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Abstract.  A unified formulation of finite layer methods (FLMs), based on the Reissner mixed variational 
theorem (RMVT), is developed for the three-dimensional (3D) coupled electro-elastic analysis of 
simply-supported, functionally graded piezoelectric material (FGPM) plates with open- and closed-circuit 
surface conditions and under electro-mechanical loads. In this formulation, the material properties of the 
plate are assumed to obey an exponent-law varying exponentially through the thickness coordinate, and the 
plate is divided into a number of finite rectangular layers, in which the trigonometric functions and Lagrange 
polynomials are used to interpolate the in- and out-of-plane variations of the primary field variables of each 
individual layer, respectively, such as the elastic displacement, transverse shear and normal stress, electric 
potential, and normal electric displacement components. The relevant orders used for expanding these 
variables in the thickness coordinate can be freely chosen as the linear, quadratic and cubic orders. Four 
different mechanical/electrical loading conditions applied on the top and bottom surfaces of the plate are 
considered, and the corresponding coupled electro-elastic analysis of the loaded FGPM plates is undertaken. 
The accuracy and convergence rate of the RMVT-based FLMs are assessed by comparing their solutions 
with the exact 3D piezoelectricity ones available in the literature. 
 

Keywords:  three-dimensional analysis; coupled electro-elastic analysis; static; finite layer methods; 

functionally graded materials; piezoelectric plates 

 
 
1. Introduction 
 

In recent decades, piezoelectric materials have been widely used to produce some beam-, plate- 

and shell-like smart structures with the advanced engineering applications for the purposes of 

sensing, actuating and controlling, due to their direct and converse effects, which means that a 

mechanical load applied to such structures will induce changes in the electric field variables of the 

structures, and vice versa. Many reports have examined conventional laminated piezoelectric 

structures, the material properties of which mismatch at the interfaces between adjacent layers, 

with reports indicating that in practical applications a number of weakness occur at these loactions, 

such as delamination, transverse matrix cracking, and huge residual thermo-mechanical stresses 

(Kashtalyan and Menshykova 2009, Woodward and Kashtalyan 2010). A new class of smart 

structures, called functionally graded piezoelectric material (FGPM) structures, the material 

properties of which continuously and gradually vary through the thickness coordinate, has thus 
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been developed to overcome these drawbacks. The coupled analysis of FGPM structures has since 

attracted considerable attention with the aims of both improving their working performances and 

enhancing their lifetime.  

Based on the three-dimensional (3D) piezoelectricity theory, some exact solutions for the 

bending, vibration and buckling analyses of simply-supported, FGPM plates/shells have been 

presented to assess the accuracy and convergence rates of various related two-dimensional (2D) 

and approximate 3D theories. Pan (2003) and Pan and Han (2005) undertook the exact 3D 

analyses of simply-supported, functionally graded (FG) elastic plates and FG 

magneto-electro-elastic plates using the pseudo-Stroh formalism (PSF), in which the material 

properties were assumed to vary exponentially in the thickness coordinate, and the effect of the 

material-property gradient index on the induced deformations and stresses was examined. The PSF 

was further extended to the cylindrical bending analysis of simply-supported, FGPM laminates by 

Lu et al. (2005, 2006). Zhong and Shang (2003) and Zhong and Yu (2006) investigated the static 

behaviors and the free and forced vibration of FGPM plates with fully simple supports on the basis 

of the state space method. Arefi et al. (2012) presented the analytical solutions of an FGPM 

cylinder in a magnetic field and under elasto-thermo-electric loads, in which the material 

properties, except for the Poisson’s ratio, were assumed to vary continuously and gradually along 

the thickness coordinate based on a power function. Using the Airy stress function method with 

plane strain assumptions, Zhang and Shi (2010) obtained the exact solutions of FGPM cylinders 

with different piezoelectric parameters and the lateral surfaces of the cylinders subjected to electric 

potential and mechanical loads. Wu and Syu (2007) and Wu and Tsai (2007) studied the static 

behaviors of FGPM cylindrical shells and FG magneto-electro-elastic doubly-curved ones using 

the perturbation method, and their free vibration counterparts were examined by Tsai and Wu 

(2008) and Wu and Tsai (2009) using the method of multiple time scales. Comprehensive literature 

surveys related to the 3D analytical and 2D numerical approaches for the analysis of multilayered 

piezoelectric plates/shells and FGPM ones were conducted by Saravanos and Heyliger (1999), 

Tang et al. (1996) and Wu et al. (2008). 

In order to extend the scope of the coupled electro-elastic analyses of FGPM structures, a 

number of numerical methods combining 2D and 3D theories have been presented, such as the 

finite element (FE), finite strip and meshless approaches. Wu et al. (2002) developed a 

higher-order theory for the analysis of FGPM cylindrical shells under electro-mechanical loads, in 

which the sensing and actuating behaviors of the shells were examined. Loja et al. (2013) studied 

the static behaviors and free vibration responses of sandwich FGM plates with the surface-bonding 

piezoelectric sensor and actuator layers using B-spline finite strip models based on a variety of 

first- and higher-order shear deformation theories (FSDTs and HSDTs). In conjunction with the 

energy method and FSDT, Arefi and Rahimi (2014) carried out 2D electro-elastic analysis of an 

FGPM cylinder under internal pressure, in which the effects of a local support on the distributions 

of elastic and electric variables were evaluated. Arefi (2014) developed a generalized shear 

deformation theory for the thermo-mechanical analysis of FGM cylindrical shells subjected to the 

external loads. Ootao and Ishihara (2013) presented the exact solution for the transient thermal 

stress analysis of FGM hollow cylinders with the material properties of a piecewise power law. 

Sladek et al. (2010, 2012, 2013) proposed a meshless local Petrov-Galerkin method for the 

bending analysis of FGPM circular plates and laminated composite ones bounded with the 

piezoelectric sensors and actuators on the lateral surfaces, in which the shape functions of electric 

and elastic variables were constructed using the moving least square method. Based on the FSDT, 

Liew et al. (2003a, b) developed a finite element formulation for the static and dynamic analyses 
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of FGM plates, in which the material properties were assumed to obey a power-law distribution of 

the volume fractions of the constituents through the thickness coordinate. Some control algorithms 

coupling the direct and converse piezoelectric effects are also applied in the literature to provide 

feedback control of the integrated FGM plates. Carrera (2003) proposed a compact and 

generalized formulation, called Carrera’s unified formulation (CUF), for the bending, vibration 

and buckling analyses of laminated composite plates and shells, in which the order of each field 

variable expanded in the thickness coordinate remains the same, and can be freely chosen, and the 

stiffness matrices of all possible theories were generated from the expansion of the fundamental 

nuclei, which is a three-by-three matrix. A number of 2D refined and advanced theories based on 

the principle of virtual displacement (PVD) and Reissner’s mixed variational theorem (RMVT) 

(Reissner 1984, 1986) can be thus included as special cases of the CUF. Finally, the CUF has been 

successfully extended to the analyses of FGM plates and shells by Brischetto and Carrera (2010, 

2012), and to those of laminated piezoelectric plates and shells by Ballhause et al. (2005), Carrera 

and Boscolo (2007) and Carrera et al. (2008, 2010). 

Based on the RMVT, Wu and Li (2010 a, b), Wu and Chang (2012) and Wu et al. (2014) 

developed the unified formulations of finite layer methods (FLMs) for the 3D static and vibration 

analyses of simply-supported, multilayered FG elastic plates/cylinders and laminated composite 

ones. Subsequently, Wu and Li (2013a, b) developed the RMVT-based finite rectangular and 

cylindrical prism methods (FRPMs and FCPMs) for the 3D bending analysis of the 

above-mentioned structures with various boundary conditions and under mechanical loads. In the 

implementations of these FLMs, the results are shown to be in excellent agreement with the exact 

3D elasticity solutions available in the literature, with a fast convergence rate. In this article, the 

formulations of RMVT-based FLMs for the elastic structures were thus extended to the coupled 

electro-elastic analysis of single- and multi-layered FGPM plates with open- and closed-circuit 

surface conditions and under electro-mechanical loads. The relevant orders used for expanding the 

electric and elastic variables through the thickness coordinate can be freely chosen as linear, 

quadratic and cubic orders, and the accuracy and convergence rate of various FLMs are examined 

by comparing their solutions with the exact 3D piezoelectricity ones available in the literature. The 

material properties of the plate are assumed to obey an exponent-law varying exponentially 

through the thickness coordinate, and four different electric and mechanical loading conditions 

applied on the lateral surfaces are considered. A parametric study related to the influence of 

various factors on the coupled electro-elastic behaviors of the FGPM plate is carried out, such as 

the material-property gradient index, different surface conditions and aspect ratios. 

 

 

2. RMVT-based FLMs 
 

In this article, we consider a simply-supported, FGPM plate with the open- and closed-circuit 

surface conditions, and subjected to electro-mechanical loads on the top and bottom surfaces, as 

shown in Fig. 1(a), in which the plate is artificially divided into a number of rectangular layers. A 

Cartesian global coordinate system (i.e., x, y and   coordinates) is located on the middle plane of 

the plate, and a set of Cartesian local thickness coordinates, ),,3,2,1( lm Nmz  , is located at 

the mid-plane of each divided layer, as shown in Fig. 1(b), in which lN  is the total number of the 

layers constituting the plate. The thicknesses of each individual layer and the plate are 
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),,2,1( lm Nmh   and h, respectively, while 



lN

m

mhh
1

. xL  and yL  denote the in-plane 

dimensions in the x and y directions, respectively. The relationship between the global and local 

thickness coordinates in the m
th
-layer is 

mm z , in which   2/1 mmm  , and 

1and mm   are the global thickness coordinates measured from the mid-plane of the plate to the 

top and bottom surfaces of the m
th
-layer, respectively. 

 

2.1 Generalized Kinematic and Kinetic assumptions 
 
A unified formulation of RMVT-based FLMs is developed for the 3D coupled electro-elastic 

analysis of lN -layered FGPM plates subjected to electro-mechanical loads. The elastic 

displacement and electric potential components of a typical layer (i.e., the mth-layer) of the plate, 

of which the domains are in xLx 0 , yLy 0  and    2/2/ mmm hzh  , are given by 
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Fig. 1 (a) The configuration and loading conditions of an FGPM plate. (b) The global and local 

coordinates of the plate, in which 4lN  

784



 

 

 

 

 

 

Coupled electro-elastic analysis of functionally graded piezoelectric material plates 

 

         
i

m

n

i
im

m

um

m

x yxuzzyxu
u

,,, )(

1

1

)()( 




                       (1) 

         
i

m

n

i

im

m

um

m

y yxvzzyxu
u

,,, )(

1

1

)()( 




                       (2) 

         
i

m

n

i
im

m

wm

m yxwzzyxu
w

,,, )(

1

1

)()( 




                       (3) 

         
i

m

n

i
im

m

m

m yxzzyx ,,, )(

1

1

)()( 







                      (4) 

where )()()( and, mm

y

m

x uuu   denote the elastic displacement components of the mth-layer of the 

plate in the x, y and   directions, respectively, and )(m  is the electric potential of the mth-layer 

of the plate;  imu )( ,  imv )( ,  imw )(  and  
i

m)(  are the elastic displacement and electric 

potential components at the i
th
-nodal plane of the mth-layer of the plate; and  

i

m

u

)( ,  
i

m

w

)(  and 

 
i

m)(

  are the corresponding shape functions; un , wn  and n  denote the related orders used for 

the expansion of the in- and out-of-plane displacement  and electric potential components, 

respectively. 

The transverse shear and normal stress components, and the normal electric displacement one, 

are also regarded as the primary variables in these RMVT-based FLMs, and are assumed as 

follows 
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where  
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m)(

23 ,  
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m)(

3  and  
i

mD )(

3  are the transverse shear and normal stress components 

and the normal electric displacement one at the i
th
-nodal plane of the mth-layer of the plate;  

i

m)(

 , 

 
i

m)(

  and  
i

m

d

)(  are the corresponding shape functions; n , n  and dn  denote the related 

orders used for the expansion of the transverse shear and normal stress, and normal electric 

displacement components, respectively. 

For a typical layer, the linear constitutive equations, which are valid for the orthotropic 

piezoelectric materials, are given by 
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where )()()( and,,, m

xy

m

y

m

x    are the stress components; )()()( and,,, m

xy

m

y

m

x    are the strain 

components; )()()( and, mm

y

m

x DDD  are the electric displacement components; 

)()()( and, mm

y

m

x EEE   are the electric field components; )(m

ijc , )(m

kle and )(m

ll  are the elastic, 

piezoelectric and dielectric permeability coefficients, respectively, which are variable through the 

thickness coordinate in the FGPM plate. 

 The strain-displacement relations for each individual layer are written as follows 
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where the commas denote partial differentiation with respect to the suffix variables; and 
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 The electric field-electric potential relations for each individual layer are given by 
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2.2 The Reissner mixed variational theorem 
 
The Reissner mixed variational theorem is used to derive the Euler-Lagrange equations of the 

plate for RMVT-based FLMs, and its corresponding energy functional for the plate is written in the 

form of 
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where   denotes the plate domain on the yx   plane, and   denotes the top surface 

( 2/h ) and the bottom one ( 2/h ) of the plate, in which the transverse load ( 

q ), electric 

potential (  ) or normal electric displacement ( 

D ) are applied;   and,, Du  denote 

the portions of the edge boundary, where the surface traction, elastic displacement, electric 

potential and normal electric displacement components are prescribed, respectively (i.e., ii tt   

and ii uu  , in which i= x, y and  ;   ; nn DD  ); ),( kij DB   is the complementary 

energy density function. 

In the formulation, we take the elastic displacement, transverse shear and normal stress, electric 

potential and normal electric displacement components to be the primary variables subject to 

variation. Using the generalized kinematic and kinetic assumptions given in Eqs. (1)-(8), we may 

express the first-order variation of the Reissner energy functional as follows 
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where the superscript of T denotes the transposition of the matrices or vectors; and u  and   

stand for the boundary edges, in which the essential and natural conditions are prescribed.  
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2.3 Euler_lagrange equations 
 

The static behaviors of simply-supported, single- and multi-layered functionally graded 

piezoelectric plates under electro-mechanical loads are studied in the following illustrative 

examples. The applied loading conditions on the lateral surfaces of the plate are prescribed as 

follows: 

 

Case 1. Closed-circuit surface conditions on which the mechanical loads are applied, 

           0,002/,,2/,,2/,,2/,,
)()()()(

yxqhyxhyxhyxhyx llll NNN

y

N

x

   on the top surface, (22a) 

          00002/,,2/,,2/,,2/,, )1()1()1()1(  hyxhyxhyxhyx yx  
, on the bottomn surface;(22b) 

 

Case 2. Closed-circuit surface conditions on which the electric potentials are applied, 

 

           yxhyxhyxhyxhyx llll NNN

y

N

x ,0002/,,2/,,2/,,2/,,
)()()()(   

 on the top surface, (23a) 

          00002/,,2/,,2/,,2/,, )1()1()1()1(  hyxhyxhyxhyx yx  
, on the bottom surface; (23b) 

 

Case 3. Open-circuit surface conditions on which the mechanical loads are applied, 

 

            0,002/,,2/,,2/,,2/,,
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           00002/,,2/,,2/,,2/,, 1)1()1()1(  hyxDhyxhyxhyx yx   , on the bottom surface;  (24b) 

Case 4. Open-circuit surface conditions on which the electric normal displacements are applied, 

            yxDhyxDhyxhyxhyx llll NNN

y

N

x ,0002/,,2/,,2/,,2/,,
)()()(     on the top surface, (25a) 

           00002/,,2/,,2/,,2/,, 1)1()1()1(  hyxDhyxhyxhyx yx   , on the bottom surface; (25b) 

789



 

 

 

 

 

 

Chih-Ping Wu and Shuang Ding 

 

where 

q ,   and 

D are expressed as the double Fourier series and given as
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respectively, in which xLmm /ˆ~  , yLnn /ˆ~   and m̂ , n̂  are positive integers. 

The edge boundary conditions of each individual layer are considered as fully simple supports 

with free electric potentials, which requires that the following quantities are satisfied. 

0)()()()(  mm

x

mm

y uu        at 0x , xLx   and lNm ,,2,1          (26a) 

0)()()()(  mm

y

mm

x uu  ,      at 0y , yLy   and lNm ,,2,1          (26b) 

By means of the separation of variables, the primary field variables of each individual layer are 

expanded as the following forms of a double Fourier series so that the boundary conditions of the 

simply supported edges are exactly satisfied. They are given as 
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Introducing Eqs. (27)-(29) in Eq. (21) and imposing the stationary principle of the Reissner 

energy functional (i.e., 0R ), we obtain the Euler
_
Lagrange equations of the plate as follows 
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Using Eq. (30) and assembling the local stiffness matrix and forcing vector of each layer, in 

which the elastic displacement, transverse stress, electric potential and normal electric 

displacement continuity conditions at the interfaces between adjacent layers are imposed, and thus 

satisfied a priori for the RMVT-based FLMs, we may construct the global stiffness matrix and 

forcing vector for the plate. The primary variables at each nodal plane can then be determined. 

Subsequently, the variables of in-plane stress and electric displacement components at the nodal 

planes can be obtained using the determined primary variables, and these are given by 
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Fig. 2 The through-thickness distributions of the material properties of a single-layered FGPM plate, in 

which =-1.0, -0.5, 0.0, 0.5, 1.0 

 

Using this unified formulation of RMVT-based FLMs, we may analyze the 3D coupled 

electro-elastic behaviors of single- and multi-layered FGPM plates and laminated homogeneous 

piezoelectric ones with closed- and open-circuit surface conditions and under electro-mechanical 

loads, and the performances of various RMVT-based FLMs with different orders used for 

expanding the electric and elastic field variables in the thickness coordinate will be also examined 

later in this article.  

 
 
3. Illustrative examples  
 

The unified formulation of RMVT- based FLMs for the FGPM plates was presented above, in  

which various combinations of the orders used for expanding the elastic displacement, electric 

potential, transverse stress and normal electric displacement components in the thickness 

coordinate can be freely chosen. The acronyms, d

w

nnn

nnn


u
LM , are thus defined to represent various 

RMVT-based FLMs, in which the in- and out-of-plane elastic displacements and the electric 

potential are expanded as the un -, wn - and n -order Lagrange polynomials, respectively, and 

the transverse shear and normal stresses and the normal electric displacement are expanded as the 

n -, n - and dn -order Lagrange polynomials in the thickness coordinate of each layer, 

respectively. The values of )and,,=( στwuini  remain the same, and are taken to be less 

than 4, namely 1(linear), 2(quadratic) and 3(cubic) in the following examples.  

 

3.1 Single-layered FGPM plates 
 

In this section, the static behavior of a simply-supported, single-layered FGPM plate with the 

loading cases 1 and 2 is investigated, which has been also examined by Lu et al. (2006) using the 

PSF and Brischetto and Carrera (2009) using CUF, and their solutions are used to evaluate the 

accuracy and convergence rate of the FLMs with different orders. PZT-4 is used as the reference 


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material, the material properties of which are given in Table 1, and this is placed in the bottom of 

the plate. The material properties of the plate are assumed to vary exponentially through the 

thickness coordinate, and are given by 

 
Table 1 Elastic, piezoelectric and dielectric coefficients of composite and piezoelectric materials 

Moduli 
PZT-4 

(Lu et al. 2006) 

c11 (GPa) 139 

c22 (GPa) 139 

c33 (GPa) 115 

c12 (GPa) 77.8 

c13 (GPa)  74.3 

c23 (GPa)   74.3 

c44 (Gpa) 25.6 

c55 (Gpa) 25.6 

c66 (Gpa) 30.6 

24e   2C/m  12.7 

15e   2C/m  12.7 

31e   2C/m  -5.2 

32e   2C/m  -5.2 

33e   2C/m  15.1 

011 /   F/m  1475 

022 /   F/m  1475 

033 /   F/m  1300 

0  denotes the dielectric permittivity of free space, and 0 =8.854e-12 (F/m) 
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Table 2 Results of convergence rate and accuracy studies for the FLM solutions of electric and elastic 

variables induced at the position x=y=0.25Lx in a single-layered FGPM plate under mechanical 

loads (Case 1) ( m1 yx LL , 10/ hLx
) 


 

Theories 
1011

xu  

)0(   

109

u  

)0(   

x  

)2/( h  

xy  

)2/( h  

  

)2/( h  

102  

)0(   

109

D  

)0(   

-1.0 )4(LM111

111 lN  0.674 -0.253 15.403 3.101 -0.485 -0.600 0.328 

 )8(LM111

111 lN  0.673 -0.253 15.40 3.103 -0.497 -0.602 0.332 

 )12(LM111

111 lN  0.673 -0.253 15.40 3.103 -0.499 -0.602 0.332 

 )16(LM111

111 lN  0.673 -0.253 15.40 3.103 -0.499 -0.602 0.332 

 )4(LM222

222 lN  0.674 -0.253 15.40 3.103 -0.495 -0.602 0.332 

 )8(LM222

222 lN  0.673 -0.253 15.40 3.103 -0.499 -0.602 0.332 

 )12(LM222

222 lN  0.673 -0.253 15.40 3.103 -0.500 -0.602 0.333 

 )16(LM222

222 lN  0.673 -0.253 15.40 3.103 -0.500 -0.602 0.333 

 )4(LM333

333 lN  0.673 -0.253 15.40 3.103 -0.500 -0.602 0.333 

 )8(LM333

333 lN  0.673 -0.253 15.40 3.103 -0.500 -0.602 0.333 

 )12(LM333

333 lN  0.673 -0.253 15.40 3.103 -0.500 -0.602 0.333 

 )16(LM333

333 lN  0.673 -0.253 15.40 3.103 -0.500 -0.602 0.333 

 3D (Lu et al., 2006) 0.650 -0.251 15.23 3.041 -0.500 -0.596 0.312 

 CUF (Brischetto and Carrera, 2009) 0.647 -0.248 15.21 3.039 -0.511 -0.591 0.316 

0.0 )4(LM111

111 lN  -0.029 -0.151 10.95 4.244 -0.506 -0.392 -0.059 

 )8(LM111

111 lN  -0.029 -0.151 10.96 4.246 -0.502 -0.393 -0.059 

 )12(LM111

111 lN  -0.029 -0.151 10.96 4.246 -0.501 -0.393 -0.059 

 )16(LM111

111 lN  -0.029 -0.151 10.96 4.246 -0.500 -0.393 -0.059 

 )4(LM222

222 lN  -0.029 -0.151 10.96 4.246 -0.501 -0.393 -0.059 

 )8(LM222

222 lN  -0.029 -0.151 10.96 4.246 -0.500 -0.393 -0.059 

 )12(LM222

222 lN  -0.029 -0.151 10.96 4.246 -0.500 -0.393 -0.059 

 )16(LM222

222 lN  -0.029 -0.151 10.96 4.246 -0.500 -0.394 -0.059 

 )4(LM333

333 lN  -0.029 -0.151 10.96 4.246 -0.500 -0.394 -0.059 

 )8(LM333

333 lN  -0.029 -0.151 10.96 4.246 -0.500 -0.394 -0.059 

 )12(LM333

333 lN  -0.029 -0.151 10.96 4.246 -0.500 -0.394 -0.059 

 )16(LM333

333 lN  -0.029 -0.151 10.96 4.246 -0.500 -0.394 -0.059 

 3D (Lu et al. 2006) -0.031 -0.151 10.92 4.247 -0.500 -0.393 -0.061 

 CUF (Brischetto and Carrera 2009) -0.029 -0.151 10.96 4.241 -0.500 -0.393 -0.059 

1.0 )4(LM111

111 lN  -0.284 -0.094 7.623 5.844 -0.521 -0.221 -0.445 

 )8(LM111

111 lN  -0.284 -0.094 7.629 5.847 -0.505 -0.221 -0.449 

 )12(LM111

111 lN  -0.284 -0.094 7.629 5.847 -0.502 -0.221 -0.450 

 )16(LM111

111 lN  -0.284 -0.094 7.629 5.847 -0.501 -0.221 -0.451 

 )4(LM222

222 lN  -0.284 -0.094 7.629 5.847 -0.504 -0.221 -0.450 

 )8(LM222

222 lN  -0.284 -0.094 7.629 5.847 -0.501 -0.221 -0.451 

 )12(LM222

222 lN  -0.284 -0.094 7.629 5.847 -0.500 -0.221 -0.451 

Continued- 
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 )16(LM222

222 lN  -0.284 -0.094 7.629 5.847 -0.500 -0.221 -0.451 

 )4(LM333

333 lN  -0.284 -0.094 7.629 5.847 -0.500 -0.221 -0.451 

 )8(LM333

333 lN  -0.284 -0.094 7.629 5.847 -0.500 -0.221 -0.451 

 )12(LM333

333 lN  -0.284 -0.094 7.629 5.847 -0.500 -0.221 -0.451 

 )16(LM333

333 lN  -0.284 -0.094 7.629 5.847 -0.500 -0.221 -0.451 

 3D (Lu et al. 2006) -0.275 -0.094 7.529 5.830 -0.500 -0.220 -0.445 

 CUF (Brischetto and Carrera 2009) -0.273 -0.092 7.504 5.773 -0.481 -0.217 -0.432 

 

      2/1/*  h

ijij emm                          (35) 

in which *

ijm  denotes the material properties of PZT-4,   is the material-property gradient 

index, and    2/2/ hh   . The through-thickness distributions of material properties are 

shown in Fig. 2, in which  = -1.0, -0.5, 0, 0.5 and 1.0. 

Tables 2 and 3 show the 111

111LM , 222

222LM  and 333

333LM solutions of various electric and elastic 

variables induced at some specific positions  ,4/,4/ yx LL  of the plates subjected to the 

sinusoidally distributed mechanical load and electric potential (i.e., 

   yx LyLxqq /sin/sin0   , 0

q , and    yx LyLx /sin/sin0   , 0 ), 

respectively, in which m1 yx LL , S= hLx / =10 and lN =4, 8, 12, 16 and 32. It can be seen in 

Tables 2 and 3 that the accuracy based on the same value of Nl and convergence rate for various 

FLMs are 333

333LM > 222

222LM > 111

111LM , in which the symbol “>” means more accurate and more rapid, 

which is more obvious for the transverse normal stress and normal electric displacement 

components than for the others. It is also shown that the 32-layer 111

111LM , 12-layer 222

222LM , and 

4-layer 333

333LM  solutions are in excellent agreement with the exact 3D solutions and CUF ones 

available in the literature, in which the relative errors of various FLM solutions of all electric and 

elastic variables will be lower than 1% as compared with the 3D solutions. The RMVT-based 

FLMs with cubic orders are thus used in the later work in this article. 

 
3.2 Two-layered FGPM film/substrate plates 
 

 In this section, we consider a simply-supported, two-layered FGPM film-substrate plates (FSP) 

under electro-mechanical loads. The substrate is a homogenous PZT-4 layer with a thickness h1, 

and the film is an FGPM one with a thickness h2 bounded on the top surface of the substrate, while 

h1+h2=h. The material properties of the FSP through the thickness coordinate are expressed as 

follows 

   *

ijij mm                      12/2/ hhh              
(36a) 

      21 /2/* hhh

ijij emm



          2/2/ 1 hhh               (36b) 

in which the material properties are continuous at the film-substrate interface, and the 

through-thickness distributions of these are shown in Fig. 3 in the case of h1=h2=h/2 and  =-1.0, 

-0.5, 0.0, 0.5 and 1.0. 
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The loading conditions of Cases 1 and 3 are    yx LyLxqq /sin/sin0   , 0

q , and 

those of Cases 2 and 4 are    yx LyLx /sin/sin0   , 0 , and 

   yx LyLxDD /sin/sin0   , 0

D , respectively. The sets of dimensionless field variables 

for the different loading cases 1-4 are defined as follows: 

For the cases of applied mechanical loads (Cases 1 and 3), 

 [ ] [ ] ( )hSqcuuuu ζxζx

4

0

*

33 /,=, ,       000

2 /,/,/,, qSqqS xxxx    , 

       *

330

*

33

2

0 /,, eSqcDhSqeD    ,  S=Lx/h            (37a-d) 

For the cases of applied electric potential (Case 2), 

      *

330

*

33 /,, eScuuuu xx   ,     )/(,,,, *

330

32 ehShSSh xxxx    , 

        2*

330

*

330 /,, ehcDD                        (38a-c) 

 

 

 

Table 3 Results of convergence rate and accuracy studies for the FLM solutions of electric and elastic 

variables induced at the position x=y=0.25Lx in a single-layered FGPM plate under electric potential 

(Case 2) ( m1 yx LL , 10/ hLx
) 

  Theories 
109

xu  

)0(   

109

u  

)0(   

x  

)2/( h  

xy  

)2/( h  

  

)2/( h  

  

)0(   

107

D  

)0(   

-1.0 )4(LM111

111 lN  -0.129 0.338 -16.50 -14.30 0.202 0.183 -0.448 

 )8(LM111

111 lN  -0.129 0.338 -17.41 -14.30 0.050 0.183 -0.455 

 )12(LM111

111 lN  -0.129 0.338 -17.58 -14.30 0.022 0.183 -0.456 

 )16(LM111

111 lN  -0.129 0.338 -17.64 -14.30 0.013 0.183 -0.457 

 )32(LM111

111 lN  -0.129 0.338 -17.70 -14.30 0.003 0.183 -0.457 

 )4(LM222

222 lN  -0.129 0.338 -17.33 -14.30 0.053 0.183 -0.454 

 )8(LM222

222 lN  -0.129 0.338 -17.62 -14.30 0.013 0.183 -0.457 

 )12(LM222

222 lN  -0.129 0.338 -17.67 -14.30 0.006 0.183 -0.457 

 )16(LM222

222 lN  -0.129 0.338 -17.69 -14.30 0.003 0.183 -0.457 

 )4(LM333

333 lN  -0.129 0.338 -17.71 -14.30 -0.000 0.183 -0.457 

 )8(LM333

333 lN  -0.129 0.338 -17.71 -14.30 -0.000 0.183 -0.457 

 )12(LM333

333 lN  -0.129 0.338 -17.72 -14.30 -0.000 0.183 -0.457 

 )16(LM333

333 lN  -0.129 0.338 -17.72 -14.30 -0.000 0.183 -0.457 

 3D (Lu et al. 2006) -0.129 0.327 -18.06 -14.22 0.000 0.181 -0.457 

 CUF (Brischetto and Carrera 2009) -0.125 0.325 -18.04 -13.80 0.002 0.183 -0.455 

0.0 )4(LM111

111 lN  -0.129 -0.072 -23.17 -27.25 0.390 0.243 -0.785 

 )8(LM111

111 lN  -0.129 -0.072 -23.63 -27.25 0.098 0.243 -0.788 

 )12(LM111

111 lN  -0.129 -0.072 -23.71 -27.25 0.044 0.243 -0.789 
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 )16(LM111

111 lN  -0.129 -0.072 -23.74 -27.25 0.025 0.243 -0.789 

 )32(LM111

111 lN  -0.129 -0.072 -23.77 -27.25 0.006 0.243 -0.789 

 )4(LM222

222 lN  -0.129 -0.072 -23.62 -27.25 0.099 0.243 -0.788 

 )8(LM222

222 lN  -0.129 -0.072 -23.74 -27.25 0.025 0.243 -0.789 

 )12(LM222

222 lN  -0.129 -0.072 -23.76 -27.25 0.011 0.243 -0.789 

 )16(LM222

222 lN  -0.129 -0.072 -23.77 -27.25 0.006 0.243 -0.789 

 )4(LM333

333 lN  -0.129 -0.072 -23.78 -27.25 0.000 0.243 -0.789 

 )8(LM333

333 lN  -0.129 -0.072 -23.78 -27.25 0.000 0.243 -0.789 

 )12(LM333

333 lN  -0.129 -0.072 -23.78 -27.25 0.000 0.243 -0.789 

 )16(LM333

333 lN  -0.129 -0.072 -23.78 -27.25 0.000 0.243 -0.789 

 3D (Lu et al. 2006) -0.129 -0.074 -23.79 -27.19 0.000 0.242 -0.787 

 CUF (Brischetto and Carrera 2009) -0.128 -0.072 -23.68 -27.16 0.005 0.243 -0.788 

1.0 )4(LM111

111 lN  -0.129 -0.487 -40.85 -41.95 0.616 0.302 -1.232 

 )8(LM111

111 lN  -0.129 -0.487 -42.92 -41.95 0.154 0.303 -1.250 

 )12(LM111

111 lN  -0.129 -0.487 -43.31 -41.95 0.068 0.303 -1.253 

 )16(LM111

111 lN  -0.129 -0.487 -43.45 -41.95 0.038 0.303 -1.254 

 )32(LM111

111 lN  -0.129 -0.487 -43.58 -41.95 0.010 0.303 -1.255 

 )4(LM222

222 lN  -0.129 -0.487 -42.79 -41.95 0.155 0.303 -1.249 

 )8(LM222

222 lN  -0.129 -0.487 -43.41 -41.95 0.039 0.303 -1.254 

 )12(LM222

222 lN  -0.129 -0.487 -43.53 -41.95 0.017 0.303 -1.255 

 )16(LM222

222 lN  -0.129 -0.487 -43.57 -41.95 0.010 0.303 -1.255 

 )4(LM333

333 lN  -0.129 -0.487 -43.62 -41.95 -0.001 0.303 -1.256 

 )8(LM333

333 lN  -0.129 -0.487 -43.62 -41.95 -0.000 0.303 -1.256 

 )12(LM333

333 lN  -0.129 -0.487 -43.62 -41.95 -0.000 0.303 -1.256 

 )16(LM333

333 lN  -0.129 -0.487 -43.62 -41.95 0.000 0.303 -1.256 

 3D (Lu et al. 2006) -0.129 -0.480 -44.27 -41.72 0.000 0.300 -1.257 

 CUF (Brischetto and Carrera 2009) -0.125 -0.466 -45.61 -41.00 0.001 0.303 -1.249 

 

 

 

Fig. 3 The through-thickness distributions of the material properties of an FGPM FSP, in which 

hhhh 5.0:5.0: 21   and  =-1.0, -0.5, 0.0, 0.5, 1.0 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 4 The through-thickness distributions of various elastic and electric variables induced in an FGPM 

FSP for loading Case 1, in which  =-1.0, 0.0 and 1.0, hhhh 5.0:5.0: 21  , and 10/ hLx , 

yx LL   

 

For the cases of applied normal electric displacement (Case 4), 

      hSDeuuuu xx 0

*

33 /,,   ,     )/(,,,, *

330

*

33

3*

33

2*

33 cDeSeSSe xxxx    , 

       0

*

330

*

33 /,, DDhcDeD 



  
                   

(39a-c) 

in which *

33c  and *

33e  denote the corresponding material properties of PZT-4. 
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Figs. 4-7 show the through-thickness distributions of electric and elastic variables induced in 

the FGPM film-substrate plate for the loading conditions of Cases 1-4, respectively, in which 

Lx/h=10, Lx=Ly,  =-1.0, 0 and 1.0. When  =0, the FGPM FSP becomes a single-layered 

homogeneous PZT-4 plate. It can be seen in Figs. 4 and 6 that in the cases of applied mechanical 

loads (Cases 1 and 3), the in-plane elastic displacement and stress, transverse shear stress, and 

transverse normal stress variables appear to be the linear, parabolic and higher-order polynomial 

variations through the thickness coordinate for the homogeneous piezoelectric plates (  =0), while 

those for FGPM FSPs change more dramatically than those for homogeneous piezoelectric ones.  

  

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 5 The through-thickness distributions of various elastic and electric variables induced in an FGPM 

FSP for loading Case 2, in which  =-1.0, 0.0 and 1.0, hhhh 5.0:5.0: 21  , and 10/ hLx , 

yx LL   
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 6 The through-thickness distributions of various elastic and electric variables induced in an FGPM 

FSP for loading Case 3, in which  =-1.0, 0.0 and 1.0, hhhh 5.0:5.0: 21  , and 10/ hLx , 

yx LL   

 

 

The effects of different surface conditions (i.e., closed- and open-circuit ones) on the 

through-thickness distributions of elastic variables induced in the FGPM FSPs are very minor, 

while they are significant for those of electric variables. The results in Figs. 5 (Case 2) and 7 (Case 

800



 

 

 

 

 

 

Coupled electro-elastic analysis of functionally graded piezoelectric material plates 

 

4) show the effects of different surface conditions on the through-thickness distributions of both 

electric and elastic variables are significant when the electric loads are applied. 

 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 7 The through-thickness distributions of various elastic and electric variables induced in an FGPM 

FSP for loading Case 4, in which  =-1.0, 0.0 and 1.0, hhhh 5.0:5.0: 21  , and 10/ hLx , 

yx LL   
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 8 The through-thickness distributions of various elastic and electric variables induced in an FGPM 

FSP for loading Case 1, in which  = 1.0 and 3.0, hhhh 2.0:8.0: 21  , and 4/ hLx , yx LL   

 

 

Figs. 8 and 9 show the through-thickness distributions of elastic and electric variables induced 

in the FGPM FSPs and homogeneous ones with hLx / =4 and 50, respectively, for the loading 

Case 1, in which yx LL  ,  =1 and 3, 21 : hh =0.8h:0.2h, and    yx LyLxqq /sin/sin0    

and 0

q . The material properties distributions through the thickness coordinate of the FGPM 

FSP are given in Eq. (36), while those of the homogenous FSP are layer-wise constants, which are 
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emij

*  and *

ijm for the film and substrate layers, respectively. It can be seen in Figs. 8(c) and 9(c) 

that the transverse shear stresses in the homogeneous FSPs change dramatically through the 

thickness coordinate when the deviations of the material properties between the film and substrate 

layer become greater (i.e.,   becomes greater), while this situation will be reduced when we 

replace the homogeneous film with an FGPM film.  

 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 9 The through-thickness distributions of various elastic and electric variables induced in an FGPM 

FSP for loading Case 1, in which  = 1.0 and 3.0, hhhh 2.0:8.0: 21  , and 50/ hLx , 

yx LL   
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Figs. 8(b) and 9(b) show the in-plane stresses induced in the homogenous FSPs change 

abruptly at the film-substrate interface due to the mismatched material properties occurring at this 

location, while those induced in the FGPM FSPs vary smoothly through the thickness coordinate 

and are continuous at the film-substrate interface. The results in Figs. (8) and (9) also show that for 

a thick FSP the through-thickness distributions of elastic and electric variables appear to be 

layer-wise higher-order polynomials, while those for homogeneous FSP change more dramatically 

than those of FGPM FSP, and that the deviations of between these for homogeneous FSPs and 

FGPM FSPs increase when the material-property gradient (  ) becomes greater. 

 

 

4. Conclusions 
 

In this article, we developed an RMVT-based FLM for the static analysis of simply-supported, 

FGPM FSPs with closed- and open-circuit surface conditions and subjected to four different 

loading conditions. The field variables are expanded as the trigonometric functions in the in-plane 

domains of the plate such that the simply-supported conditions are exactly satisfied, while these 

are interpolated in the thickness coordinate of each individual layer using Lagrange polynomials, 

the relevant orders of which can be freely selected to be linear, quadratic and cubic ones. In the 

implementation of various FLMs, the results show that 333

333LM > 222

222LM > 111

111LM , in which the 

symbol “>” means more accurate results and a more rapid convergence rate. In the numerical 

example, it is shown that the transverse shear stresses induced in the homogeneous FSPs change 

dramatically through the thickness coordinate when the deviations of the material properties 

between the film and substrate layers become greater, while this situation will be reduced when we 

replace the homogeneous film with an FGPM film. The in-plane stresses induced at the 

film-substrate interface for the homogeneous FSPs change abruptly due to the mismatched 

material properties occurring at that location, while those for the FGPM FSPs vary smoothly 

through the thickness coordinate of the plate and are continuous across the film-substrate interface. 

These advantages are helpful for overcoming some of the drawbacks of conventional 

homogeneous FSPs in practical applications, such as delamination and transverse matrix cracking. 

Moreover, the through-thickness distributions of electric and elastic variables induced in the 

FGPM FSPs and homogeneous ones appear to be layer-wise higher-order polynomial variations, 

which are inconsistent with the kinematic and kinetic assumptions of most of conventional 

two-dimensional (2D) equivalent-single-layered (ESL) theories of elastic plates. These 2D ESL 

theories of elastic plates might not be extended to those of FGPM FSPs, and some more advanced 

2D theories of FGPM FSPs thus need to be developed. 
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