231.07 0.0003 

2 408.95 0.0017 

3 433.46 0.0005 

4 529.18 0.0032 

5 663.77 0.0024 

SSSS 

 

 

1 218.73 0.0011 

2 367.47 0.0062 

3 390.45 0.0025 

4 473.37 0.0046 

5 546.04 0.0075 

CFCF 

 

 

1 156.42 0.0018 

2 172.58 0.0008 

3 254.74 0.0010 

4 361.11 0.0030 

5 393.95 0.0019 

SFSF 

 

 

1 147.54 0.0012 

2 163.19 0.0007 

3 246.05 0.0008 

4 351.75 0.0010 

5 375.12 0.0006 

CFFF 

 

 

1 29.38 0.0003 

2 49.97 0.0001 

3 158.04 0.0017 

4 181.75 0.0002 

5 194.05 0.0005 
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Table 4 Optimal location of MR fluid pockets in a partially treated laminated composite MR fluid sandwich 

plate under various end conditions  at a magnetic field of 500 G identified using GA as in Case 2 

[Maximization of fundamental loss factor] 

Boundary 

condition 

Optimal configuration and  co-ordinates of MR 

fluid pockets location 

Mode 

Nos. 

Natural 

frequency 

(Hz) 

Loss 

factor 

CCCC 

 

 

1 207.92 0.0037 

2 361.15 0.0059 

3 391.37 0.0033 

4 503.07 0.0056 

5 608.45 0.0051 

SSSS 

 

 

1 201.36 0.0066 

2 320.34 0.0111 

3 379.41 0.0030 

4 471.30 0.0041 

5 553.60 0.0067 

CFCF 

 

 

1 141.73 0.0082 

2 170.34 0.0007 

3 249.36 0.0022 

4 320.71 0.0090 

5 401.36 0.0016 

SFSF 

 

 

1 121.85 0.0265 

2 148.38 0.0047 

3 230.11 0.0065 

4 288.98 0.0094 

5 343.34 0.0031 

CFFF 

 

 

1 28.25 0.0011 

2 45.58 0.0049 

3 151.09 0.0026 

4 175.48 0.0034 

5 179.95 0.0014 
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Table 5 Optimal location of MR fluid pockets in a partially treated laminated composite MR fluid sandwich 

plate under various end conditions at a magnetic field of 500 G identified using GA as in Case 3. 

[Maximization of summation of 50 % of fundamental natural frequency and 50 % of fundamental 

loss factor] 

Boundary 

condition 

Optimal configuration and  co-ordinates of MR 

fluid pockets location 

Mode 

Nos. 

Natural 

frequency 

(Hz) 

Loss 

factor 

CCCC 

 

 

1 218.88 0.0008 

2 344.28 0.0012 

3 427.67 0.0024 

4 505.19 0.0019 

5 550.74 0.0020 

SSSS 

 

 

1 214.73 0.0008 

2 365.77 0.0022 

3 398.16 0.0019 

4 485.47 0.0039 

5 572.68 0.0057 

CFCF 

 

 

1 156.24 0.0008 

2 170.49 0.0003 

3 255.01 0.0012 

4 372.05 0.0024 

5 400.56 0.0012 

SFSF 

 

 

1 99.97 0.0008 

2 122.47 0.0006 

3 247.92 0.0026 

4 254.83 0.0037 

5 282.31 0.0050 

CFFF 

 

 

1 17.46 0.0002 

2 45.16 0.0003 

3 102.03 0.0010 

4 149.26 0.0010 

5 218.72 0.0006 
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Table 6 Optimal location of MR fluid pockets in a partially treated laminated composite MR fluid sandwich 

plate under various end conditions  at a magnetic field of 500 G identified using GA as in Case 4. 

[Maximization of the linear combination of summation of the first five modes of natural frequencies 

and loss factors] 

Boundary 

condition 

Optimal configuration and  co-ordinates of MR 

fluid pockets location 

Mode 

Nos. 

Natural 

frequency 

(Hz) 

Loss 

factor 

CCCC 

 

 

1 214.75 0.0013 

2 383.43 0.0031 

3 404.21 0.0026 

4 556.91 0.0012 

5 608.33 0.0028 

SSSS 

 

 

1 208.49 0.0015 

2 366.86 0.0031 

3 376.98 0.0025 

4 499.38 0.0023 

5 567.37 0.0040 

 

CFCF 

 

 

1 101.21 0.0009 

2 125.33 0.0009 

3 248.73 0.0024 

4 258.79 0.0038 

5 290.94 0.0040 

SFSF 

 

 

1 99.36 0.0012 

2 120.81 0.0003 

3 251.85 0.0012 

4 257.72 0.0017 

5 289.62 0.0011 

CFFF 

 

 

1 29.41 0.0004 

2 49.80 0.0003 

3 156.84 0.0028 

4 182.59 0.0003 

5 191.84 0.0011 
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5. Conclusions 
 

In the present study, the optimal layout of a partially treated laminated composite MR fluid 

sandwich plate was studied in terms of maximizing the natural frequencies and loss factors. The 

governing differential equations of motions were developed using finite element formulation. An 

optimization problem was formulated by combining finite element analysis and genetic algorithm 

for a partially treated sandwich plate to obtain the maximum natural frequency and loss factor 

corresponding to first five modes of flexural vibration with various combinations under different 

boundary conditions. The experimental study was conducted to validate the results in terms of 

natural frequencies identified at the optimization problem. A good agreement was observed among 

the results evaluated using the present method (FEA and GA) and measured frequencies. The 

optimal locations of the MR fluid pockets were identified for four different cases. In first three 

cases, the objective functions were formulated to seek the optimal locations of MR fluid pockets to 

maximize the fundamental natural frequency, fundamental loss factor and the summation of 

fundamental natural frequency and fundamental loss factor with equal weightage, respectively. In 

the Case 4, the objective function was formulated to maximize the linear combination of 

summation of the first five modes of natural frequencies and loss factors. The results suggest that 

the location of MR fluid pockets play an important role on the variation of natural frequencies and 

loss factors irrespective of the boundary conditions. Furthermore, CCCC end conditions yields the 

highest natural frequency and loss factor while CFFF end conditions yields the lowest natural 

frequency and loss factor, due to the flexibility of the end conditions. It was also shown that the 

larger distribution of the MR fluid yields the maximum natural frequency under CCCC, SSSS, 

CFCF and SFSF end conditions while clustering of MR fluids towards the fixed end of CFFF end 

conditions yields the highest loss factors. It was also demonstrated that the maximization of linear 

combination of fundamental natural frequency and loss factor yields almost similar pattern of MR 

fluids distribution as derived in the optimal layout obtained from the maximization of fundamental 

natural frequency. Similarly, the maximization of the linear combination of the first five modes of 

natural frequency and loss factors yields almost similar to the pattern of MR fluids distribution as 

obtained in optimal layout derived from the maximization of loss factors. This will provide the 

designer great flexibility in tailoring the location of MR fluid segments so as to yield the 

maximum natural frequency and loss factors at various modes of transverse vibration under 

various end conditions. Hence it was concluded that the optimization technique provides the 

efficient design layout of a partially treated laminated composite MR fluid sandwich plate in order 

to realize the efficiency of the vibration control mechanism with variable damping at critical 

components of large structure. 
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Appendix 
 

The shape functions used in evaluating the stiffness and mass matrices of the sandwich plate 
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where l and b are the length and width of the sandwich plate element. 

Element stiffness matrix 

     dxdyB
DB

BA
Bk i

T
i

e

 









 

where  iB  is the strain displacement matrix, [A]  is the extensional stiffness matrix which 

relates the resultant in-plane forces to in-plane strains, [D] the bending  stiffness matrix which 

relates the resultant bending moments to the plate curvatures, and [B]  is the coupling stiffness 

matrix which couples the force and moment terms to the mid-plane strains and mid-plane 

curvatures. 

Element mass matrix 

     dxdyNNdzm i
T

i
e

  , where [ iN ] is the shape function. 
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Optimal layout of a partially treated laminated composite magnetorheological fluid… 

 

Nomenclature 
 

  Natural frequency 

  Loss factor 

  Weightage factor 

pop_size Population size 

C chromosomes 

p(c) Probability of the chromosomes 

cp(c) Cumulative probability of the chromosomes 

c1 Chromosomes selected in the selection process 

c2 Chromosomes selected for the crossover 

c3 Offspring from crossover 

c4 Offspring from mutation 

p_cross Probability of crossover 

p_mut Probability of mutation 

Aij

 
Extensional stiffness matrix 

Bij

 
Coupling stiffness matrix 

Dij

 
Bending stiffness matrix 

ht

 
Thickness of top layer 

hb

 
Thickness of bottom layer 

hc

 
Thickness of core layer 

ρt

 
Density of top layer 

ρb

 
Density of bottom layer 

ρcf

 
Density of MR fluid core layer 

ρcr

 
Density of rubber core layer 

E1, E2

 
Young’s modulus in material axes 

ν12, ν21

 
Poisson’s ratios in material axes 

G12

 
Shear modulus in material axes 
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