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Abstract. This study discusses the use of Adaptive-Network-Based-Fuzzy-Inference-System (ANFIS) in
predicting the shear strength of reinforced-concrete deep beams. 139 experimental data have been collected
from renowned publications on simply supported high strength concrete deep beams. The results show that
the ANFIS has strong potential as a feasible tool for predicting the shear strength of deep beams within the
range of the considered input parameters. ANFIS’s results are highly accurate, precise and therefore, more
satisfactory. Based on the Sensitivity analysis, the shear span to depth ratio (a/d) and concrete cylinder

strength ( fc’) have major influence on the shear strength prediction of deep beams. The parametric study
confirms the increase in shear strength of deep beams with an equal increase in the concrete strength and
decrease in the shear span to-depth-ratio.
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1. Introduction

Widely used as structural elements, deep beams have various applications. For instance, it is
used in transfer girders, foundation walls, offshore structures, pile caps and in nuclear power plant
containment structures. Reinforced concrete deep beams are beams with a small shear span-to-depth
ratio of less than 2.5, where a significant percentage of the load is transferred to the support through
a compression strut that connects both the loading and reaction points.

Numerous studies have been carried out on shear prediction of deep beams. Nielsen (1971) and
Braestrup and Nielsen (1981) have used the plasticity concept for the shear strength prediction
to resolve deep beam problems. The solutions suggested by these researchers that uses the
Strut-and-tie modelling (STM) are found to have better explained the behaviours of deep beam.
The STM analyzes deep beams with the plastic truss analogy which internally transfers the load
forces from the loading points to the support points through both horizontal and inclined concrete
strut and steel reinforcing ties which are acting in tension (Moéller et al. 2008). Recently published
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papers by Mohammadhassani et al. (2011) have concluded that the behaviour of deep beam and its
strain distribution in the height of mid span are difficult to understand and due to their proportions,
deep beams are likely to have strength that is controlled by shear.

Smith and Vantsiotis (1982) have taken time to study the shear strength of deep beams to
identify the effect of vertical and horizontal web reinforcements and shear span-to-effective depth
ratio on the ultimate shear strength. Their results indicate that web reinforcements moderately
affect the ultimate shear strength and that the addition of vertical web reinforcement of 0.18 -
1.25% shows significant improvement in the ultimate shear strength of deep beams. Also observed
was the considerable increase in the load-carrying capacity when the concrete strength was
increased and the shear span-to-effective depth ratio was decreased.

Tan et al. (1995) have tested 19 reinforced concrete deep beams with compressive strengths of
41 - 59 MPa under two-point top loading. The beams were tested for seven shear span-depth ratios
(a/d) from 0.27 - 2.70 and four effective span-depth ratios (I/d) from 2.15 - 5.38. The results show
that I/d has had an insignificant effect on the failure load. Nevertheless, for beams with a/d >
1.00, the flexural failure is dominant with an increasing l/d. When compared to the ACI
predictions, the results have shown that the ACI code provisions are more suited for deep beams
with higher strength. The ACI code is also more conservative compared to the Deep-Beam Design
Guide by the Construction Industry Research and Information Association (CIRIA 1997).

Tan et al. (1997) have examined the shear prediction on 18 high strength concrete (HSC) deep
beams and the results revealed that the ACI Code provisions for deep-beams have overestimated
the contribution of the horizontal web steel to shear strength; a revision that has been suggested in
the ACI Egs. (11)-(31) for web steel contribution. They have announced that the Canadian Code,
although more consistent, is conservative for deep beams’ different web reinforcements, while the
UK CIRIA Guide is un-conservative for beams with horizontal web reinforcements.

Tan and Lu (1999) have tested 12 specimens to failure. The beams were tested to study the
effect of the beam size on the shear strength of concrete beam. The results have revealed the
ultimate shear strength as being size-dependent but the diagonal cracking stress that occurred is
not. Compared to current design codes, the CSA is found to be more suitable for large-and
medium-sized beams, while both the ACI and CIRIA predictions become less conservative with
the increase in the h and a/h ratio.

Oh and Shin (2001), have subsequently studied the shear strength of reinforced HSC deep
beams with 53 beams with compressive strengths of 23 - 74 MPa and the geometrical variation
such as an effective span-depth ratio(le/d) of 3.0 - 5.0 and a shear span-effective depth ratio (a/d)
of 0.5 - 2.0. The result has further shown that the ultimate shear strength of deep beams has been
determined predominantly by the a/d and that the ACI Code Egs. (11)-(29) and (11)-(30) are

conservative and have underestimated the effects of both the concrete compressive strength ( T )

and the longitudinal steel reinforcement ( o, ).

Yang et al. (2003) have conducted a test on 21 beam specimens to investigate their shear
characteristics as concrete strengths, shear span/depth ratios, and overall depths. Based on their
findings, the decrease in the shear span/depth ratio and the increase in overall depth while the
shear span/depth ratio remains unchanged, have led to more brittle failures with wide diagonal
cracks and high energy release. The ACI code has given similar safety factors on the shear strength
when the first diagonal crack appears, but it does not specify a maximum limit for the safety factor
in terms of the ultimate strength and the effect of the beam size.

More recent studies on deep beam behaviour have been carried out by Mohammadhassani
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(2011a) and Lu et al. (2010) but none has defined the exact shear prediction for deep beams. A
comprehensive literature review was carried out on this matter and many parameters have been
identified to affect the shear strength of deep beams. Amongst them are the concrete compressive
strength, web reinforcement percentages, tensile reinforcement ratio, length and shear span to
depth ratio (Yang et al. 2006).

With the ever increasing costs of casting, curing and testing of deep beams, the search for new
inexpensive effective tools for the design of deep beams has intensified which is achievable
through the modelling and determination of its shear capacity. This involves the use of classical and
/or modern analytical models to predict the ultimate shear strength of the deep beam with emphasis
on its behaviour and the non-linear strain distribution.

The Artificial Intelligence (Al) system approaches such as the Fuzzy Inference Systems (FIS),
Neuro-Fuzzy (NF)/ Fuzzy-Neural (FN) and Artificial Neural Network(ANN) systems have paved
the way for successful modelling of many engineering applications as well as in other fields such
as hydraulic engineering (Shatirah et al. 2014), Rainfall Forecasting (Akrami et al. 2013), the
stability of structures (Bilgehan 2011) and deflection prediction of deep beams
(Mohammadhassani et al. 2013).

The Al is an established tool for pattern recognition, signal processing and control and complex
mapping, mainly due to its excellent learning capacity and high error tolerance (Kao and Hung.
2011).

The use of the Al technique in Civil Engineering began when ANN was used to predict the
ultimate shear strength of reinforced concrete deep beams where Sanad and Saka (2001) have
shown that the shear strengths of normal beams and deep beams are better predicted using
multi-layered feed forward ANNs than other existing formulas.

Fuzzy logic systems are more suited for the modelling of the relationship between variables in
environments that are either ill-defined or very complex, yet still produce a more precise
alternative. The use of qualitative variables and mathematical relationships in this technique is
more accurate in the decision-making process (Khaleie and Fasanghari 2012). First introduced by
Zadeh (1965), fuzzy logic is a self-learning technique which has a mathematical tool to convert
linguistic evaluation variables based on expert knowledge into an automatic evaluation strategy.

The ANFIS is a fuzzy-neural system which is a combination of significant characteristics of
ANNSs and fuzzy inference system (FIS) for computing. The ANFIS uses the ANN theory in order
to determine the fuzzy membership functions and fuzzy rules properties of data samples in
learning a fuzzy inference system which is based on the Takagi-Sugeno fuzzy model (Takagi and
Sugeno 1985). With the ANFIS, a fuzzy inference system is implemented with a feed-forward
network and a hybrid learning method including the back propagation theory from ANNSs, the
recursive least square (RLS) method and clustering techniques. All the aforementioned are used
together to construct the FIS accordingly for the data. In other words, the ANFIS combines the
fuzzy logic and ANNs by using the mathematical properties of ANNs in the tuning rule-based
fuzzy inference system that emulates the way human brain processes information. The ANFIS
shows a significant promise in modeling nonlinear systems, as it has the ability to learn features of
the data set and adjust accordingly the system characteristics to a given error criterion (Jang 1993).
Also, the ANFIS can map unseen inputs to their outputs by learning the rules from previously seen
data.

Due to the aforesaid ability and advantages, the ANFIS is increasingly becoming popular in the
modern world in different fields of engineering (Lin et al. 1996).

This research examines the ANFIS and its applications in the prediction of shear strength of
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concrete deep beams.

1.1 Review on related works

Mashrei et al. (2010) have presented the results of the back-propagation neural networks
(BPNN) and an adaptive neuro-fuzzy inference system (ANFIS) models in predicting the moment
capacity of ferro-cement members. The selected input variables have included the width and depth
of specimens, the cube compressive strength of mortar, and tensile strength and volume fraction of
wire mesh to study the influence of each parameter on the moment capacity of the ferro-cement
member. The results have demonstrated that both the BPNN and ANFIS provide good predictions
compared to other available methods.

Bilgehan (2011) have used the ANFIS and ANN models to analyse the buckling in slender
prismatic columns with a single non-propagating open edge crack under axial loads. The main
focus was to study the feasibility of using the ANFIS and ANN trained with the non-dimensional
crack depth and the non-dimensional crack location parameters to predict the critical buckling load
of different ends-supported condition in axially loaded compression rods. The conclusion is that
the ANFIS architecture with the Gaussian membership function performs relatively better than the
multilayer feed forward ANN learning by the back propagation algorithm.

1.2 Research significance

This paper presents and compares the effectiveness of ANFIS and linear regression (LR) in the
prediction of the ultimate shear strength in reinforced concrete deep beams. The shear strength,
crack development and crack widths are major concerns in the design of deep beam. For the first
time ever, an ANFIS model is built, trained and tested using the available test data of 139 deep
beams collected from technical literature. The proposed model can adequately predict the ultimate
shear strength of deep beams at different tensile reinforcement ratios, web bar percentages,
compressive strengths of concrete, yield and ultimate strength of reinforcement and shear
span-to-depth ratios. This paper is presented in the following order: Section 2; Dataset used,
Section 3; system modelling, Section 4; Results and Discussion and Section 5; Conclusion.

2. Methodology
2.1 Dataset used

The experimental data from published works (pal and Deswal 2011), (Zang and Tan 2007) and
(Yang et al. 2003)) are used to study the effectiveness of the ANFIS in the shear strength
prediction of deep beams. These include experimental data from 139 reinforced deep beams of
which 19 are HSC-reinforced deep beams from (Tan et al. 1995) , 52 from (Smith and Vantsiotis
1982), 35 from (Kong et al. 1970), 21 from (Zhang and Tan 2007) and 12 from (Yang et al. 2003).
The complete dataset is provided in Table 1 and the shear strength unit is expressed in kN.

The datasets of different parameters used in the ANFIS model are presented in Table 2.
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Table 1 Datasets of published works
'
l/d d/b, a/d fe fn T o A A Ve VV“" \%
ANFIS LR
19 High strength concrete deep beam(Tan et al. 1995)
2.15 4.21 0.27  0.0588 0.505 0.375 0.000 0.012 0.005 675 1.36 1.63
3.23 4.21 0.27  0.0516 0.505 0.375 0.000 0.012 0.005 630 1.00 1.34
43 4.21 0.27  0.0539 0.505 0.375 0.000 0.012 0.005 640 1.00 1.22
5.38 421 0.27  0.0573 0.505 0.375 0.000 0.012 0.005 630 1.00 1.09
2.15 421 0.54  0.0560 0.505 0.375 0.000 0.012 0.005 468 1.00 1.38
3.23 421 0.54  0.0457 0.505 0.375 0.000 0.012 0.005 445 1.00 1.13
4.3 4.21 0.54 0.0539 0505 0.375 0.000 0.012 0.005 500 0.84 1.12
5.38 4.21 0.54 0.0530 0505 0.375 0.000 0.012 0.005 480 1.00 0.95
2.15 4.21 0.81 0.0512 0.505 0.375 0.000 0.012 0.005 403 1.19 1.54
3.23 421 0.81 0.0440 0.505 0375 0.000 0.012 0.005 400 1.18 1.26
2.15 421 1.08 0.0482 0.505 0375 0.000 0.012 0.005 270 1.00 1.45
3.23 4.21 1.08 0.0441 0505 0375 0.000 0.012 0.005 280 1.00 1.16
43 4.21 1.08 0.0468 0.505 0375 0.000 0.012 0.005 290 1.22 0.98
5.38 4.21 1.08 0.0480 0.505 0375 0.000 0.012 0.005 290 1.00 0.83
‘Table 1, continued’.

3.23 421 1.62  0.0506 0.505 0.375 0.000 0.012 0.005 220 1.00 2.49
43 421 1.62  0.0446 0.505 0.375 0.000 0.012 0.005 190 1.00 1.33
5.38 421 1.62  0.0453 0.505 0.375 0.000 0.012 0.005 173 1.00 0.87

4.3 4.21 2.16 0.0411 0505 0.375 0.000 0.012 0.005 150 1.00 -16.13
5.38 4.21 2.7 0.0428 0.505 0.375 0.000 0.012 0.005 107 1.00 -1.00

52 Normal strength concrete deep beam(Smith and Vantsiotis 1982)

2.67 2.99 1 0.0205 0.484 0.484 0.000 0.019 0.000 140 1.00 0.50
2.67 2.99 1 0.0209 0.484 0.484 0.000 0.019 0.000 136 0.97 0.48
2.67 2.99 1 0.0187 0.484 0484 0.002 0.019 0.003 161 1.00 0.64
2.67 2.99 1 0.0180 0.484 0.484 0.005 0.019 0.003 149 1.00 0.63
2.67 2.99 1 0.0161 0484 0484 0.007 0.019 0.003 141 1.00 0.65
2.67 2.99 1 0.0206 0.484 0.484 0.007 0.019 0.003 171 1.00 0.79

Continued-
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2.67 2.99 1 0.0211  0.484 0.484 0.009 0.019 0.003 184 1.10 0.92
2.67 2.99 1 0.0217 0484 0.484 0.002 0.019 0.006 175 1.07 0.75
2.67 2.99 1 0.0198 0484 0.484 0.005 0.019 0.006 171 1.00 0.78
2.67 2.99 1 0.0203 0.484 0.484 0.007 0.019 0.006 172 1.00 0.86
2.67 2.99 1 0.0191 0.484 0.484 0.009 0.019 0.006 162 1.00 0.88
2.67 2.99 1 0.0181 0.484 0.484 0.002 0.019 0.013 161 1.12 0.78
2.67 2.99 1 0.0192 0484 0484 0.005 0.019 0.013 173 1.00 0.92
2.67 2.99 1 0.0208 0.484 0.484 0.007 0.019 0.013 179 1.00 1.04
2.67 2.99 1 0.0199 0484 0.484 0.009 0.019 0.013 168 1.00 1.09
3.08 2.99 1.21 0.0217 0484 0.484 0.000 0.019 0.000 149 1.04 0.61
3.08 2.99 1.21 0.0221 0484 0.484 0.002 0.019 0.002 148 1.00 0.69
3.08 2.99 1.21 0.0201 0484 0.484 0.005 0.019 0.002 144 1.14 0.73
3.08 2.99 1.21 0.0208 0.484 0.484 0.007 0.019 0.002 141 1.00 0.78
3.08 2.99 1.21 0.0195 0484 0.484 0.009 0.019 0.002 154 1.00 0.94

‘Table 1, continued’.

3.08 2.99 1.21 0.0192 0484 0.484 0.002 0.019 0.004 129 1.00 0.62
3.08 2.99 1.21 0.0190 0.484 0.484 0.005 0.019 0.004 131 1.00 0.69
3.08 2.99 1.21 0.0175 0.484 0.484 0.007 0.019 0.004 126 1.00 0.73
3.08 2.99 1.21 0.0218 0.484 0.484 0.007 0.019 0.004 150 1.00 0.87
3.08 2.99 1.21 0.0198 0.484 0.484 0.009 0.019 0.004 145 1.00 0.93
3.08 2.99 1.21 0.0162 0.484 0.484 0.002 0.019 0.006 131 0.93 0.67
3.08 2.99 1.21 0.0204 0484 0.484 0.002 0.019 0.008 159 1.00 0.84
3.08 2.99 1.21 0.0190 0484 0.484 0.005 0.019 0.008 159 0.98 0.92
3.08 2.99 1.21 0.0192 0484 0.484 0.007 0.019 0.008 155 1.00 0.99
3.08 2.99 1.21 0.0207 0484 0.484 0.009 0.019 0.008 166 1.00 1.20
3.08 2.99 1.21 0.0171 0484 0.484 0.002 0.019 0.013 154 1.00 0.92
3.67 2.99 1.5 0.0207 0.484 0.484 0.000 0.019 0.000 116 0.48 0.60
3.67 2.99 1.5 0.0192 0484 0.484 0.002 0.019 0.002 119 1.00 0.72
3.67 2.99 1.5 0.0219 0484 0.484 0.005 0.019 0.002 124 1.00 0.83
3.67 2.99 1.5 0.0227 0.484 0.484 0.007 0.019 0.002 131 1.00 0.99

Continued-
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3.67 2.99 1.5 0.0218 0.484 0.484 0.009 0.019 0.002 123 1.00 1.07
3.67 2.99 1.5 0.0199 0.484 0.484 0.002 0.019 0.003 124 1.00 0.77
3.67 2.99 1.5 0.0192 0.484 0.484 0.005 0.019 0.003 104 1.00 0.73
3.67 2.99 1.5 0.0193 0.484 0.484 0.005 0.019 0.003 116 1.00 0.81
3.67 2.99 1.5 0.0204 0.484 0.484 0.007 0.019 0.003 125 1.00 0.99
3.67 2.99 1.5 0.0208 0.484 0.484 0.009 0.019 0.003 124 1.00 1.14
3.67 2.99 1.5 0.0210 0.484 0.484 0.002 0.019 0.006 141 1.00 0.95
3.67 2.99 1.5 0.0166 0.484 0.484 0.005 0.019 0.006 125 1.00 0.95
3.67 2.99 1.5 0.0183 0.484 0.484 0.007 0.019 0.006 128 1.00 1.12
3.67 2.99 1.5 0.0190 0.484 0.484 0.009 0.019 0.006 137 1.00 1.42
3.67 2.99 1.5 0.0196 0.484 0.484 0.002 0.019 0.008 147 1.00 1.06
‘Table 1, continued’.
3.67 2.99 1.5 0.0186 0.484 0.484 0.005 0.019 0.006 129 1.00 1.01
3.67 2.99 1.5 0.0192 0.484 0.484 0.005 0.019 0.008 153 1.00 1.26
3.67 2.99 1.5 0.0185 0.484 0.484 0.007 0.019 0.008 153 1.00 1.47
3.67 2.99 1.5 0.0212 0.484 0.484 0.009 0.019 0.008 160 1.00 1.84
4.83 2.99 2.08 0.0195 0.484 0.484 0.000 0.019 0.000 47 1.00 0.54
4.83 2.99 2.08 0.0161 0.484 0.484 0.002 0.019 0.004 88 1.00 1.74
35 Normal strength concrete deep beam (Kong et al. 1970)
1.05 9.53 0.35 0.0215 0.000 0.028 0.000 0.000 0.025 239 1.07 1.00
1.28 7.86 0.43 0.0246  0.000 0.028 0.000 0.000 0.025 224 1.00 1.04
1.62 6.18 0.54 0.0212  0.000 0.028 0.000 0.000 0.025 190 1.00 1.00
2.22 4.51 0.74 0.0212  0.000 0.028 0.000 0.000 0.025 164 1.00 1.08
3.53 2.84 1.18 0.0217  0.000 0.028 0.000 0.000 0.025 90 1.00 1.09
1.05 9.53 0.35 0.0192  0.000 0.303 0.000 0.000 0.009 249 1.14 0.71
1.28 7.86 0.43 0.0186  0.000 0.303 0.000 0.000 0.009 224 1.00 0.69
1.62 6.18 0.54 0.0199  0.000 0.303 0.000 0.000 0.009 216 1.01 0.72
2.22 4.51 0.74 0.0228  0.000 0.303 0.000 0.000 0.009 140 1.00 0.53
3.53 2.84 1.18 0.0201  0.000 0.303 0.000 0.000 0.009 100 1.00 0.52
1.05 9.53 0.35 0.0226  0.280 0.000 0.025 0.000 0.000 276 1.00 1.86

Continued-




504 Mohammad Mohammadhassani, Aidi MD. Saleh, M Suhatril and M. Safa

1.28 7.86 0.43 0.0210  0.280 0.000 0.025 0.000 0.000 226 1.00 1.81
1.62 6.18 0.54 0.0192 0.280 0.000 0.025 0.000 0.000 208 1.00 2.10
222 4.51 0.74 0.0219  0.280 0.000 0.025 0.000 0.000 159 0.75 2.61
3.53 2.84 1.18 0.0226  0.280 0.000 0.025 0.000 0.000 87 1.00 -1.01
1.05 9.53 0.35 0.0220  0.303  0.000 0.009 0.000 0.000 242 1.00 0.91
1.28 7.86 0.43 0.0210  0.303  0.000 0.009 0.000 0.000 201 1.00 0.82
1.62 6.18 0.54 0.0201  0.303 0.000 0.009 0.000 0.000 181 0.75 0.83
222 4.51 0.74 0.0220  0.303  0.000 0.009 0.000 0.000 110 1.00 0.61

‘Table 1, continued’.

3.53 2.84 1.18 0.0226  0.303  0.000 0.009 0.000 0.000 96 1.00 0.87
1.05 9.53 0.35 0.018  0.280 0.280 0.006 0.000 0.006 240 1.00 0.82
1.28 7.86 0.43 0.0192 0.280 0.280 0.006 0.000 0.006 208 1.00 0.77
1.62 6.18 0.54 0.0201 0.280 0.280 0.006 0.000 0.006 173 1.00 0.71
222 4.51 0.74 0.0219 0.280 0.280 0.006 0.000 0.006 127 1.00 0.62
3.53 2.84 1.18 0.0226  0.280 0.280 0.006 0.000 0.006 78 0.46 0.57
1.05 9.53 0.35 0.0261 0.303 0.000 0.005 0.000 0.000 308 1.23 1.05
1.28 7.86 0.43 0.0251 0.303 0.000 0.006 0.000 0.000 266 1.00 1.01
1.62 6.18 0.54 0.0261 0.303 0.000 0.008 0.000 0.000 245 1.00 1.09
222 4.51 0.74 0.0261 0.303 0.000 0.010 0.000 0.000 173 1.00 1.03
3.53 2.84 1.18 0.0251  0.303 0.000 0.015 0.000 0.000 99 1.00 1.66
1.05 10.03 0.35 0.0251  0.303 0.000 0.000 0.000 0.000 253 0.76 0.75
1.05 10.03 0.35 0.0261  0.303 0.000 0.002 0.000 0.000 300 1.00 0.93
1.05 10.03 0.35 0.0251 0.303 0.000 0.003 0.000 0.000 260 1.00 0.84
1.05 10.03 0.35 0.0213  0.303  0.000 0.007 0.000 0.000 264 0.84 0.93
1.05 10.03 0.35 0.0213  0.303  0.000 0.009 0.000 0.000 297 1.00 1.09

21 concrete Deep beams (Zhang and Tan 2007)

3.35 391 1.1 0.0259  0.000 0.426 0.000 0.013 0.005 99.5 1.00 0.35
33 3.95 1.1 0.0274  0.000 0.426 0.000 0.013 0.003 186.5 1.00 0.65
3.27 4.01 1.1 0.0283  0.000 0370 0.000 0.012 0.004 427 1.00 1.57
3.32 3.93 1.1 0.0287  0.000 0.455 0.000 0.012 0.005 775 1.00 2.75

Continued-
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3.34 3.93 1.1 0.0274  0.000 0.000 0.000 0.013 0.000 85 1.00 0.34
3.27 5.74 1.1 0.0324  0.000 0.000 0.000 0.012 0.000 135.5 1.00 0.53
3.23 8.13 1.1 0.0248  0.000 0.000 0.000 0.013 0.000 155.5 1.00 0.56
3.24 11.58 1.1 0.0306  0.000 0.000 0.000 0.013 0.000 241.5 1.00 0.80
3.34 3.93 1.1 0.0274  0.000 0.000 0.000 0.013 0.000 85 1.00 0.34
‘Table 1, continued’.

33 3.95 1.1 0.0283  0.000 0.000 0.000 0.013 0.000 167 1.00 0.67
3.27 4.01 1.1 0.0287  0.000 0.000 0.000 0.012 0.000 360.5 1.00 1.47
3.32 3.93 1.1 0.0293  0.000 0.000 0.000 0.012 0.000 672 1.00 2.72
2.82 2.22 0.56 0.0314 0.000 0.000 0.000 0.010 0.000 446.9 1.00 0.90
3.78 347 0.54 0.0314 0.000 0.000 0.000 0.010 0.000 535.1 1.00 0.96
2.7 3.47 0.54 0.0314 0.000 0.000 0.000 0.010 0.000 479.2 1.00 0.95
1.97 4.28 0.55 0.0314 0.000 0.000 0.000 0.010 0.000 596.8 1.09 1.27
1.71 5.84 0.53 0.0314 0.000 0.000 0.000 0.009 0.000 582.1 1.00 1.24
3.94 2.22 1.13 0.0314 0.000 0.000 0.000 0.010 0.000 192.1 0.76 0.49
3.94 2.22 1.13 0.0314 0.000 0.000 0.000 0.010 0.000 311.6 1.24 0.80
3.78 3.47 1.08 0.0314 0.000 0.000 0.000 0.010 0.000 375.3 0.47 0.92
3.066 4.28 1.09 0.0314 0.000 0.000 0.000 0.010 0.000 271.5 0.90 0.73
3.066 4.28 1.09 0.0314  0.000 0.000 0.000 0.010 0.000 330.3 1.10 0.89
2.78 5.84 1.07 0.0314  0.000 0.000 0.000 0.009 0.000 543.9 1.00 2.19
2.82 2.22 0.56 0.0785 0.000 0.000 0.000 0.010 0.000 733 0.94 1.04
3.78 347 0.54 0.0785  0.000 0.000 0.000 0.010 0.000 823.2 1.00 1.07
1.97 4.28 0.55 0.0785  0.000 0.000 0.000 0.010 0.000 1010.4 1.02 1.49
1.71 5.84 0.53 0.0785  0.000 0.000 0.000 0.009 0.000 1029 1.00 1.52
3.94 2.22 1.13 0.0785 0.000 0.000 0.000 0.010 0.000  498.8 1.13 0.83
3.94 2.22 1.13 0.0785  0.000 0.000 0.000 0.010 0.000 385.1 0.87 0.64
3.78 347 1.08 0.0785 0.000 0.000 0.000 0.010 0.000 5733 1.00 0.93
3.06 4.28 1.09 0.0785  0.000 0.000 0.000 0.010 0.000 338.1 0.97 0.58
3.06 4.28 1.09 0.0785  0.000 0.000 0.000 0.010 0.000 360.6 1.03 0.62
2.78 5.84 1.07 0.0785  0.000 0.000 0.000 0.009 0.000 769.3 1.00 1.32
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Table 2 Different parameters of the deep beams dataset

Input Parameters Output

d/b f,
I/d w a/d ¢ £,

W exp

a Actual d(k) 1

system
input(k) e(k)
< ai__\dé'iStive
_~intelligent v(k)
’ system

Fig. 1 System modelling using an adaptive intelligent system (Mohammadhassani 2013a)

where:
L/d = effective span to effective depth ratio

f. = concrete compressive strength
d/b,= effective depth to breadth ratio,
a/d= shear span to effective depth ratio

fyn=yield strength of horizontal reinforcement,
fv= yield strength of vertical web reinforcement,
P, = horizontal web reinforcement ratio

p. — longitudinal reinforcement area to area of concrete ratio

p, = vertical web reinforcement (qv) ratio
when shear strength (Veyp) is used as the output.

2.2 System modeling (Mohammadhassani 2013a)

System modeling alters the parameters of an adaptive intelligent system such as ANFIS to suit
unknown real life engineering system transfer function. A schematic of a problem modeling
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system using adaptive intelligent system is shown in Fig. 1; the parameters are tuned through
proper learning methods to ensure more accurate estimation of the actual system. In other words,
the performance function which typically is the mean squared error (MSE) between an intelligent
system’s output and actual response is minimized.

The objective function in a problem modelling system is as follows

MSE =3 ()~ y(K)) (1)
k=1

where Y(K) is noisy output of areal life system (measured or observed output), Y(K) is the
adaptive intelligent system’s output and L is the number of instances. In cases that are noise free,
Y(K) is equal to d(K)and this is the desired output. If noise is present, Y(K) is the estimation
of desired output or semi desired output.

2.2.1 Fuzzy expert system (Mohammadhassani 2013a)

Human reasoning is able to process uncertainties and vague concepts appropriately. It cannot
however, express them precisely. Fuzzy logic enables the modelling of uncertainties and the
human brain’s way of thinking, reasoning and perception. Using the Boolean logic, two concepts
are applied, ‘TRUE’ or ‘FALSE’, and they are represented by 1 and 0 respectively; a proposition
can only be true or false. As an extension of the Boolean logic, fuzzy logic allows intermediate
values between 1 and 0 where the classical theory of binary membership in a set has been extended
to incorporate memberships between 0 and 1. This extension allows each proposition to be to a
certain degree of TRUE or FALSE. Using X as the space of objects and X as an element of X,
the classical A set, Ac X, is defined as a collection of elements x e X, where X can either

belong or not belong to the set A which is as described in Eq. (2).
A={x|xe X} )
whereas, a fuzzy set A in X isdefined by Eq. (3)
A= {(X, /UA(X)XX e X } 3)

7 A(X) is the membership function for the fuzzy set A, where Ais a linguistic term (label)
determined by the fuzzy set. The membership function maps each X element to a membership
grade between 0 and 1 where (,u A(X) € [0,1]). For example, this set can present X as ‘Medium’,

which is described by a fuzzy set with soft boundaries. Fig. 2 shows both (a) the Boolean logic and
(b) the fuzzy logic sets.

2.2.2 Fuzzy Inference System (FIS) (Mohammadhassani 2013a)

Fuzzy systems offer the means of representing the expert knowledge of human brain processes
in terms of fuzzy (IF-THEN) rules as a basic unit for the capturing of knowledge in a fuzzy
system. The fuzzy rule has two components: ‘IF’ and ‘THEN’; these components are known as
antecedent and consequent, respectively. The main structure of the fuzzy rule is shown in Eq. (4)

IF  <antecedent> THEN <consequent> 4
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=
—

Degree of membership function
Degree of membership function

1 A e | A
\
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X1 Membership function X2 = X1 Membership function x5 B
(a) (b)

Fig. 2 Examples of: (a) Classical Boolean set, and (b) Fuzzy Logic set (Mohammadhassani 2013a)

Conditionally, the antecedent of a fuzzy rule can be satisfied to a degree. Similar to
conventional rules, the antecedent of a fuzzy rule can combine multiple simple conditions into a
complex string using AND, OR and NOT logic operators. The consequence of a fuzzy rule is
classified into two main categories:

a) Fuzzy consequent (Eq. (5)); C is a fuzzy set.

b) Functional consequent (Eq. (6)); p,gand I are constants.

IF XisA and yisB THEN fis C Q)
IF XisA and VyisB THEN f=px+qy+r (6)

In general, the fuzzy inference system (FIS) incorporates an expert’s experience into the system
design through 4 steps or parts; the Knowledge Base, Fuzzifier, Fuzzy Inference Engine and the
Defuzzifier (see Fig. 3). The ‘fuzzifier’ uses the knowledge-base that includes the information
given by the experts in the form of linguistic fuzzy rules and transforms the ‘crisp’ inputs into
fuzzy inputs through membership functions representing fuzzy sets of input vectors. The Fuzzy
Inference Engine uses them together by a method of reasoning and the ‘Defuzzifier’ then
transforms the fuzzy results of the inference into a crisp output using a de-fuzzification method
(Herrera and Lozano 2003).

The knowledge-base comprises two components: a data-base comprising membership functions
of the fuzzy sets used in the fuzzy rules, and a rule-base comprising a collection of linguistic rules
combined by a specific operator. Fig. 3 shows a generic structure of an FIS. There are two
common types of FIS and they vary according to the differences in the specifications of the
consequent part of fuzzy rules (Egs. (5) and (6)). The first uses the inference method proposed by
Mamdani in which the rule of consequent is defined by fuzzy sets with the structure of Eq. (5)
(Mamdani and Assilian 1975).
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Knowledge Base

Input| Output
Crisp | Crisp

Fuzzy Inference .'
Engine

Fuzzy |
/ Output J

Input

Fig. 3 A flow diagram of a fuzzy inference system (FIS) (Mohammadhassani 2013a)

The second type, namely the TSK system was proposed by Takagi and Sugeno (1985) with an
inference engine, where the conclusion of a fuzzy rule consists of a weighted linear combination of
the crisp inputs rather than a fuzzy set. The structure of the TSK system is shown in Eq. (6); the
TSK models are most suited for approximating large non-linear systems.

The knowledge-base with the database and rule-base of an FIS are constructed from an expert’s
knowledge. The expert first selects the membership functions and rules whereby fuzzy models
help in extracting expert knowledge at a suitable level. Fuzzy systems are also constructed from
data which alleviate the problem of knowledge acquisition. Various techniques are used to analyze
the data to ensure best possible accuracy. There are two common approaches in constructing an
FIS with available data. The first approach is where the rules of a fuzzy system are designated a
priori and the parameters of the membership functions are adapted in the learning process from
input to output data through an evolutionary algorithm (e.g., genetic algorithm). The second
approach is where a fuzzy system is generated using hybrid neural nets. The neural net defines the
shape of membership functions of the premises and this architecture-learning procedure is known
as the adaptive network-based fuzzy inference system, or in short, the ANFIS (Jang 1993).

2.2.3 Adaptive network-based fuzzy inference system (ANFIS) (Mohammadhassani

2013a)

As a multilayer feed-forward network, the ANFIS has individual nodes that perform a
particular function for incoming signals as well as sets of parameters pertaining to their respective
nodes (Jang 1993). The ANFIS is able to map unseen inputs to their outputs by just learning the
rules from the data previously seen. A simple structure of this type of network having just two
inputs of x and y and one output of f is shown in Fig. 4.

As seen in Fig. 4, the ANFIS architecture contains five layers including Layer 1: Fuzzifier,
Layer 2: Product, Layer 3: Normalized, Layer 4: Defuzzifier and Layer 5: Total Output. It should
be noted that by using just two membership functions for each of the input data x and y, the
general form of a first-order TSK type of fuzzy IF-THEN rule has been given by Eq. (7). Here,
when re-written, the rule i of the ANFIS is as follows
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Layer 1

As

By
)’<

B>

Fig. 4 A simple ANFIS architecture (Mohammadhassani 2013a)

\

Rule i: IF Xxis A and yisB  THEN f,=px+qy+r i=12,..,n 7

where N is the number of rules and P;, (; and I, are the parameters identified in the
training process. In the early stage of the learning process, the membership function (p) of each of

the linguistic labels A, and B; is calculated as follows
Oi1 :uAi(X)a i:152a- .0 (8)
Oi1 :uBi(Y)a 1:1 523' .1 (9)

In the second layer, namely the Product layer, the previously calculated membership degrees of
linguistic variables are multiplied as in Eq. (10)

OF =w= pailX) peily) i=1,2,...,n (10)
In the third layer, which is the Normalized layer, the ratio of each weight to the total weights is
calculated
wj

O’ =W;= ———i=1,2,...n (11)

i=1 Wi

The fourth layer, which is the Defuzzification layer, has adaptive nodes with outputs that
depend on the parameter(s) pertaining to these nodes; the learning rule specifies how these
parameters are altered to minimize the prescribed error (Jang 1993). The association of these nodes
is as follows

O =W, f, = Wi(pix+ qiy + 1) i=1.2,...,n (12)
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Finally in the fifth layer, namely the Total Output, the summation of all the incoming signals is
performed and the output is the final result of the system as shown in Eq. (13)

O’=YL, W, fi=12,...n (13)

3. Results and discussion

The data set was first normalized using the Gaussian normalization technique. 80% of this
normalized data was then randomly chosen as the training data and the remainder 20% as the
testing data. The ANFIS models with different parameters (total nine) as inputs were implemented
using MATLAB version R2010a.

The Genfis2 function based on a subtractive clustering method is used to generate the FIS
structures. Finding the best structure with the suitable membership function parameters involves
two processes: Learning and Testing. In the Learning process, first off, the membership functions
of the inputs are generated using a subtractive clustering and then tuned using a back propagation
algorithm combining a recursive least square method. The Testing step follows where the
generalization ability of the generated model is checked. To decrease the Mean Square Error (MSE)
obtained in this method, the number of membership functions was gradually increased. This was
done by lowering the range of influence of cluster centers in a step by step method, and through
the trial and error mode.

Linear Regression (LR) is carried out to establish a relationship between the output and input
data used in the proposed ANFIS model. LR is simple, yet an excellent and effective method for
predicting domains with numeric attributes where the linear models function as building blocks for
more complex learning tasks.

MSE and Correlation Coefficient / Pearson Coefficient (R) values are used in this study to
evaluate the comparative methods. As a risk function, the MSE corresponds with the expected
value of the squared error loss or quadratic loss. R refers to the degree of success in reducing the
standard deviation (SD). It is widely used as a measure of the strength of linear dependence
between two variables. The MSE calculation is shown in Eq. (1) while R is calculated in Eq. (14)
as follows

2 (y(K)=9(k))?

RZ =1= kT_l
Z (y(k) - yave)2
k=1

(14)
where Y(K) , y(K) and Y,, are the ANFIS predicted output, the actual / observed output and

average actual output respectively; L is the total number of training/testing instances. Table 3
summarizes the MSE and R results obtained using the proposed method and the LR separately
using both the training data and testing data.

It is noted that the MSE value from the ANFIS is approximately 76 times smaller for the
training set and more than 2 times smaller for the testing set than the values from the LR. The R
values from the ANFIS for the testing data is 0.9008 and 0.9979 for the training set, while both are
more than the corresponding value in the LR.
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Table 3Comparison of MSE and R values in ultimate shear prediction using ANFIS and LR

Training Set

Testing set

Methods Instances MSE R Instances MSE R
LR 111 0.3135 0.8286 28 0.4672 0.7248
ANFIS 111 0.0041 0.9979 28 0.2058 0.9008
700 = T00
600} . 600 !
500} * 500} . * . *
=] * oo
g400¢ o %400 r * *
(=] ¥ 1O
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Fig. 5 Ultimate shear prediction performance from (a) ANFIS and (b) Linear regression

To compare the performance of the ANFIS and LR, Fig. 5 shows the ultimate shear prediction
performance from the LR and ANFIS for the testing data. The horizontal and vertical axes
represent the actual and predicted data, respectively.

A precise modelling would result in a direct linear relation between the actual and predicted
data (a line of perfect agreement (i.e., a line at 45°). Fig. 5 reveals that the ANFIS method is highly
accurate and more precise, compared to the LR for the ultimate shear prediction of deep beams.

Fig. 6 shows the architecture of the proposed ANFIS with nine inputs for it.

After the finding of the best architecture, the predicted results are presented as Vpredict in
Table 1. Results suggest the effectiveness of the ANFIS in predicting shear strength of deep beams
with this dataset (Fig. 5(a)). The value of variance, correlation coefficient, RMSE and average
actual strength to predicted ratio are presented for all specimens for RC deep beam dataset with
this approach (Table 4).

The average actual-to-predicted shear strength ratio of all specimens is 0.99 and 0.86 with the
ANFIS method and LR, respectively. Another study (Pal and Deswal 2011) with the same target
using ACI method, CEB-FIP MC90, Support vector regression (SVR) approaches with polynomial
and radial basis kernel function provides the average values of 1.69, 1.74 , 1.28 1.006 and 1.013
respectively in the range of these datasets.

Comparison of these studies confirms the superiority of ANFIS and SVR in shear strength
prediction in contrast to other applied methods.

A comparison of the RMSE and correlation coefficient values (Tables 3 and 4) suggests better
performance with the ANFIS in comparison to the LR with this dataset.
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Fig. 6 ANFIS Architecture

Table 4 Average, Variance, Correlation Coefficient, MSE and Coefficient of Variation of different methods
with this datasets

ANFIS LR

AVG 0.99 0.86

VAR 0.012 2.36

CORR 0.97 0.81
Ccv 11.01% 179.07%

STDEV 0.109 1.54

Fig.7 illustrates the variation of this particular ratio with the L/d ratio.

A large variation in the ratio of actual-to-predicted strength is obtained with the LR method in
comparison to the ANFIS method that suggests an improved performance by this approach
compared to the LR. In all ranges of the L/d ratios, most of the values are very close to 1 for
ANFIS prediction. The variations of the ratio of actual strength to predicted strength with the a/d
ratio for both the ANFIS and LR are shown in Fig. 8.

Results indicate a better performance by the ANFIS for all ranges of a/d values considered
in this study in comparison to the LR method.

The compressive strength of the concrete ( f.) was plotted against the ratio of the actual

strength to predicted strength and this is shown in Fig. 9 for the ANFIS and LR.

Result indicates that the Strength predications by the ANFIS are mostly unaffected by the
variation in the compressive strength of concrete and performed better than the LR method.

Figs. 7-9 indicate an improved performance by the ANFIS for deep beam strength prediction in
comparison with the LR.
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The relation between the input and output variables is visualized with modelled fuzzy surfaces
shown in Figs. 10-12. The Graphical User Interface (GUI) tool allows the examining of the output
surface of an FIS model to be executed. The GUI provides a fast 3-D output visual impression of
possible combinations of the two input variables to analyse and predict the ultimate shear strength
in deep beams. The FIS allows mathematical solutions in determining the ultimate shear strength
of deep beams, based on data such as the compressive strength of concrete versus shear span-depth
ratio; the horizontal web reinforcement ratio versus vertical web reinforcement ratio and the
horizontal web reinforcement ratio versus shear span-depth ratio.
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Fig. 8 Variation of actual to predicted strength with @ /d using ANFIS and LR methods
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Fig. 10 Fuzzy surface: Horizontal web reinforcement ratio versus shear span-depth ratio in ultimate shear

strength prediction
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Fig. 11 Fuzzy surface: Horizontal web reinforcement ratio versus vertical web reinforcement ratio in
ultimate shear strength prediction

Fig. 12 Fuzzy surface: Compressive strength of concrete versus shear span-depth ratio in ultimate shear
strength prediction
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Table 5 Sensitivity analysis of input variables using ANFIS

Omitted input parameter 1/d d/b a/d fr ¢

c

f ph ps pv

yh y

Evaluation of remained MSE 0.34 0.30 0.53 064 037 045 026 0.70 0.26

parameters
R 0.82 0.84 0.69 0.66 0.80 0.74 086 0.66 0.87

Fig. 12 confirms the increase in shear strength of deep beams with the increase in the concrete
compressive strength and the decrease in the shear span to depth ratio.

The input-output surfaces shown in Figs. 10-12 are nonlinear and monotonic surfaces that
illustrate how an ANFIS model responds to varying values in the prediction of ultimate shear
strength.

3.1 Sensitivity Analysis (S.A)

This section discusses the utilisation of the ANFIS in judging the importance of input
parameters (i.e., I/d, d/by, a/d, f;, fy, fyy, p,, P, p,) on the shear strength prediction of deep

beams. To rank different input parameters on shear strength prediction of deep beams, the
procedure involves deleting one input from the dataset and using the resultant dataset to test and
train the model using the ANFIS and for the ANFIS to be evaluated in terms of its MES and R.
For this purpose, the input omission and results are provided in Table 5.

Results from Table 5 suggest that the shear span to depth ratio (a/d ) and concrete cylinder

strength ( f.) have major influence on the shear strength prediction of deep beams, that is
confirmed with the SVR in another study (Pal and Deswal 2011).

4. Conclusions

The applications of the Adaptive Network-Based Fuzzy Inference System (ANFIS) and linear
regression (LR) models in the prediction of ultimate shear strength for deep beams have been
demonstrated in this study.

This study proposes the ANFIS as a powerful computational tool that can effectively be used to
analyse the complex relationship formed between various parameters used in predicting the shear
strength of deep beams.

The ANFIS has relatively higher accuracy and precision compared to the LR. The MSE from
the ANFIS is approximately 76 times lesser for the training set and more than two times lesser for
the testing set and therefore, conclusively, the ANFIS is more accurate and effective than the LR in
terms of its prediction of the ultimate shear strength in reinforced concrete deep beams.

The parametric study verifies the increasing shear strength of deep beams with an equal
increase in the concrete strength and decrease in the shear span to- depth-ratio.

The sensitivity analysis (S.A) shows that the shear span to depth ratio (a/d ) and the concrete
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cylinder strength ( f.) have major influence on the shear strength prediction of deep beams.
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