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Abstract. A unified formulation of finite layer methods (FLMs), based on the Reissner mixed variational
theorem (RMVT), is developed for the three-dimensional (3D) coupled electro-elastic analysis of
simply-supported, functionally graded piezoelectric material (FGPM) plates with open- and closed-circuit
surface conditions and under electro-mechanical loads. In this formulation, the material properties of the
plate are assumed to obey an exponent-law varying exponentially through the thickness coordinate, and the
plate is divided into a number of finite rectangular layers, in which the trigonometric functions and Lagrange
polynomials are used to interpolate the in- and out-of-plane variations of the primary field variables of each
individual layer, respectively, such as the elastic displacement, transverse shear and normal stress, electric
potential, and normal electric displacement components. The relevant orders used for expanding these
variables in the thickness coordinate can be freely chosen as the linear, quadratic and cubic orders. Four
different mechanical/electrical loading conditions applied on the top and bottom surfaces of the plate are
considered, and the corresponding coupled electro-elastic analysis of the loaded FGPM plates is undertaken.
The accuracy and convergence rate of the RMVT-based FLMs are assessed by comparing their solutions
with the exact 3D piezoelectricity ones available in the literature.

Keywords: three-dimensional analysis; coupled electro-elastic analysis; static; finite layer methods;
functionally graded materials; piezoelectric plates

1. Introduction

In recent decades, piezoelectric materials have been widely used to produce some beam-, plate-
and shell-like smart structures with the advanced engineering applications for the purposes of
sensing, actuating and controlling, due to their direct and converse effects, which means that a
mechanical load applied to such structures will induce changes in the electric field variables of the
structures, and vice versa. Many reports have examined conventional laminated piezoelectric
structures, the material properties of which mismatch at the interfaces between adjacent layers,
with reports indicating that in practical applications a number of weakness occur at these loactions,
such as delamination, transverse matrix cracking, and huge residual thermo-mechanical stresses
(Kashtalyan and Menshykova 2009, Woodward and Kashtalyan 2010). A new class of smart
structures, called functionally graded piezoelectric material (FGPM) structures, the material
properties of which continuously and gradually vary through the thickness coordinate, has thus
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been developed to overcome these drawbacks. The coupled analysis of FGPM structures has since
attracted considerable attention with the aims of both improving their working performances and
enhancing their lifetime.

Based on the three-dimensional (3D) piezoelectricity theory, some exact solutions for the
bending, vibration and buckling analyses of simply-supported, FGPM plates/shells have been
presented to assess the accuracy and convergence rates of various related two-dimensional (2D)
and approximate 3D theories. Pan (2003) and Pan and Han (2005) undertook the exact 3D
analyses of simply-supported, functionally graded (FG) elastic plates and FG
magneto-electro-elastic plates using the pseudo-Stroh formalism (PSF), in which the material
properties were assumed to vary exponentially in the thickness coordinate, and the effect of the
material-property gradient index on the induced deformations and stresses was examined. The PSF
was further extended to the cylindrical bending analysis of simply-supported, FGPM laminates by
Lu et al. (2005, 2006). Zhong and Shang (2003) and Zhong and Yu (2006) investigated the static
behaviors and the free and forced vibration of FGPM plates with fully simple supports on the basis
of the state space method. Arefi et al. (2012) presented the analytical solutions of an FGPM
cylinder in a magnetic field and under elasto-thermo-electric loads, in which the material
properties, except for the Poisson’s ratio, were assumed to vary continuously and gradually along
the thickness coordinate based on a power function. Using the Airy stress function method with
plane strain assumptions, Zhang and Shi (2010) obtained the exact solutions of FGPM cylinders
with different piezoelectric parameters and the lateral surfaces of the cylinders subjected to electric
potential and mechanical loads. Wu and Syu (2007) and Wu and Tsai (2007) studied the static
behaviors of FGPM cylindrical shells and FG magneto-electro-elastic doubly-curved ones using
the perturbation method, and their free vibration counterparts were examined by Tsai and Wu
(2008) and Wu and Tsai (2009) using the method of multiple time scales. Comprehensive literature
surveys related to the 3D analytical and 2D numerical approaches for the analysis of multilayered
piezoelectric plates/shells and FGPM ones were conducted by Saravanos and Heyliger (1999),
Tang et al. (1996) and Wu et al. (2008).

In order to extend the scope of the coupled electro-elastic analyses of FGPM structures, a
number of numerical methods combining 2D and 3D theories have been presented, such as the
finite element (FE), finite strip and meshless approaches. Wu et al. (2002) developed a
higher-order theory for the analysis of FGPM cylindrical shells under electro-mechanical loads, in
which the sensing and actuating behaviors of the shells were examined. Loja et al. (2013) studied
the static behaviors and free vibration responses of sandwich FGM plates with the surface-bonding
piezoelectric sensor and actuator layers using B-spline finite strip models based on a variety of
first- and higher-order shear deformation theories (FSDTs and HSDTSs). In conjunction with the
energy method and FSDT, Arefi and Rahimi (2014) carried out 2D electro-elastic analysis of an
FGPM cylinder under internal pressure, in which the effects of a local support on the distributions
of elastic and electric variables were evaluated. Arefi (2014) developed a generalized shear
deformation theory for the thermo-mechanical analysis of FGM cylindrical shells subjected to the
external loads. Ootao and Ishihara (2013) presented the exact solution for the transient thermal
stress analysis of FGM hollow cylinders with the material properties of a piecewise power law.
Sladek et al. (2010, 2012, 2013) proposed a meshless local Petrov-Galerkin method for the
bending analysis of FGPM circular plates and laminated composite ones bounded with the
piezoelectric sensors and actuators on the lateral surfaces, in which the shape functions of electric
and elastic variables were constructed using the moving least square method. Based on the FSDT,
Liew et al. (2003a, b) developed a finite element formulation for the static and dynamic analyses
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of FGM plates, in which the material properties were assumed to obey a power-law distribution of
the volume fractions of the constituents through the thickness coordinate. Some control algorithms
coupling the direct and converse piezoelectric effects are also applied in the literature to provide
feedback control of the integrated FGM plates. Carrera (2003) proposed a compact and
generalized formulation, called Carrera’s unified formulation (CUF), for the bending, vibration
and buckling analyses of laminated composite plates and shells, in which the order of each field
variable expanded in the thickness coordinate remains the same, and can be freely chosen, and the
stiffness matrices of all possible theories were generated from the expansion of the fundamental
nuclei, which is a three-by-three matrix. A number of 2D refined and advanced theories based on
the principle of virtual displacement (PVD) and Reissner’s mixed variational theorem (RMVT)
(Reissner 1984, 1986) can be thus included as special cases of the CUF. Finally, the CUF has been
successfully extended to the analyses of FGM plates and shells by Brischetto and Carrera (2010,
2012), and to those of laminated piezoelectric plates and shells by Ballhause et al. (2005), Carrera
and Boscolo (2007) and Carrera et al. (2008, 2010).

Based on the RMVT, Wu and Li (2010 a, b), Wu and Chang (2012) and Wu et al. (2014)
developed the unified formulations of finite layer methods (FLMs) for the 3D static and vibration
analyses of simply-supported, multilayered FG elastic plates/cylinders and laminated composite
ones. Subsequently, Wu and Li (2013a, b) developed the RMVT-based finite rectangular and
cylindrical prism methods (FRPMs and FCPMs) for the 3D bending analysis of the
above-mentioned structures with various boundary conditions and under mechanical loads. In the
implementations of these FLMs, the results are shown to be in excellent agreement with the exact
3D elasticity solutions available in the literature, with a fast convergence rate. In this article, the
formulations of RMVT-based FLMs for the elastic structures were thus extended to the coupled
electro-elastic analysis of single- and multi-layered FGPM plates with open- and closed-circuit
surface conditions and under electro-mechanical loads. The relevant orders used for expanding the
electric and elastic variables through the thickness coordinate can be freely chosen as linear,
guadratic and cubic orders, and the accuracy and convergence rate of various FLMs are examined
by comparing their solutions with the exact 3D piezoelectricity ones available in the literature. The
material properties of the plate are assumed to obey an exponent-law varying exponentially
through the thickness coordinate, and four different electric and mechanical loading conditions
applied on the lateral surfaces are considered. A parametric study related to the influence of
various factors on the coupled electro-elastic behaviors of the FGPM plate is carried out, such as
the material-property gradient index, different surface conditions and aspect ratios.

2. RMVT-based FLMs

In this article, we consider a simply-supported, FGPM plate with the open- and closed-circuit
surface conditions, and subjected to electro-mechanical loads on the top and bottom surfaces, as
shown in Fig. 1(a), in which the plate is artificially divided into a number of rectangular layers. A
Cartesian global coordinate system (i.e., X, y and ¢ coordinates) is located on the middle plane of

the plate, and a set of Cartesian local thickness coordinates, z, (m=1 2, 3,---, N,), is located at
the mid-plane of each divided layer, as shown in Fig. 1(b), in which N, is the total number of the
layers constituting the plate. The thicknesses of each individual layer and the plate are
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N,
h, (m=12,---,N,) and h, respectively, while h=z h, . L, and L, denote the in-plane

m=1
dimensions in the x and y directions, respectively. The relationship between the global and local
thickness coordinates in the m™layer is ¢=¢Z, +z,, in which & =(¢, +¢,,)/2, and
¢, and &, , arethe global thickness coordinates measured from the mid-plane of the plate to the
top and bottom surfaces of the m™-layer, respectively.

2.1 Generalized Kinematic and Kinetic assumptions

A unified formulation of RMVT-based FLMs is developed for the 3D coupled electro-elastic
analysis of N, -layered FGPM plates subjected to electro-mechanical loads. The elastic

displacement and electric potential components of a typical layer (i.e., the mth-layer) of the plate,
of which the domains arein 0<x<L,, 0<y<L, and (~h,/2)<z, <(h,/2), are given by

a

b e
T N
N N
NP T

) = - /

Fig. 1 (a) The configuration and loading conditions of an FGPM plate. (b) The global and local
coordinates of the plate, in which N, =4
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where u{™, u{™ and u{™ denote the elastic displacement components of the mth-layer of the

plate inthe x, yand ¢ directions, respectively, and @™ is the electric potential of the mth-layer
of the plate; (™), (™), (w™) and (qﬁ“”))i are the elastic displacement and electric

potential components at the i™-nodal plane of the mth-layer of the plate; and ( u(m))i, ( (m’)i and

w

(y/;m))i are the corresponding shape functions; n,, n, and n, denote the related orders used for

the expansion of the in- and out-of-plane displacement and electric potential components,
respectively.

The transverse shear and normal stress components, and the normal electric displacement one,
are also regarded as the primary variables in these RMVT-based FLMs, and are assumed as
follows

n +1

AP0y za)= 3 b))l (5)
(223 vt el b2 )] ©)
o 02,)= 3 bt el 0] )
DO (x yi2,)- 5 P, )], DI .y, ©

i=1
where (&), D), (o), and (D(;”))i are the transverse shear and normal stress components

and the normal electric displacement one at the i"™-nodal plane of the mth—layer of the plate; ( fm’),,

! e

(ffm))i and (V/(dm))i are the corresponding shape functions; n_, n_ and n, denote the related

orders used for the expansion of the transverse shear and normal stress, and normal electric
displacement components, respectively.

For a typical layer, the linear constitutive equations, which are valid for the orthotropic
piezoelectric materials, are given by
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where o, o",--, and z{’ are the stress components; &{”, £{",---, and y{” are the strain
components; D{, DY” and D are the electric  displacement  components;

E®, E(” and E™ are the electric field components; c{™, e{”and »{™ are the elastic,

piezoelectric and dielectric permeability coefficients, respectively, which are variable through the
thickness coordinate in the FGPM plate.
The strain-displacement relations for each individual layer are written as follows

n,+1
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where the commas denote partial differentiation with respect to the suffix variables; and
D(://(m))i :d(yﬂm))i /dz,,.inwhich j=u and w.

j j
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The electric field-electric potential relations for each individual layer are given by

n,+1

EP= o™, = Y ) o, (17
i=
nw+l

E(ym) — @(m),y - Z (l//(f)m))i §0§m),y (18)
i=1
nw+1

Eém) — @(m)’( — Z D(l//;m))i ¢€m) (19)
i=1

2.2 The Reissner mixed variational theorem

The Reissner mixed variational theorem is used to derive the Euler-Lagrange equations of the
plate for RMVT-based FLMs, and its corresponding energy functional for the plate is written in the
form of

hi/2
Iy :J:hlz JL [ax & +O 6 O, & Ty Yy HT Yy +T,7y —DE,-~DE, -D.E, - B(Gi,», D, )]dxdydg
_Hﬂi qz(x y)u dx dy_-”ﬂé D/ (x, y) @* dx dy—'”.Q(i D, (Q; P )dx dy 20)
_J.—hhllzz J.rﬁ (fx Ux +fy Uy +f§ UC) dl"dg _J:hhl/zz J.rD (Bn (D) dl"dg

_Ifh//zz jr“ [w, -t + @, T, + @, Tt ] drdg—jfh’/zz jr D, (@ -&)drdc,

where Q denotes the plate domain on the x-y plane, and Q* denotes the top surface
(¢=h/2) and the bottom one (¢ =-h/2) of the plate, in which the transverse load (g ), electric

potential (@ *) or normal electric displacement(l:_)j)are applied; T’_, T,, ', and T, denote

the portions of the edge boundary, where the surface traction, elastic displacement, electric
potential and normal electric displacement components are prescribed, respectively (i.e., t, =t
and u, =0, in which i= x, y and ¢; @=@; D,=D,); B(o,,D,) is the complementary
energy density function.

In the formulation, we take the elastic displacement, transverse shear and normal stress, electric
potential and normal electric displacement components to be the primary variables subject to
variation. Using the generalized kinematic and Kkinetic assumptions given in Egs. (1)-(8), we may
express the first-order variation of the Reissner energy functional as follows

ij?
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where the superscript of T denotes the transposition of the matrices or vectors; and T, and T,
stand for the boundary edges, in which the essential and natural conditions are prescribed.
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2.3 Euler—lagrange equations

The static behaviors of simply-supported, single- and multi-layered functionally graded
piezoelectric plates under electro-mechanical loads are studied in the following illustrative
examples. The applied loading conditions on the lateral surfaces of the plate are prescribed as

follows:
Case 1. Closed-circuit surface conditions on which the mechanical loads are applied,

c(x v, h/2) 28 (xy,h/2) oM™ (xy,hi2) @™(x, y,h/2)]:[0 0 q(xy) 0] on the top surface, (22a)

20y, -h/2) 2 y,~h/2) o®(x,y,-h/2) @®(xy,-h/2)]=[0 0 0 0], onthe bottomn surface;(22b)

Case 2. Closed-circuit surface conditions on which the electric potentials are applied,

[ri’}')(x, y,hi2) ¥ (x y,hi2) o™(x y,hi2) @™(xy, h/2)]= [O 00 @ y)] on the top surface, (23a)

e

20 v, =h12) 2(x,y,~h/2) o®(x,y,~h/2) @®(x,y,-h/2)]=[o 0 0o 0], on the bottom surface; (23b)
Case 3. Open-circuit surface conditions on which the mechanical loads are applied,

[y, h72) 2(x, v, 0h/2) o™y, h/2) DM(x,y,h/2)]=p 0 G:(xy) 0] onthe top surface, (24a)

[4

2y, -h12) <2(x,y,~h/2) o®(x,y,~h/2) DY(xy,~h/2)=[0 0 0 o], on the bottom surface; (24b)

y

Case 4. Open-circuit surface conditions on which the electric normal displacements are applied,
f(x, y,hi2) (x, v, h12) o™ (x,y,h/2) DM(x,y, h/2)]= [0 0 0 D/(x y)] on the top surface, (25a)

2%, v, ~h/2) 2 y,~h/2) o®(x,y,~h/2) DE(x,y,~h/2)]=[0 0 o 0 ,on the bottom surface; (25b)
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where G, @* and Sg are expressed as the double Fourier series and given as

)

a; =ii U Sin(x) sin(y), @ =D ¢,, sin(fx) sin(Ay) and D/ Zz Dagy sin(i x) sin(ii y),

m=1 A=1 m=1 A=1 m=1 A=1
respectively, inwhich m=mz~/L,, n=Az/L, and m, A are positive integers.

The edge boundary conditions of each individual layer are considered as fully simple supports
with free electric potentials, which requires that the following quantities are satisfied.

um =ulM =M = @™ =0 at x=0, x=L, and m=12,---,N, (26a)
um =ul” =W =@™ =0, at y=0, y=L, and m=12,---,N, (26b)

By means of the separation of variables, the primary field variables of each individual layer are
expanded as the following forms of a double Fourier series so that the boundary conditions of the
simply supported edges are exactly satisfied. They are given as
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Introducing Egs. (27)-(29) in Eqg. (21) and imposing the stationary principle of the Reissner
energy functional (i.e., sT1, =0), we obtain the Euler—Lagrange equations of the plate as follows

Km0 KM, KM, KW 0 [[G™] 0]
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m=1 [AVAN| vV Il v v v Vv -
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and the symbols of 5, (m=12---N,) and &, (i=12--,n +1) arethe Kronecker delta

functions, in which k=u, w, d and ¢.

Using Eq. (30) and assembling the local stiffness matrix and forcing vector of each layer, in
which the elastic displacement, transverse stress, electric potential and normal electric
displacement continuity conditions at the interfaces between adjacent layers are imposed, and thus
satisfied a priori for the RMVT-based FLMs, we may construct the global stiffness matrix and
forcing vector for the plate. The primary variables at each nodal plane can then be determined.
Subsequently, the variables of in-plane stress and electric displacement components at the nodal
planes can be obtained using the determined primary variables, and these are given by

(aim, G§m)) » (gf:ﬂ“n) agg?n) sinmx sinfy (31)
m=1 =1
(m) AN (m) m n
D zin: cosmx cosiy (32)
=1 A-1

D =>">" D{) cosmx sinfiy (33)
m=1 A=1
DIV =>">" DI sinfx cosily (34)

1n

3
]
I

5N

where [G(m) o Tl(;nn)\n]T —QM BN T™ +QM BY 6™ + QM BY D™,

1A
and [D) DM ] =sm B 7™ _sM BM ™.

1A 2mMA
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Fig. 2 The through-thickness distributions of the material properties of a single-layered FGPM plate, in
which g =-1.0,-0.5,0.0,0.5,1.0

Using this unified formulation of RMVT-based FLMs, we may analyze the 3D coupled
electro-elastic behaviors of single- and multi-layered FGPM plates and laminated homogeneous
piezoelectric ones with closed- and open-circuit surface conditions and under electro-mechanical
loads, and the performances of various RMVT-based FLMs with different orders used for
expanding the electric and elastic field variables in the thickness coordinate will be also examined
later in this article.

3. lllustrative examples

The unified formulation of RMVT- based FLMs for the FGPM plates was presented above, in
which various combinations of the orders used for expanding the elastic displacement, electric

potential, transverse stress and normal electric displacement components in the thickness
coordinate can be freely chosen. The acronyms, L

M@ oo, are thus defined to represent various
RMVT-based FLMs, in which the in- and out-of-plane elastic displacements and the electric
potential are expanded as the n

us

n,- and n,-order Lagrange polynomials, respectively, and
the transverse shear and normal stresses and the normal electric displacement are expanded as the
n.-, ng

- and n, -order Lagrange polynomials in the thickness coordinate of each layer,
respectively. The values of n, (i=u, w,  and o) remain the same, and are taken to be less
than 4, namely 1(linear), 2(quadratic) and 3(cubic) in the following examples.

3.1 Single-layered FGPM plates

In this section, the static behavior of a simply-supported, single-layered FGPM plate with the
loading cases 1 and 2 is investigated, which has been also examined by Lu et al. (2006) using the
PSF and Brischetto and Carrera (2009) using CUF, and their solutions are used to evaluate the

accuracy and convergence rate of the FLMs with different orders. PZT-4 is used as the reference
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material, the material properties of which are given in Table 1, and this is placed in the bottom of
the plate. The material properties of the plate are assumed to vary exponentially through the
thickness coordinate, and are given by

Table 1 Elastic, piezoelectric and dielectric coefficients of composite and piezoelectric materials
PZT-4

Moduli (Lu et al. 2006)
cy; (GPa) 139
Cy, (GPa) 139
C33 (GPa) 115
¢y, (GPa) 77.8
c13 (GPa) 74.3
Cp3 (GPa) 74.3
Caq (Gpa) 256
Cs5 (Gpa) 256
Ces (Gpa) 30.6
e, (cim?) 127
e (cm?) 12.7
ey (C/mz) 2
€, (C/mz) 52
€43 (C/mz) 151
I, (FIm) 1475
M2 116 (F/m) 1475
N3 1o (F/m) 1300

n, denotes the dielectric permittivity of free space, and 7, =8.854e-12 (F/m)
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Table 2 Results of convergence rate and accuracy studies for the FLM solutions of electric and elastic
variables induced at the position x=y=0.25L, in a single-layered FGPM plate under mechanical
loads (Case 1) (L, =L,=1m,L,/h=10)

p Theories 0"u, 10° u, o, Ty o, 102 D 10° D,
(€=0)  (£=0) (£=-h/2) (=hi?) (=h/2) (£=0) (£=0)

1.0 LM (N, = 4) 0.674 -0.253 15.403 3.101 0485 0600 0.328

LMi;7 (N, =8) 0673 -0.253 15.40 3.103 0497 -0.602 0.332

LM (N, =12) 0673 -0.253 15.40 3.103 0499 0602 0.332

LM (N, =16) 0673 -0.253 15.40 3.103 0499 0602 0.332

LMZZ2(N, =4) 0.674 -0.253 15.40 3.103 -0.495 -0.602 0.332

LMZZ(N, =8) 0673 -0.253 15.40 3.103 -0.499 -0.602 0.332

LMZZ(N, =12) 0673 -0.253 15.40 3.103 -0.500 -0.602 0.333

LMZZ (N, =16) 0.673 -0.253 15.40 3.103 -0.500 -0.602 0.333

LM3S(N, =4) 0.673 -0.253 15.40 3.103 -0.500 -0.602 0.333

LM33(N, =8) 0.673 0,253 15.40 3.103 -0.500 -0.602 0.333

LMZ(N, =12) 0673 -0.253 15.40 3.103 0500 0602 0.333

LM (N, =16) 0673 -0.253 15.40 3.103 -0.500 0602 0333

3D (Lucetal., 2006) 0650 0251 1523 3.041 10500 059 0312

CUF (Brischetto and Carrera, 2009) 0.647 -0.248 15.21 3.039 -0.511 -0.591 0.316

00 LMII(N, = 4) -0.029 -0.151 10.95 4244 -0.506 -0.392 -0.059

LM (N, =8) -0.029 -0.151 10.96 4.246 0502 -0.393 -0.059

LM (N, =12) -0.029 -0.151 1096 4.246 0501 0393 0059

LMiI(N, =16) -0.029 -0.151 10.96 4.246 -0.500 -0.393 -0.059

LMZ2Z (N, = 4) -0.029 -0.151 1096 4.246 0501 0393 -0.059

LMZZ (N, =8) -0.029 -0.151 1096 4.246 0500 0393 -0.059

LMZZ(N, =12) -0.029 -0.151 1096 4.246 -0.500 0393 -0.059

LM (N, =16) -0.029 -0.151 10.96 4.246 -0.500 -0.394 -0.059

LM3S(N, =4) -0.029 -0.151 1096 4.246 0500 -0.394 0059

LM3S (N, =8) -0.029 -0.151 1096 4.246 0500 -0.394 -0.059

LM3S (N, =12) -0.029 -0.151 1096 4.246 0500 -0.394 0059

LM3S (N, =16) -0.029 -0.151 1096 4.246 0500 -0.394 0059

3D (Lu et al. 2006) 0031 -0.151 1092 4247 10500 0393 0,061

CUF (Brischetto and Carrera 2009) ~ -0.029 -0.151 1096 4281 -0.500 0393 0,059

10 LMI(N, = 4) -0.284 -0.094 7623 5.844 0521 0221 -0.445

LMi1(N, =8) -0.284 -0.004 7629 5.847 050 0221 -0.449

LMII(N, =12) -0.284 -0.094 7.629 5.847 0502 0221 -0.450

LMiI(N, =16) -0.284 -0.094 7.629 5.847 0501 0221 -0.451

LMZZ (N, = 4) -0.284 -0.094 7.629 5.847 0504 0221 -0.450

LMZZ(N, =8) -0.284 -0.094 7.629 5.847 0501 0221 -0.451

LMZZ2(N, =12) -0.284 -0.094 7.629 5.847 -0.500 0221 -0.451

Continued-
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LM3Z22 (N, =16) -0.284 -0.094 7.629 5.847 -0.500 0.221 -0.451
LM3Z(N, =4) -0.284 -0.094 7.629 5.847 -0.500 0.221 0451
LI\/Iggg (N, =8) -0.284 -0.094 7.629 5.847 -0.500 -0.221 -0.451
LM3S (N, =12) -0.284 -0.094 7.629 5.847 -0.500 0.221 -0.451
LMZS (N, =16) -0.284 -0.094 7.629 5.847 -0.500 0.221 0451

3D (Lu et al. 2006) 0.275 -0.094 7.529 5.830 -0.500 -0.220 -0.445

CUF (Brischetto and Carrera 2009)  -0.273 -0.002 7.504 5.773 0.481 0.217 0432

m, ©)= mu eAll¢/n1/2) (35)

in which m; denotes the material properties of PZT-4, g is the material-property gradient
index, and (-h/2)<¢ <(h/2). The through-thickness distributions of material properties are
shown in Fig. 2, in which p=-1.0,-0.5, 0, 0.5 and 1.0.

Tables 2 and 3 show the LM, LM32 and LM% solutions of various electric and elastic
variables induced at some specific positions (LX/4, L, /4, g) of the plates subjected to the
sinusoidally distributed mechanical load and electric potential (i.e.,
q; :qosin(ﬁx/LX)sin(ﬁy/Ly) , G;=0, and @ :¢Osin(7rx/LX)sin(7zy/Ly) , @ =0),
respectively, in which L, =L, =1m, S=L, /h=10and N,=4, 8, 12, 16 and 32. It can be seen in
Tables 2 and 3 that the accuracy based on the same value of N, and convergence rate for various
FLMs are LM3s > LM% >LMi;, in which the symbol “>” means more accurate and more rapid,
which is more obvious for the transverse normal stress and normal electric displacement
components than for the others. It is also shown that the 32-layer LM;;, 12-layer LM%, and

4-layer LM solutions are in excellent agreement with the exact 3D solutions and CUF ones
available in the literature, in which the relative errors of various FLM solutions of all electric and

elastic variables will be lower than 1% as compared with the 3D solutions. The RMVT-based
FLMs with cubic orders are thus used in the later work in this article.

3.2 Two-layered FGPM film/substrate plates

In this section, we consider a simply-supported, two-layered FGPM film-substrate plates (FSP)
under electro-mechanical loads. The substrate is a homogenous PZT-4 layer with a thickness h;,
and the film is an FGPM one with a thickness h, bounded on the top surface of the substrate, while
h,;+h,=h. The material properties of the FSP through the thickness coordinate are expressed as
follows

m; (£)=m; (~-h12)<¢<~(h/2-h,) (36a)

m, (¢)=m; e? le-trrzmlina —(h/2-h)<¢ <(h/2) (36b)

]
in which the material properties are continuous at the film-substrate interface, and the
through-thickness distributions of these are shown in Fig. 3 in the case of h;=h,=h/2 and =-1.0,
-0.5, 0.0, 0.5and 1.0.
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The loading conditions of Cases 1 and 3 are g :qosin(nx/LX)sin(n y/Ly), g; =0, and
those of Cases 2 and 4 are 5+:¢Osin(;zx/LX)sin(7zy/Ly) , ® =0 , and

55 = Dosin(nx/LX)sin(n y/Ly), 54‘ =0, respectively. The sets of dimensionless field variables

for the different loading cases 1-4 are defined as follows:
For the cases of applied mechanical loads (Cases 1 and 3),

o, ol=lu, ulc,/la,s*h). B.. 7. & ]=lo./5%0) 7. f(Sa) o 1q,),
[@, B, ]=[we;/(0,52h) D, cilla, Sel), S=Lih (37a-d)
For the cases of applied electric potential (Case 2),

g, o], ulckigser) [, 7. & ]=[sho,. S?hr.. S°ho, g el),

[5' 5:]:[@/ %, D, (033 h)/ (¢0 (egs)z )J (38a-c)

Table 3 Results of convergence rate and accuracy studies for the FLM solutions of electric and elastic
variables induced at the position x=y=0.25L, in a single-layered FGPM plate under electric potential
(Case 2) (L, =L,=1m,L,/h=10)

B Theories 10°U, 10° us Ox Txy o, D 107 D,
¢=0 (=0 (€=-h/2) (¢=h/2) (=h/2) ({=0) (£=0)

10 LM (N, = 4) 0.129 0.338 1650 1430 0.202 0.183 -0.448

LM (N, =8) -0.129 0.338 1741 -14.30 0.050 0.183 -0.455

LM (N, =12) -0.129 0.338 1758 -14.30 0.022 0.183 -0.456

LMiﬂ (N, =16) -0.129 0.338 -17.64 -14.30 0.013 0.183 -0.457

LM (N, =32) -0.129 0.338 -17.70 -14.30 0.003 0.183 -0.457

LMZZ (N, =4) -0.129 0.338 -17.33 -14.30 0.053 0.183 -0.454

LM 333 (N, =8) -0.129 0.338 -17.62 -14.30 0.013 0.183 -0.457

LMZZ2(N, =12) -0.129 0.338 -17.67 -14.30 0.006 0.183 -0.457

LM §§§ (N, =16) -0.129 0.338 -17.69 -14.30 0.003 0.183 -0.457

LM3Z(N, =4) -0.129 0.338 17.71 -14.30 -0.000 0.183 -0.457

LM3S (N, =8) -0.129 0.338 1771 -14.30 -0.000 0.183 -0.457

LMZ(N, =12) -0.129 0.338 17.72 -14.30 -0.000 0.183 0457

LM ggg (N, =16) -0.129 0.338 17.72 -14.30 -0.000 0.183 -0.457

3D (Lu et al. 2006) -0.129 0.327 -18.06 1422 0.000 0.181 -0.457

CUF (Brischetto and Carrera 2009) -0.125 0.325 -18.04 -13.80 0.002 0.183 -0.455

00 LMI(N, = 4) -0.129 0.072 -23.17 -27.25 0.390 0.243 -0.785

LM (N, =8) -0.129 -0.072 2363 -27.25 0.008 0.243 -0.788

LMII(N, =12) -0.129 -0.072 -23.71 -27.25 0.044 0.243 -0.789

Continued-
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LM (N, =16) -0.129 0072 -23.74 2125 0.025 0.243 -0.789
LMT(N, =32) 0129 0072 2377 2125 0.006 0.243 -0.789
LMZ22(N, =4) -0.129 -0.072 -23.62 -27.25 0.099 0.243 -0.788
LM32 (N, =8) -0.129 0072 -23.74 2125 0.025 0.243 -0.789
LMZ2 (N, =12) -0.129 0072 2376 2125 0.011 0.243 -0.789
LMZZ (N, =16) 0129 0072 2377 2125 0.006 0.243 -0.789
LM3Z(N, =4) -0.129 -0.072 -23.78 -21.25 0.000 0.243 -0.789
LM3S (N, =8) 0129 0072 2378 2125 0.000 0.243 -0.789
LMZZ(N, =12) 0129 0072 2378 2125 0.000 0.243 -0.789
LM (N, =16) 0129 0072 2378 2125 0.000 0.243 -0.789
3D (Lu et al. 2006) 0129 0074 2379 2719 0.000 0.242 -0.787
CUF (Brischetto and Carrera 2009) -0.128 -0.072 -23.68 -27.16 0.005 0.243 -0.788
10 LM (N, = 4) -0.129 -0.487 -40.85 -41.95 0.616 0.302 -1.232
LM (N, =8) -0.129 -0.487 -42.92 -41.95 0.154 0.303 -1.250
LM (N, =12) 0129 -0.487 4331 4195 0.068 0.303 -1.253
LMi1(N, =16) -0.129 -0.487 -43.45 -41.95 0.038 0.303 -1.254
LM (N, =32) -0.129 -0.487 4358 -41.95 0.010 0.303 -1.255
LMZ2Z (N, =4) -0.129 -0.487 4279 -41.95 0.155 0.303 -1.249
LMZ2%Z (N, =8) -0.129 -0.487 -43.41 -41.95 0.039 0.303 -1.254
LMZZ2(N, =12) -0.129 -0.487 4353 -41.95 0.017 0.303 -1.255
LMZZ (N, =16) 0129 -0.487 4357 4195 0.010 0.303 -1.255
LM3S(N, =4) -0.129 -0.487 4362 -41.95 -0.001 0.303 -1.256
LM3S (N, =8) -0.129 -0.487 4362 -41.95 -0.000 0.303 -1.256
LMZ(N, =12) -0.129 -0.487 4362 4195 -0.000 0.303 -1.256
LM3S (N, =16) -0.129 -0.487 4362 4195 0.000 0.303 -1.256
3D (Lu et al. 2006) 0129 -0.480 4427 4172 0.000 0.300 1257
CUF (Brischetto and Carrera 2009) -0.125 -0.466 -45.61 -41.00 0.001 0.303 -1.249
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Fig. 3 The through-thickness distributions of the material properties of an FGPM FSP, in which
h :h, =0.5h:05h and f=-1.0,-0.5,0.0,0.5, 1.0
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For the cases of applied normal electric displacement (Case 4),

G, @)=, ulesiD,sh), [, 7. & ]=[seho,. S?ehr.. SPelho.i(D,cl),

@, Bg]zlfp(e;)z/(DO ¢, h) D§/DOJ

inwhich ¢;, and e, denote the corresponding material properties of PZT-4.

(39a-c)
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Figs. 4-7 show the through-thickness distributions of electric and elastic variables induced in
the FGPM film-substrate plate for the loading conditions of Cases 1-4, respectively, in which
L«/h=10, L,=L,, p=-1.0, 0 and 1.0. When p=0, the FGPM FSP becomes a single-layered
homogeneous PZT-4 plate. It can be seen in Figs. 4 and 6 that in the cases of applied mechanical
loads (Cases 1 and 3), the in-plane elastic displacement and stress, transverse shear stress, and
transverse normal stress variables appear to be the linear, parabolic and higher-order polynomial
variations through the thickness coordinate for the homogeneous piezoelectric plates ( g =0), while

those for FGPM FSPs change more dramatically than those for homogeneous piezoelectric ones.
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The effects of different surface conditions (i.e., closed- and open-circuit ones) on the
through-thickness distributions of elastic variables induced in the FGPM FSPs are very minor,
while they are significant for those of electric variables. The results in Figs. 5 (Case 2) and 7 (Case
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4) show the effects of different surface conditions on the through-thickness distributions of both
electric and elastic variables are significant when the electric loads are applied.
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Fig. 7 The through-thickness distributions of various elastic and electric variables induced in an FGPM
FSP for loading Case 4, in which £=-1.0, 0.0 and 1.0, h :h, =0.5h:0.5h, and L ,/h=10,
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FSP for loading Case 1, in which #=1.0and 3.0, h :h,=0.8h:0.2h,and L /h=4, L, =L,

Figs. 8 and 9 show the through-thickness distributions of elastic and electric variables induced
in the FGPM FSPs and homogeneous ones with L, /h=4 and 50, respectively, for the loading

Case 1, in which L,=L,, p=1 and 3, h, :h,=0.8h:0.2h, and g :qOSin(ﬂ'X/LX)Sin<ﬂ'y/Ly)
and @; =0. The material properties distributions through the thickness coordinate of the FGPM
FSP are given in Eq. (36), while those of the homogenous FSP are layer-wise constants, which are
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m; e/ and m; for the film and substrate layers, respectively. It can be seen in Figs. 8(c) and 9(c)

that the transverse shear stresses in the homogeneous FSPs change dramatically through the
thickness coordinate when the deviations of the material properties between the film and substrate
layer become greater (i.e., g becomes greater), while this situation will be reduced when we

replace the homogeneous film with an FGPM film.
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Figs. 8(b) and 9(b) show the in-plane stresses induced in the homogenous FSPs change
abruptly at the film-substrate interface due to the mismatched material properties occurring at this
location, while those induced in the FGPM FSPs vary smoothly through the thickness coordinate
and are continuous at the film-substrate interface. The results in Figs. (8) and (9) also show that for
a thick FSP the through-thickness distributions of elastic and electric variables appear to be
layer-wise higher-order polynomials, while those for homogeneous FSP change more dramatically
than those of FGPM FSP, and that the deviations of between these for homogeneous FSPs and
FGPM FSPs increase when the material-property gradient ( 4 ) becomes greater.

4. Conclusions

In this article, we developed an RMVT-based FLM for the static analysis of simply-supported,
FGPM FSPs with closed- and open-circuit surface conditions and subjected to four different
loading conditions. The field variables are expanded as the trigonometric functions in the in-plane
domains of the plate such that the simply-supported conditions are exactly satisfied, while these
are interpolated in the thickness coordinate of each individual layer using Lagrange polynomials,
the relevant orders of which can be freely selected to be linear, quadratic and cubic ones. In the

implementation of various FLMs, the results show that LMZs >LMZ2> LM, in which the

symbol “>” means more accurate results and a more rapid convergence rate. In the numerical
example, it is shown that the transverse shear stresses induced in the homogeneous FSPs change
dramatically through the thickness coordinate when the deviations of the material properties
between the film and substrate layers become greater, while this situation will be reduced when we
replace the homogeneous film with an FGPM film. The in-plane stresses induced at the
film-substrate interface for the homogeneous FSPs change abruptly due to the mismatched
material properties occurring at that location, while those for the FGPM FSPs vary smoothly
through the thickness coordinate of the plate and are continuous across the film-substrate interface.
These advantages are helpful for overcoming some of the drawbacks of conventional
homogeneous FSPs in practical applications, such as delamination and transverse matrix cracking.
Moreover, the through-thickness distributions of electric and elastic variables induced in the
FGPM FSPs and homogeneous ones appear to be layer-wise higher-order polynomial variations,
which are inconsistent with the kinematic and kinetic assumptions of most of conventional
two-dimensional (2D) equivalent-single-layered (ESL) theories of elastic plates. These 2D ESL
theories of elastic plates might not be extended to those of FGPM FSPs, and some more advanced
2D theories of FGPM FSPs thus need to be developed.
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