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Abstract.  A developed hybrid method for crack identification of beams is presented. Based on the 
Euler-Bernouli beam theory and concepts of fracture mechanics, governing equation of the cracked beams is 
reformulated. Finite element (FE) method as a powerful numerical tool is used to discritize the equation in 
space domain. After transferring the equations from time domain to frequency domain, frequencies and 
mode shapes of the beam are obtained. Efficiency of the governed equation for free vibration analysis of the 
beams is shown by comparing the results with those available in literature and via ANSYS software. The 
used equation yields to move the influence of cracks from the stiffness matrix to the mass matrix. For crack 
identification measured data are produced by applying random error to the calculated frequencies and mode 
shapes. An objective function is prepared as root mean square error between measured and calculated data. 
To minimize the function, hybrid genetic algorithms (GAs) and particle swarm optimization (PSO) 
technique is introduced. Efficiency, Robustness, applicability and usefulness of the mixed optimization 
numerical tool in conjunction with the finite element method for identification of cracks locations and depths 
are shown via solving different examples. 
 

Keywords:   a hybrid inverse method; crack identification; reformulated governing equation; optimization; 

hybrid GAs- PSO 

 
 
1. Introduction 
 

Presentation of cracks and damages in structural elements such as beams may lead to reduction 

in stiffness and serviceability of structures. So, different researches are performed for detecting 

defects considering measured data. Karthikeyan et al. (2007) identified crack location and its depth 

from vibration measurements. They used Timoshenko beam theory and finite element method in 

conjunction with direct iterative regularisation technique for solving the problem. 

Vakil-Baghmisheh et al. (2008) employed analytical modal analysis of a cracked cantilever beam 

and genetic algorithms (GAs) to identify the crack location of beam and its depth. Khaji et al. 

(2009) used bending vibration measurement for crack detection of beams via Timoshenko beam 

theory and analytical approach. Lee (2009) introduced a method for identifying multi cracks in 

cantilever beams based on combined Euler–Bernoulli beam theory and the Newton–Raphson 

method. Sayyad and Kumar (2011) presented theoretical and experimental study for crack 

identification of cantilever beams using natural frequencies measurement. They employed a finite 

element method package for analysis of the cracked beams. Saeed et al. (2012) presented artificial 
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intelligence (AI) techniques for crack identification in curvilinear beams based on changes in 

vibration characteristics. They used finite element method to compute natural frequencies and 

frequency response functions. Moradi et al. (2011) employed separation of variable method and 

bee algorithm for crack identification of cantilever Euler beams. They used bee algorithm for 

minimizing the error function between measured and estimated frequencies. Khorram et al. (2013) 

introduced a method for cracks detection in a simply supported beam. They used continuous 

wavelet transform (CWT) in conjunction with factorial design method. They considered mid span 

deflection time history in their analysis for detecting cracks locations and depths. Gillich and 

Praisach (2014) used time frequency analysis and signal processing for crack detecting of beams 

via natural frequency changes. Khiem and Tran (2014) derived a new form for solving eigenvalue 

problem of cracked beams. They employed regularization method to obtain both location and size 

of multiple cracks from noisy measured data. Barad et al. (2013) used direct search method for 

obtaining crack location and depth of thin beams. Muñoz-Abella et al. (2012) presented a 

nondestructive method for crack identification of shafts. They used stress wave propagation in 

conjunction with genetic algorithms. Xiang and Liang (2012) presented two steps method for 

crack identification of beams. They found the locations of the cracks by applying the wavelet 

transform to the modal shape of beams. They estimated the depths of the cracks using the 

measured natural frequencies as inputs from a database established by wavelet finite element 

method. Jiang et al. (2012) presented a method for crack identification of beams. They used the 

slope of the mode shape of the beams to detect cracks. They introduced the angle coefficients of 

complex continuous wavelet transform for detecting the location of the nonpropagating transverse 

crack. Jafarkhani and Masri (2011) presented the performance of an evolutionary strategy in the 

finite element model updating approach for damage detection of beam-like structures. Tanaka et al. 

(2013) presented fracture mechanics analysis using the wavelet Galerkin method and extended 

finite element method. Singh and Tiwari (2013) presented an algorithm for crack identification of 

stepped shafts. Varghese and Shankar (2014) combined transient power flow balance and 

acceleration matching technique for damage detection of beams. Using a multiobjective 

optimization formulation they detected and quantified crack damage in beam structures at different 

locations. Wang and Chen (2013) proposed a moving-window least squares fitting method for 

rapid identification of cracks and flexural rigidities in beam structures.  

To the best of author’s knowledge and based on the efficiency of combined methods for solving 

engineering problems (Malekzadeh et al. 2014), as a first attempt, finite element (FE), genetic 

algorithms (GAs) and particle swarm optimization (PSO) techniques are combined for crack 

identification of thin beams. Based on Euler-Bernouli beam theory and fracture mechanic concepts 

the governing equation is reformulated. Then, finite element method as a powerful numerical tool 

is used to obtain frequencies and mode shapes of the beam. By applying random error to the 

arbitrary number of frequencies and mode shapes of cracked beams measured data are produced. 

An objective function is generated via calculating root mean square between the measured and the 

estimated data. A hybrid genetic algorithms and particle swarm optimization technique is used as a 

simple and efficient numerical optimization tool to obtain cracks depths and locations. More 

details are presented in the following sections. 

 

 

2. Governing equation and solution procedure  
 

Consider a cantilever beam with length L, width b, thickness h, crack location Ci and depth of 
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crack ai (see Fig. 1). 

Using the classical thin beam theory, the transverse flexural equation of motion due to small 

deflection, at an arbitrary point on the mid-plane of elastic beam with no crack can be written as 

4 2
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                           (1) 

where, D  and oI are the stiffness coefficient and moment inertia of the beam, respectively and 
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Transferring Eq. (1) from temporal domain into frequency domain yields to 
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Considering concepts of fracture mechanics and using Heavyside function, rotation of the 

cracked section at any point of the beam, xi, can be stated as (Broek 1986, Ranjbaran 2010)   
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                         (3)  

where, bic  is equivalent flexibility of cross section at ith crack due to bending, which can be 

obtained with respect to depth of cracks as (Lee 2009) 
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Fig. 1 A cantilever beam with three cracks 
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Considering Heavyside function properties the derivative of Eq. (3) would be expressed as 

2 2

2 2
( )crack

bi i

d wd d w
c x x

dx dx dx


                       (5) 

where,   is Dirac-delta function.  

Two times integration of Eq. (2) would be as follows 
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1B , 
2B  are constant coefficients of the integral. 
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Substituting Eq. (7) in Eq. (6) gets 
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2
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dx

wd


                         (8) 

Using Eq. (8) in Eq. (5) can write 

2
2

2
( )crack
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d w
c V x x

dx
                         (9) 

In the cracked section of the beam with respect to intact and crack parts participation the 

following equation can be written 

2 22 2
2int

2 2 2 2
( )act crack

bi i

d w d wd w d w
c V x x

dx dx dx dx
                 (10) 

Substituting Eqs. (7)-(10) in Eq. (8) gives different form of equation of motion with respect to 

considering the cracks influence at their locations as follows 

  0)(12

4

4

 Vxxc
dx

Vd
ibi                  (11) 

The boundary conditions of Eq. (11) should be determined. Considering Eq. (7) one can write 

w
dx

Vd


2

2

 and 
dx

dw

dx

Vd


3

3

                    (12 a-b) 

Which means clamped boundary condition ( 0w  and 0
dx

dw
)  in Eq. (1) is equal to zero 
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shear and moment ( 0
2

2


dx

Vd
 and 0

3

3


dx

Vd
) in Eq. (11). This means that clamped boundary 

condition changes to free boundary condition.  

For solving Eq. (12), finite element method (FEM) is used. Using FEM rules (Reddy 2004) and 

by considering transverse and rotation as two degrees of freedom at each nodes of elements the 

stiffness and mass matrix of the problem can be stated as follows 
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where, 
e

ijk , 
e

ijm and 
ec

ijm are components of stiffness, mass and cracked mass matrices of the 

beam elements, respectively. Also,  1,...,4i i  , are Hermitian interpolation shape functions.  

Assembling of the elements matrices the eigen-value problem is obtained as follows 

}0{}]){[]([ 2  VNMK                         (14) 

where,  K  is the global stiffness matrix and  NM  is the new global mass matrix which 

includes influences of cracks.  

For identification of cracks depths and locations, measured data should be produced. By 

applying random error to the arbitrary number of calculated frequencies and mode shapes from the 

direct solution, measured data are generated.  

The following functional is considered as an objective function for identification of the 

parameters.  

 
2

*

1

M

s s

s

J   


                            (15)  

where, M denotes the number of used eigen-pairs including frequencies and mode shapes; s  and 

*

s  are the estimated (computed) and measured eigen-pairs, respectively. For minimizing the 

functional optimization technique should be used. First, an introduction to GAs and PSO 

optimization techniques is presented separately. Then, mixing procedure of GAs-PSO would 

explain. 

In GAs, a candidate solution for an optimization problem is a chromosome, and consists of a 

linear list of genes. Each chromosome shows a point in the optimization search space, which can 

be a possible solution of the problem. A finite number of chromosomes produce a population. 

Fitness value of each chromosome would be obtained. Based on the fitness value and using genetic 

operators, a new population is generated iteratively, while the best solution obtains.   

The PSO solves optimization problem using a population same as chromosomes in GAs. A 

population of particles is randomly generated initially. Each particle can be a possible solution and 

has its position is shown by a position vector. A swarm of particles moves through the optimization 

search space, with a velocity vector. At each step, the fitness value of the problem will obtain. This 

procedure will be repeated until the best solution obtains. 
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Based on the brief review of GAs and PSO mentioned above, for minimizing Eq. (15) genetic 

algorithms and particle swarm optimization methods are mixed to create an efficient optimization 

tool. First GAs is used to generate first population and using the FEM the fitness values of the 

population would be calculated. Then, the top-percent of best-performing ones are marked. These 

individuals are regarded as elites. Instead of reproducing the elites directly to the next generation 

first the elites are enhanced by PSO. By using these enhanced elites as parents, the generated 

offsprings will usually achieve better performance than those bred by original elites. The group 

constituted by the elites is regarded as a swarm, and each elite corresponds to a particle in it. More 

details of the used mixed method for solving the problem are briefly stated as follows, 

Step 1: first population is generated using GAs. 

Step 2: fitness of the population is calculated. 

Step 3: the selected percent of elites would be used in PSO method as an input data. 

Step 4: new population is generated using PSO method as enhanced elites and by using GAs 

considering tournament selection and mutation in conjunction with the crossover operation as 

offspring. 

Step 5: fitness of the new population is calculated. 

Step 6: the bellow convergence criteria should be checked.  

     
1

0

n n n
J J J   


                       (16) 

where n denotes the number of iteration and 0  is a small value number and in the present analysis 

is taken to be 
610 

.  

 

Step 7: if convergence is not achieved solution procedure from step 2 should be repeated. 

Step 8: if convergence is achieved depth of cracks and their locations can be obtained.   

The solution procedure for crack identification of beams is shown in Fig. 2. 

 

 
3. Numerical results  

 

In this section, first convergence and accuracy of the presented solution is investigated. Then, 

convergence, accuracy and robustness of the hybrid optimization technique for crack identification 

of beams are shown. For all solved problems a steel beam with the following properties is 

considered. 

L=0.5m, b=0.01m, h=0.02m, E=210Gpa, ρ=7860kg/m3, βi=Cib/L 

As a first example, the convergence and accuracy of the FEM for solving the reformulated 

governing equation is investigated in Table 1. It can be seen that the presented results are in very 

excellent agreement with those of Lee (2009). Without any extra effort, hereafter for solving the 

problems Ne=20 is considered.  

In order to show the applicability of the presented method for different crack ratios Fig. 3 is 

prepared. From this figure one can see that the obtained  c  , frequencies of cracked beam to 

frequency of beam with no crack ratio, from the presented method are in good agreement with 

those obtained from ANSYS software. For solving the problem in ANSYS software 1000 two 

dimensional (2D) plane stress elements were used. 
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Fig. 2 Flowchart of the hybrid optimization solution 
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Table 1 Convergence and accuracy of the first four natural frequencies of cantilever isotropic steel beams             

( 1 2 3 3 2 10.1, 1.5 3 0.6           ) 

  Mode sequence  

 Ne 1 2 3 4 

Present 5 416.9212 2613.481 7349.902 14521.52 

 10 416.9161 2612.296 7326.031 14370.67 

 20 416.9157 2612.217 7324.325 14358.15 

 40 416.9157 2612.212 7324.215 14357.33 

Lee (2009)  416.8933 2612.065 7323.879 14356.68 

% Relative error 0.005% 0.006% 0.005% 0.005% 

 

 

 

 

Fig. 3 Comparison of the hybrid method via ANSYS software ( 6.035.1 123   ) 

 

 

To show how efficient the mixed optimization technique is different examples are solved. In the 

all solved examples (otherwise mentioned) eigen-pair(s) are calculated for a beam with 

1 2 3 3 2 10.3, 1.5 3 0.6            using the FEM. Then random error is applied to the 

eigen-pair(s) with respect to the averages and standard deviations presented in Table 2 and the 

generated eigen-pairs are used as input for solving the crack identification problems. 
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Table 2 Average (AVE) and standard deviation (SD) of applied random errors used in the crack 

identification problems 

Random 

error 

 Number of used eigen-pairs  

 1 2 3 

+5% AVE 3.35% 2.94% 2.98% 

 SD 2.39% 1.85% 1.95% 

+10% AVE 6.42% 7.15% 6.32% 

 SD 3.96% 4.86% 3.95% 

 

 

In Figs. 4 and 5 influences of different population sizes and keeping percent on convergence of 

the hybrid optimization technique are studied, respectively. To verify efficiency of the hybrid 

method convergence of GAs for solving the problem are shown on the figures. From these figures, 

it is obvious that by increasing the applied random error, the obtained root mean square errors 

(RMSE) are increased.  

 

 

 

Fig. 4 Convergence and robustness of the presented hybrid approach for the crack identification of the 

beams in presence and absence of the PSO with +10% applied random error and keeping 

percent=70% (GAs with population size=30: , GAs-PSO with; population size=10: , 

population size=20: , population size=30: ) 
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Fig. 5 Convergence and robustness of the presented hybrid approach for the crack identification of the 

beams in presence and absence of the PSO with +5% applied random error and with population 

size=30 (GAs: , GAs-PSO with; keeping percent =30%: , keeping percent=50%: 

 and keeping percent=70%: ) 

 

 
Table 3 Accuracy of the presented method for crack identification of beams using different eigen-pairs 

with +5% applied random errors. 

Eigen-pair(s)  
Obtained 

parameters 
 

Crack number 
 RMSE (%) 

i=1 i=2 i=3 

1 GAs-PSO 

i  
 0.2231 0.4170 0.6214  

0.3596 (16) a 
  

i  
 0.3233 0.3194 0.2887  

 GAs 

i  
 0.2468 0.4658 0.6789  

0.9693 (24) 
  

i  
 0.3683 0.2765 0.3685  

2 GAs-PSO 

i  
 0.2151 0.4112 0.6135  

0.2866 (14) 
  

i  
 0.3149 0.3059 0.3111  

 GAs 

i  
 0.2392 0.4368 0.6685  

0.8105 (23) 
  

i  
 0.3475 0.3365 0.3498  

3 GAs-PSO 

i  
 0.2090 0.4075 0.6012  

0.2866 (14) 
  

i  
 0.3085 0.2965 0.3042  

 GAs 

i  
 0.2291 0.4305 0.6598  

0.8615 (25) 
  

i  
 0.3235 0.3102 0.3552  

a Numbers in the parentheses is the iteration number at which the convergence is achieved 
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Table 4 Accuracy of the presented method for crack identification of beams using different eigen-pairs 

and +10% applied random errors 

Eigen-pair(s)  
Obtained 

parameters 
 

Crack number 
 RMSE (%) 

i=1 i=2 i=3 

1 GAs-PSO i   0.2414 0.4280 0.6394  
0.4712 (22) a   

i   0.3312 0.3298 0.3236  

 GAs i   0.2825 0.4971 0.7021  
0.6925(27) 

  
i   0.3854 0.3568 0.4001  

2 GAs-PSO i   0.2198 0.4199 0.6249  
0.3685 (19) 

  
i   0.3276 0.3118 0.3199  

 GAs i   0.2652 0.4568 0.6872  
0.5833 (24) 

  
i   0.3796 0.3433 0.3865  

3 GAs-PSO i   0.2115 0.4126 0.6089  
0.2973 (18) 

  
i   0.3125 0.3068 0.2963  

 GAs i   0.2452 0.4461 0.6635  
0.4985 (27) 

  
i   0.3698 0.3323 0.3589  

a See the footnote of Table 3 

 

Table 5 Accuracy of the presented method for crack identification of beams using different eigen-pairs 

with +5% applied random errors 

Eigen-pair(s)  
Obtained 

parameters 
 

Crack number 
 RMSE (%) 

i=1 i=2 i=3 

1 GAs-PSO i   0.2213 0.4273 0.6351  
0.4261 (18) a 

  
i   0.1121 0.1091 0.0912  

 GAs i   ---- 0.5168 ----  
1.4251 (44) 

  
i   ---- 0.3325 ----  

2 GAs-PSO i   0.2194 0.4203 0.6217  
0.3987 (19) 

  
i   0.0985 0.0973 0.1045  

 GAs i   0.2131 ---- 0.7925  
1.2115 (46) 

  
i   0.1734 ---- 0.2471  

3 GAs-PSO i   0.2090 0.4075 0.6012  
0.3325 (17) 

  
i   0.1084 0.0987 0.1074  

 GAs i   0.2319 0.4376 0.5894  
1.1845 (48) 

  
i   0.0875 0.1026 0.1402  

a See the footnote of Table 3 

411



 

 

 

 

 

 

Ali. R. Vosoughi 

With respect to Figs. 4 and 5, fast rate of convergence and robustness of the new hybrid 

optimization method for crack identification of the beam is interesting than using the GAs. So, for 

generating the numerical results hereafter without any extra effort population size=20 and keeping 

percent=70% are used. 

In Tables 3 and 4 for different number of measured eigen-pairs the cracks depth and their 

locations are identified and tabulated. The results are presented for the two cases of the GAs-PSO 

and GAs optimization techniques separately. From these tables, one can see that the more accurate 

identification procedure and faster rate of convergence are obtained using the hybrid presented 

GAs-PSO technique. 

Table 5 is prepared to examine the accuracy of the hybrid method for crack identification of 

beam with 1 2 3 3 2 10.1, 1.5 3 0.6           . From the obtained results one can see that 

by decreasing the crack depth to height ratio the presence of PSO is necessary for finding depth 

and location of cracks. 

 

 

4. Conclusions  
 
A developed hybrid method for crack identification of beams is presented. Using fracture 

mechanic concepts, the governing equation of thin cracked beam is reformulated. Finite element 

method as a powerful numerical tool is adopted to discretize the equation in space domain then the 

obtained equation is transferred from time domain to frequency domain. To show the applicability 

of the equation comparisons are made with those available in literature and via ANSYS software. 

By applying random error to arbitrary number of obtained frequencies and mode shapes 

(eigen-pairs) of cracked beams, measured data are produced. An objective function is generated by 

calculating root mean square error between the measured and the estimated data. To minimize the 

function and obtain the cracks depths and locations, genetic algorithms and particle swarm 

optimization techniques are combined. Convergence, efficiency, robustness and accuracy of the 

optimization method in conjunction with the finite element method are demonstrated via solving 

different examples.  
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Appendix A. Nomenclature 
 

ia  depth of ith crack 

b width of beam 

iC  location of ith crack 

bic  equivalent flexibility of cross section at ith crack 

D   bending stiffness  

E   Young’s modulus  

h   thickness of beam 

oI   moment of inertia  

K  global stiffness matrix of beam 
e

ijk   stiffness matrix of eleemnts 

L    length of beam 

M  number of used eigen-pairs 
e

ijm   mass matrix of elements 

ec

ijm   mass matrix of cracked elements 

Ne  number of elements 

NM  new global mass matrix 

w  displacement component in the transverse direction of a point on 

natural axis of beam 

 V   vector of the transverse displacement degrees of freedom  

i   crack location to beam length ratio 

0   tolerance of convergence  

   Dirac-delta function 

s   estimated (computed) eigen-pairs 

*

s   measured eigen-pairs  

 1,...,4i i   Hermitian interpolation shape functions  

   beam density  

   frequency of beam with no crack 

c   frequency of cracked beam  

i   crack depth to beam height ratio
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