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Abstract.  Optimal sensor placement (OSP) is a critical issue in construction and implementation of a 
sophisticated structural health monitoring (SHM) system. The uncertainties in the identified structural 
parameters based on the measured data may dramatically reduce the reliability of the condition evaluation 
results. In this paper, the information entropy, which provides an uncertainty metric for the identified 
structural parameters, is adopted as the performance measure for a sensor configuration, and the OSP 
problem is formulated as the multi-objective optimization problem of extracting the Pareto optimal sensor 
configurations that simultaneously minimize the appropriately defined information entropy indices. The 
nondirective movement glowworm swarm optimization (NMGSO) algorithm (based on the basic 
glowworm swarm optimization (GSO) algorithm) is proposed for identifying the effective Pareto optimal 
sensor configurations. The one-dimensional binary coding system is introduced to code the glowworms 
instead of the real vector coding method. The Hamming distance is employed to describe the divergence of 
different glowworms. The luciferin level of the glowworm is defined as a function of the rank value (RV) 
and the crowding distance (CD), which are deduced by non-dominated sorting. In addition, nondirective 
movement is developed to relocate the glowworms. A numerical simulation of a long-span suspension 
bridge is performed to demonstrate the effectiveness of the NMGSO algorithm. The results indicate that the 
NMGSO algorithm is capable of capturing the Pareto optimal sensor configurations with high accuracy and 
efficiency. 
 

Keywords:  structural health monitoring; optimal sensor placement; glowworm swarm optimization 

algorithm; information entropy; multi-objective optimization 

 
 
1. Introduction 
 

Large-scale civil infrastructures, i.e., long-span bridges, tall buildings or offshore platforms, are 

exposed to various environmental and service loads during their service life. Structural degradation 

and deterioration with time are an inevitable fact that may lead to structural failures and possible 
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loss of human lives. To ensure structural safety and minimize financial loss, extensive evaluation 

is of pressing importance such that preventive and remedial work can be carried out as early as 

possible (Arangio and Beck 2012). Conventional visual inspection, which is experiential 

dependence, operation disturbance, and high costs, does not appear to be adequate to accurately 

reflect the true performance state of structural components or the global condition of the entire 

structure. In contrast, structural health monitoring (SHM) involves a paradigm of in situ data 

acquisition/sensing, data-feature extraction, and data-feature classification as a means of 

appropriately assessing the performance condition of a structure (Flynn and Todd 2010). 

Successful implementation and operation of SHM systems for large structures have been reported 

throughout the world (Yi et al. 2013, Zhou and Yi 2013a, Zhou and Yi 2013b). 

In general, a typical SHM system includes three major components: a sensor system, a data 

processing system (including data acquisition, transmission and storage), and a health evaluation 

system (including diagnostic algorithms and information management) (Mufti 2002, Zhou and Yi 

2013c). The performance of an SHM system relies heavily on the quantity and quality of the 

measured data, which in turn depend on the number of sensors used and their corresponding 

locations. It is well known that the number of sensors installed in a structure is always sparse 

compared with the infinite degrees of freedom (DOFs) of a structure. As a result, it is critical that 

researchers or engineers answer the question of where to place the sensors before performing any 

field tests (Chow et al. 2011). Therefore, the problem of optimal sensor placement (OSP) has 

received considerable attention in recent times. In extracting the OSP, an actual problem that 

should be solved is how to assess the performance of a sensor set. Many evaluation criteria were 

proposed from different perspectives, i.e., the modal assurance criterion (MAC), the singular value 

decomposition ratio (SVDR), and the measured energy per mode (Yi and Li 2012). The MAC 

suggested by Carne and Dohmann is a metric of linear independency such that the measured or 

identified modes are distinguishable (Carne and Dohmann 1995). The SVDR is adopted to 

evaluate the mode orthogonality, the condition for mode expansion, and the observability of the 

modes (Friswell and Mottershead 1995). The criterion of the measured energy per mode aids in 

selecting those sensor positions with possibly large amplitudes and in increasing the 

signal-to-noise ratio, which is critical in harsh and noisy circumstances. All of the aforementioned 

evaluation criteria assume that the measured data and the identified structural parameters are 

highly reliable and allocate little attention to the uncertainties in monitoring. However, it is worth 

noting that estimates of the structural parameters always involve uncertainties. Those uncertainties, 

which arise from various sources (i.e., the limitations of the mathematical models used to represent 

the behavior of the real structure, the incomplete measured data due to the limited sensor number, 

the presence of measurement error in the data, and insufficient excitation and response bandwidth 

(Beck and Katafygiotis 1998, Papadimitriou 2004, Li, et al. 2012a, Li, et al. 2012b)), may result in 

false alarms or genuine structural damage going undetected. In view of this situation, it is desirable 

to design the sensor configuration in an SHM system such that the structural parameters identified 

from the measured data are more robust to the uncertainties. Many research activities, i.e., the 

work by Ntotsios et al. (Ntotsios et al. 2005) and earlier works by Udwadia (Udwadia 1994) and 

Heredia-Zavoni et al. (Heredia-Zavoni et al. 1998), have shown the importance of addressing the 

issue of uncertainty in handling the optimal sensor configuration. In this paper, the information 

entropy (Papadimitriou et al. 2000, Yuen et al. 2001, Papadimitriou 2004, Chow et al. 2011, Ye 

and Ni 2012), which provides a direct measure of the uncertainties in the structural parameters, is 

used as the evaluation criterion of the OSP problem. Next, the information-entropy-based OSP 

problem is formulated as the multi-objective optimization problem of finding sensor sets that 
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minimize the information entropy indices because the responses of civil structures are always 

governed by several modes.  

With respect to the traditional OSP problems with single-objective functions (evaluation 

criteria), many contributions have been developed in the past several decades and can be roughly 

divided into two categories. The first category contains the non-intelligent algorithms that use a 

closed-form process to find the best sensor set, i.e., the effective independence method (Kammer 

1991) and MinMAC method (Carne and Dohmann 1995). The second category involves the 

intelligent algorithms that imitate the process of biological evolution, i.e., the genetic algorithm 

(GA) (Yao et al. 1993, Kang, et al. 2008, Yi et al. 2011a, Yi et al. 2011b, Zhou and Yi 2013d), or 

mimic the cooperative behavior of swarms, i.e., the ant colony optimization (ACO), the Artificial 

bee colony (ABC) (Kang, et al. 2013), the particle swarm optimization (PSO) (Ngatchou et al. 

2005), and the monkey algorithm (MA) (Yi et al. 2012a, Yi et al. 2012b). These intelligent 

algorithms have been extensively applied to the OSP problem in recent years due to their many 

advantages over the classical optimization techniques, i.e., blind searching and highly parallel 

structure. All of the algorithms mentioned above focus on identifying a unique optimal sensor 

configuration. For the information-entropy-based OSP problem with multi-objective functions, it 

is impossible to find a solution that can optimize all of the objective functions because these 

objectives are conflicting. A compromise for the multi-objective problem involves investigating a 

set of solutions known as the Pareto solutions, each of which satisfies the objectives at an 

acceptable level without being dominated by any other solution. Papadimitriou proposed a Pareto 

sequential sensor placement (PA-SSP) algorithm for sequentially constructing predictions of the 

Pareto front and the Pareto optimal sensor configurations (Papadimitriou 2005). It was 

demonstrated that the PA-SSP could effectively find the Pareto optimal sensor configurations. 

However, when this method is applied in large-scale structures with hundreds of DOFs, e.g., 

long-span suspension bridges and spatial structures, its computational efficiency and accuracy are 

limited. The glowworm swarm optimization (GSO) algorithm, which is a recently developed 

meta-heuristic optimization method by Krishnanand and Ghose (Krishnanand and Ghose 2005), 

attracts great interest when it was presented and has many applications, i.e., numerical 

optimization calculation, the knapsack problem, wireless sensor networks deployment, 

multi-model function optimization, noise testing, simulation of the sensor machine crowd, and 

clustering analysis (Bharat 2008, Krishnanand and Ghose 2009, Yang et al. 2010, Gong et al. 2011, 

Liao et al. 2011, Zhou et al. 2013, Zainal et al. 2013). The GSO algorithm, which originated from 

simulating the natural functions of a glowworm swarm for foraging and seeking spouses, shares 

certain common features with the ACO algorithm and with the PSO algorithm but with several 

significant differences. Compared with the PSO algorithm, the ACO algorithm, and other 

traditional swarm intelligence optimization algorithms, the GSO algorithm offers many attractive 

properties, i.e., rapid computing speed, high efficiency, multi-point parallel global random 

searching without complex operations evolution, less adjustable parameters, and ease of realization 

(Huang et al. 2011, Nie et al. 2014). Up to now, this excellent algorithm has been only applied in 

single-objective optimization problems with continuous variables. This paper presents several 

improvements such that the concept of the GSO algorithm can be used for the 

information-entropy-based OSP problem. 

This paper outlines a methodology for the OSP in SHM under uncertainty. The 

information-entropy-based OSP problem is first formulated with the purpose of finding the Pareto 

optimal sensor configurations that can minimize the uncertainties in estimated structural 

parameters. The information entropy that measures the uncertainty in the structural parameters is 
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introduced as the performance measure for the sensor configurations. The closed-form formulation 

of the objective functions that evaluates the uncertainties of the mode shapes before and after 

damage in the structure is specified. Next, a nondirective movement glowworm swarm 

optimization (NMGSO) algorithm deduced from the GSO algorithm is proposed for finding the 

Pareto optimal sensor configurations. The basic GSO algorithm (required in the description of the 

NMGSO algorithm) is reviewed. Selected improvements in the coding system, the Hamming 

distance, the luciferin definition, and the nondirective movement are detailed. A numerical 

simulation is performed to illustrate the effectiveness of the NMGSO algorithm, and the results are 

compared with those obtained from the PA-SSP algorithm. 

 

 

2. Formulation of the optimal sensor placement problem 
 

2.1 Damage detection method 
 

The most important function of an SHM system implemented on a structure is condition 

assessment. Thus, the sensor configuration should use damage detection as a starting point. As 

usual, a continuous structure can be modeled using many discrete elements, and the damage in the 

structural elements can be assumed as a reduction of their entire stiffness matrix, whereas the other 

properties, i.e., mass, connectivity between elements, and damping ratio, remain unchanged. The 

reduction of the element stiffness matrix ∆Kk can be expressed as (Shi et al. 2000, Ye and Ni 

2012) 

kkk KK   (-1≤θk≤0)                          (1) 

where Kk and θk represent the stiffness matrix and the damage coefficient of the kth element, 

respectively. The damage coefficient θk is a value ranging from -1 and 0, and θk<0 indicates that 

the element is damaged, whereas θk=0 implies that the element is intact.  

Because it is difficult to model the entire damage in a structure in sufficient detail for a general 

type of damage, the reduction of the global structure’s stiffness matrix due to damage is assumed 

as the summation of the variations in each elemental stiffness matrix, i.e., 
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where L denotes the total number of elements in the model. This model is suitable for most types 

of damage in actual structures and works even for damage in which change is not proportional to 

the elemental stiffness because this assumption gives only a small error for a large structure and 

does not change the essence of the requirements for damage localization. Next, the change of the 

ith mode shape due to the damage can be represented as the summation of the contribution of each 

local damage in the structure (Shi et al. 2000) 
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where i  denotes the measured mode shape change matrix, N is the number of DOFs of the 

model, ωi and i  represent the ith mode frequency and mode shape of the undamaged structure, 

respectively, Fi(K) is defined as the sensitivity matrix for the ith mode shape, and θ denotes the 

damage coefficient vector.  

 

2.2 Information-entropy-based optimal sensor placement 
 

Theoretically, the optimal estimate of the damage coefficient vector θ̂  can be obtained from 

Eq. (3) once the mode shapes before and after damage to the structure are identified via the 

measured data. Additionally, the damage of the structure can be detected. However, it is well 

known that the measured mode shapes are contaminated by various sources (i.e., incomplete 

measured data due to limited sensor number, measurement noise, modeling error, and insufficient 

bandwidth of excitation and response), which induce uncertainties in the estimated structural 

parameters and subsequently result in false identification of the structural condition. Many 

research studies have shown the significance of uncertainties in SHM (Azarbayejani et al. 2008). 

In particular, these uncertainties are connected with the data obtained from a sensor set that is 

located in the structure. Because the information entropy provides a unique scalar measure of the 

uncertainty in the estimate of the structural parameters, the optimal sensor configuration should be 

the one that minimizes the information entropy. Therefore, the problem of finding the optimal 

sensor placement is formulated as a discrete optimization problem with the objective function of 

minimal information entropy.  

Based on the Bayesian statistical system identification methodology developed by Beck and 

Katafygiotis (Beck and Katafygiotis 1998), the measured change of the ith mode shape of the 

structure is  

);()();()();( 00 θnδLθδLθ mmm ii                    (4) 

where m=1, …, N is the sample series of the measured time history, 0);(
N

i m Rθ  is the ith 

measured mode shape change for the damage coefficient vector θ, dN

i m Rθ  );(  represents 

the ith predicted mode shape change in Eq. (3), N0 and Nd are the number of measured DOFs and 

the number of measurable DOFs, respectively, dNN 
 0)(0 RL   denotes the observation matrix 

composed of zeros and ones and maps the measured DOFs to the measurable DOFs, dN
Rδ  is 

the sensor configuration vector specifying the N0 measured DOFs with δj=1 at the observed DOF 

and δj=0 at the unobserved DOF, and dN
Rn denotes the prediction error concerning the 

damage coefficient vector θ. The observation matrix satisfies the relationship )(00 diagT LL .  

The uncertainties of the estimated damage coefficient vector θ are measured by the information 

entropy H(D), which is defined as (Jaynes 1978)  
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 θθθθ dDpDpDpDH )|(ln)|()]|(ln[E)(             (5) 

where D is the measured data, Eθ denotes the mathematical expectation with respect to θ, and 

p(θ|D) represents the probability density function specifying the plausibility of each possible value 

of the damage coefficient vector θ, which provides a spread of the uncertainty in the damage 

coefficient vector based on the information contained in the measured data.  

According to the asymptotic approximation, which is valid for large number of data (N→∞) as 

proved by Papadimitriou (Papadimitriou 2004), the information entropy only depends on the 

sensor configuration vector δ, the optimal damage coefficient vector θ̂ , and the optimal 

prediction error ̂ , and it is independent of the time-history details of the measured data D. 

However, in practice, since the data are not available in the initial stage of designing the 

monitoring system, an estimate of the optimal model parameters θ̂  and ̂  cannot be obtained. 

Thus, to proceed with the design of the optimal sensor configuration, it is assumed that the optimal 

model parameters θ̂  and ̂  are replaced by certain nominal values θ0 and ζ0 chosen by the 

designer as representative of the structure. In this way, the information entropy in Eq. (5) takes the 

form 

)),(ln(det
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000 θδQθδ θ   NHDH         (6) 

where Nθ represents the number of damage coefficients for the measured data. The matrix Q(δ, θ0) 

is a positive semi-definite matrix, known as the Fisher information matrix, and is given by 
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The matrix Q(δ, θ0) contains the information on the values of the parameters θ based on the 

data from all measured positions specified in δ. The matrix P
(j)

( θ0) is a positive semi-definite 

matrix of the form (Ye and Ni 2012)  
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where ij  is the jth element of the ith mode shape change of the structure, and 

T

N ][ 1 θθ     is the usual gradient vector with respect to the parameter vector θ. 

The matrix P
(j)

(θ0) represents the contribution of each DOF measurement to the change of modal 

behavior due to the damage. Substituting ij  given in Eq. (3) into Eq. (8), the P
(j)

( θ0) can be 

derived as follows 
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where )()(
KF

j

i  denotes the jth row in the matrix )(KFi .  

It can be found from Eq. (9) that the damage coefficient vector θ is eliminated through the 

gradient vector  , and the matrix P
(j)

( θ0) is independent of the nominal values θ0. Therefore, 

the Fisher information matrix can be estimated from the structural stiffness matrix and mode 
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shapes without damage involving the different sensor configurations. Subsequently, the 

information entropy is only associated with the sensor configuration δ and the designed prediction 

error ζ0, and thus, it can directly measure the uncertainties in the structural parameters for different 

sensor configurations. In other words, the information entropy provides a rational criterion with 

which to evaluate the uncertainties of different sensor configurations in the structural condition 

assessment. For simplicity, the information entropy index IEIi(δ) for the ith measured mode shape 

is introduced as a measure of the effectiveness of a sensor configuration δ, which is defined as 

follows (Papadimitriou 2005) 

)()(

)()(
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refref,0

ref

δδ

δδ
δ
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ii
i

HH

HH
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


                       (10) 

where Hi(δref) and Hi(δ0, ref) are the information entropies computed for two referenced sensor 

configurations δref and δ0, ref, respectively. The Hi(δref) is calculated from the best sensor 

configuration that results in the minimum information entropy, whereas the Hi(δ0, ref) is computed 

from the worst sensor configuration that yields the maximum information entropy. In this case, the 

values of IEIi(δ) range from zero to one. The most effective configuration corresponds to a value 

of IEIi(δ) equal to zero, and the least effective configuration corresponds to a value of IEIi(δ) equal 

to one.  

Due to the complexity of civil structures, only one mode shape is insufficient for structural 

condition evaluation. If we let Ji= IEIi(δ), the information entropy index including u objectives  

will produce 

))(,),(),(()( 21 δδδδJ uJJJ                        (11) 

The optimal sensor configuration is the one that has the minimal J(δ). As a result, the OSP 

problem becomes a multi-objective optimization problem. Instead of a single objective, there is a 

set of conflicting objective for which no unique optimal solution satisfies all objectives. 

Alternatively, a set of solutions exists that is optimal in the sense that no other solutions in the 

search space are superior if all objectives are considered. The alternative solutions that trade off 

the information entropy values for different mode shapes are known as the Pareto optimal 

solutions in multi-objective optimization problems and are also referred to as the Pareto optimal 

sensor configurations in OSP problems.  

It is necessary to introduce certain useful terminologies that appear in the multi-objective 

optimization problem (Fonseca and Fleming1995, Konak et al. 2006). Specifically, a feasible 

solution a∈δ is said to dominate a feasible solution b∈δ (also written as ba ) if and only if  

)()( ba ii JJ     },1{ ui   and )()(:},,1{ ba jj JJuj           (12) 

A solution is said to be a Pareto optimal solution if it is not dominated by any other solution in 

the solution space. A Pareto optimal solution cannot be improved with respect to any objective 

without worsening at least one other objective. The set of all feasible non-dominated solutions in δ 

is referred to as the Pareto optimal set, and for a given Pareto optimal set, the corresponding 

objective function values in the objective space are known as the Pareto front.  

To find the Pareto optimal sensor configurations, a method known as the PA-SSP algorithm 

was developed by Papadimitriou (Papadimitriou 2005). The PA-SSP algorithm places the N0 

sensors one by one. The feasible solutions for one sensor are first determined by placing one 
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sensor on each measurable DOF. Those dominated configurations are deleted by Eq. (12), and the 

Pareto optimal sensor configurations are extracted. The Pareto optimal sensor configurations for 

(v+1) sensors are thus obtained iteratively from the Pareto optimal sensor configurations for v 

sensors as follows. Let vn

vP be the set of all Pareto solutions for v sensors, where nv is the solution 

number. For each solution, a new set of all possible sensor configurations involving (v+1) sensors 

is constructed by adding one more sensor at each unobserved measurable DOF. Next, the Pareto 

solutions for (v+1) sensors are obtained by deleting those solutions b that satisfy Eq. (12). This 

iteration process is continued for up to N0 sensors. It can be observed that the PA-SSP algorithm 

will accurately predict the Pareto optimal sensor configurations only in the case for which the 

sensor locations of any Pareto optimal sensor configuration involving v sensors is a subset of the 

locations of at least one of the Pareto optimal sensor configurations involving (v+1) sensors. 

However, the last argument does not apply in general, and the sensor configurations computed by 

the PA-SSP algorithm cannot be guaranteed to be the exact Pareto optimal solutions. At the vth 

iteration, the number of generated feasible sensor configurations is (Nd−v)nv. Let Nd, v, and nv be 

equal to 500, 10, and 40, respectively, values that are entirely possible in large structures. The 

(Nd−v)nv is thus equal to 19, 600. Extracting the Pareto optimal solutions from so many feasible 

configurations is undoubtedly a challenging task, and furthermore, the work is repeated N0 times. 

The greater the number of mode shapes involved in the algorithm, the more complex the 

computation will be. Therefore, the PA-SSP algorithm has low efficiency for large-scale structures. 

To improve the computational efficiency, many of the Pareto solutions must be pruned by means 

of clustering, and as a result, many meaningful sensor configurations are lost. Therefore, it is 

necessary to propose a methodology for this OSP problem that offers higher accuracy and higher 

efficiency. 

 

 

3. Nondirective movement glowworm swarm optimization algorithm 
 

3.1 Basic glowworm swarm optimization algorithm 
 

The inspiration for the basic GSO algorithm originates from the phenomenon by which one 

glowworm is attracted by another that has a higher quantity of a luminescent known as luciferin 

and consequently moves toward it. In nature, glowworms communicate with each other by 

releasing luciferin. Glowworms attract others around them by giving off fluorescent light. The 

higher the concentration of luciferin, the greater the intensity of fluorescence, and the glowworm is 

thus able to attract additional glowworms. The GSO algorithm simulates this phenomenon (Zhou 

et al. 2013).  

In the GSO algorithm, the glowworms are initially randomly distributed in the search space, 

which contains an equal and constant luciferin value, l0. The glowworm emits light with an 

intensity is proportional to the amount of associated luciferin and interacts with other glowworms 

within a variable neighborhood. In particular, the neighborhood is defined as a local-decision 

domain that has a variable neighborhood range 
s

dr  bounded by an ultimate range ru ( u

s

d rr 0 ). 

A glowworm s assigns another glowworm k as its neighbor only if k is within the neighborhood 

range of s and the luciferin level of k is higher than that of s. Each glowworm is attracted by the 

brighter glow of other glowworms in the neighborhood and subsequently selects a neighbor using 

a probabilistic mechanism to move toward it. Generally, the basic GSO algorithm includes three 
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stages: luciferin update phase, movement phase, and neighborhood range update phase 

(Krishnanand and Ghose 2009). 

 

3.1.1 Luciferin updating 
During the luciferin update phase, each glowworm changes its luciferin value according to the 

objective function value of its current location. The luciferin update rule is given by  

 )1()()1()1(  tCJtltl sss                      (13) 

where ls(t) represents the luciferin level associated with glowworm s at time t, ρ (0<ρ<1) is the 

luciferin decay constant, γ denotes the luciferin enhancement constant, and J(Cs(t)) indicates the 

objective function value of the glowworm s at time t. 

 

3.1.2 Movement 
Using a probabilistic mechanism, each glowworm decides to move toward a neighbor that has a 

luciferin value higher than its own, i.e., glowworms are attracted by neighbors with brighter glow. 

For each glowworm s, the probability of moving toward a neighbor k is  
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where e∈Ns(t), Ns(t)={e: )()( trtd s

dse  , ls(t)<le(t)} is the set of neighbors of glowworm s at time 

t, dse(t) represents the Euclidean distance between glowworms s and e at time t, and )(tr s

d  

denotes the variable neighborhood range associated with glowworm s at time t. After the 

glowworm s selects a glowworm k∈Ni (t) as a target, the glowworm movements can be stated as 
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where Cs(t)∈R
m
 is the location of glowworm s at time t in the m-dimensional real space R

m
,     

represents the Euclidean norm operator, and st (>0) is the step size. 

 

3.1.3 Neighborhood range updating 
As the position of the glowworm changes, its neighborhood range is correspondingly updated 

to restrict the neighbor number of glowworm s and improve the computational efficiency. If the 

neighborhood range covers a low density of glowworms, the neighborhood range is extended. In 

the opposite situation, the neighborhood range is reduced. The formula for the neighborhood range 

update is expressed as follows 

)}}()(,0max{,min{)1( )(tNg

s

du

s

d s
nntrrtr              (16) 

where β represents a constant parameter, ng is a parameter used to control the neighbor number, 

and )(tN s
n is the neighbor number of glowworm s at time t. 
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Code→ 0 0 1 1 0 0 1 0 

DOF→ 1 2 3 4 5 6 7 8 
 

Fig. 1 Permutation of a code 

 
 
3.2 Nondirective movement glowworm swarm optimization algorithm 
 

The basic GSO algorithm was originally designed to solve global numerical optimization 

problems with continuous variables and uses the real vectors to represent the locations of 

glowworms. However, for the problem at hand, the optimization variables are constrained by 

whether the DOFs are occupied by sensors, which cannot be expressed using spatial coordinates. 

Thus, the real coding system is unsuitable for the OSP problem. Accordingly, the Euclidean 

distance and the movement strategy defined in the basic GSO algorithm are no longer unavailable. 

In this section, selected improvements involving the coding system, distance between glowworms, 

luciferin definition, and movement scheme are developed such that the heuristic conception of the 

GSO algorithm can be applied in the OSP problems. 

 

3.2.1 Coding system 
From the viewpoint of mathematics, the model of the OSP is a 0-1 programming problem. Thus, 

the design variables in the OSP can be coded using a simple one-dimensional binary coding 

system. This coding system is quite simple and intuitive and is extensively used in the GAs. In this 

coding system, each glowworm represents a solution (i.e., a feasible sensor configuration) and is 

analogous to the chromosome that represents an individual in the GA. The location of glowworm s 

is modeled as a permutation Cs={cs,1, c s,2, …, cs,η, …, 
dNsc , }, where Nd is the number of 

measurable DOFs. In the permutation, the values of the elements represent the condition of the 

sensor placement, the sequence represents the serial number of DOFs, cs,η=1 means that a sensor is 

located on the ηth DOF, and cs,η=0 indicates that no sensor is placed on the ηth DOF. For example, 

one code is shown in Fig. 1. This code indicates that there are eight measurable DOFs, among 

which the 3
rd

, 4
th
, and 7

th
 are occupied by sensors. When initializing a glowworm, its binary 

permutation is firstly produced randomly and further reorganized by the shuffle method.  

 

3.2.2 Distance between glowworms 
The Euclidean distance is no longer meaningful if it is applied in the one-dimensional binary 

coding system. The Hamming distance, which is used in telecommunications to count the number 

of flipped bits in a fixed-length binary word as an estimation of error, is a good tool for describing 

the distance between glowworms that are coded by the one-dimensional binary coding system. The 

Hamming distance is named for Richard Hamming, who introduced it in his fundamental paper on 

Hamming codes, “Error detecting and error correcting codes”, in 1950 (Hamming 1950); this 

measure is also known as the signal distance. The Hamming distance between two permutations of 

equal length is the number of positions at which the corresponding symbols are different. For 

glowworms s and k with binary strings, the Hamming distance can be expressed as 

   kskskssk CCCCCCd                   (17) 
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where Cs and Ck denote the codes of glowworm s and glowworm k, respectively,   is XOR,   

is the logical disjunction,   represents a logical conjunction, and   denotes logical negation.  

The underlying concept of the Hamming distance is that it represents the incongruous sensors 

and is equal to the number of ones in glowworm s XOR glowworm k and zeros in glowworm s 

XOR glowworm k. Thus, the Hamming distance between glowworms s and k can be rewritten as 





dN

kskssk ccCCd
1

,,



                        (18) 

It should be noted that the distance dsk defined by Eq. (18) is always a nonnegative even 

number, which is beneficial for establishing the movement scheme for the reason that the total 

number of ones (which is equal to the predetermined sensor number) in any binary string of 

glowworms is the same. The number of ones in glowworm s that have sensor locations that differ 

from glowworm k is equal to the number of sensors in glowworm s that are located in different 

DOFs from glowworm k. The maximum value of dsk is 2N0, which means that the sensors of 

glowworm s and the solution of glowworm k occupy different DOFs in a structure. If the minimum 

value of dsk is zero, this that means that the solution of glowworm s is the same as that of 

glowworm k. As a result, the interval of distance dsk is [0, 2N0]. Taking the two solutions for 

glowworms s and k shown in Fig. 2 as an example, the number of ones in glowworm s that are 

different from glowworm k is two, which is equal to the number of zeros in glowworm s that are 

different from glowworm k. The number of incongruous sensors is four, and therefore, the distance 

between glowworm s and glowworm k is four.  

 

3.2.3 Luciferin definition 
The neighbors of glowworm s in the basic GSO algorithm are defined as those glowworms that 

have higher luciferin levels within the neighborhood range. The luciferin level calculated by Eq. 

(13) is associated with the objective function. In multi-objective optimization problems, the 

objective function includes several values that conflict with each other. As a result, the luciferin 

level becomes a vector, which cannot be directly compared. In this work, the non-dominated 

sorting strategy (Deb et al. 2002) is adopted.  

Once the glowworms are located, the glowworms are sorted based on non-domination into each 

front, i.e., the Pareto front. The first front is a completely non-dominant set in the current 

population, also referred to as the Pareto front, and the second front is only dominated by the 

glowworms in the first front. With repetition, all fronts are formed. Each glowworm is assigned a 

rank value (RV) based on the front to which it belongs. For examples, the glowworms in the first 

front are given a RV of 1, the glowworms in second front are assigned an RV of 2, etc.  

 

 

 

 

Glowworm s→ 1 0 1 0 1 1 0 1 

Glowworm k→ 1 1 1 1 1 0 0 0 
 

Fig. 2 Two solutions for glowworm s and glowworm k 
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To compare the glowworms that belong to the same front, a new parameter known as the 

crowding distance (CD) is employed. The CD is a measure of how close a glowworm is to its 

neighbors. A large average crowding distance will result in better diversity in the population. Each 

glowworm in the population is assigned a CD value. The CD is only effective within the same 

front. Comparison of the CD between two glowworms in different fronts is meaningless. The CD 

computation requires sorting the glowworms within the same front according to each objective 

function value in ascending order of magnitude. Thereafter, for each objective function, the 

boundary glowworms (glowworms with the smallest and largest function values) are assigned an 

infinite distance value. All other intermediate glowworms are assigned a distance value equal to 

the absolute normalized difference in the function values of two adjacent glowworms. This 

calculation is continued with the other objective functions. The overall CD value is calculated as 

the sum of the individual distance values corresponding to each objective. Each objective function 

is normalized within the same front before calculating the CD (Deb et al. 2002). The normalized 

objective function is calculated as 

minmax

)(
)(

ii

i
i

JJ

sJ
sJ


                         (19) 

where )(sJi
 is the ith normalized objective function of glowworm s, and 

max

iJ  and 
min

iJ  

represent the maximum value and the minimum value of the ith objective function, respectively. 

Next, the luciferin level can be defined as a function of the RV and CD, which is  

)(

)(
)()(

max tCD

tCD
tRVtl

sRV

s
ss                         (20) 

where RVs(t) represents the RV of glowworm s at time t, CDs(t) denotes the CD of glowworm s at 

time t, and )(max tCD
sRV

 is the maximum CD in the RVth front. If there are infinite distance values 

in the front, the infinite distance values are reset to )()1( max tCDRV , where )(max tCDRV  is the 

maximum CD in the RVth front except for the infinite distance values, and ε is a small 

nonnegative number (i.e., 0.03). In this manner, the infinite distance values can be differentiated 

from the )(max tCD
sRV

 and the Eq. (20) can be applied harmoniously. Under this definition, the 

luciferin levels of the glowworms that belong to the first front lie in the interval [-1, 0], the 

luciferin levels of the glowworms that belong to the second
 
front lie in the interval [-2, -1], etc, and 

thus, the glowworms that belong to different RVs can be distinguished, and the glowworms that 

belong to the same RV are comparable. At the beginning of each iteration, the luciferin levels of 

the glowworms are re-calculated using Eq. (20) according to their current RVs and CDs.  

After the movements of all glowworms are finished, all glowworms at time t-1 and time t are 

combined into a larger population. Non-dominated sorting is implemented again, and the 

glowworms in the larger population are sequenced according to their luciferin levels. The front 

half of the larger population is selected as the population at time t+1. As a result, the elitist 

glowworms are preserved.  

 

3.2.4 Nondirective movement 
Since the locations of the glowworms in the basic GSO algorithm are continuous variables, the 
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movement defined by Eq. (15) can be easily implemented. However, in the OSP problems, the 

locations of the glowworms are coded with the one-dimensional binary coding system, and a 

solution represents a feasible sensor configuration. Therefore, the movement of a glowworm is 

only realized by changing the value of the elements in the binary permutation, which implies 

relocating the sensors. In this manner, the number of elements that changed from zero to one or 

from one to zero can be viewed as the movement distance. Obviously, the movement distance is a 

nonnegative integer. Another important issue is that the total number of sensors that must be 

placed is predetermined and cannot be changed in the process of movement. For a specific binary 

permutation, the number of elements changed from zero to one must be equal to the number of 

elements changed from one to zero. This work proposes a nondirective movement scheme that 

relocates certain incongruous sensors. 

Assume that glowworm k selected by Eq. (14) is the target of glowworm s, and the distance 

between glowworm s and glowworm k is dsk. Therefore, the step size stsk is  

sksksk ddrandomst )2,1(                        (21) 

where random(·) means random selection of an integer in the interval [1, dsk /2]. Next, the 

following is obtained by substituting Eq. (21) into Eq. (15)  

 )()()()1( tCtCtCtC skskss                     (22) 

where ηsk=random(1, dsk/2) denotes the movement distance. Generally, the contribution of a sensor 

located on a DOF to the objective function cannot be pre-determined, and therefore, it is difficult 

to choose the relocated sensors such that the objective function is ameliorated. In the current paper, 

an alternate method is employed as follows: 

(1) Calculate the difference between the permutations of glowworm s and glowworm k 

skks CCC                               (23) 

(2) Randomly select ηsk elements whose value is 1 from ΔCks and change those elements to -1; 

again, randomly select ηsk elements whose value is -1 from ΔCks and change those elements to 1. 

The operated ΔCks is represented by [ΔCks]. 

(3) Substitute [ΔCks] into Eq. (22), and the relocated glowworm s becomes 

][)()1( ksss CtCtC                           (24) 

Because the relocated sensors are selected randomly, the movement is nondirective. 

Superficially, this movement scheme may deviate from the concept of the basic GSO algorithm, 

but it should be pointed out that those movements are able to retain the glowworm diversity that is 

of extraordinary importance for multi-objective optimization problems.  

A flow chart explaining the NMGSO algorithm used to find the Pareto optimal sensor 

configurations is shown in Fig. 3. 

 

 

4. Numerical simulation 
 

4.1 Bridge description 
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NONDIRECTIVE MOVEMENT GLOWWORM SWARM OPTIMIZATION ALGORITHM 

 

Load structural parameters 

Compute information entropy J by Eq. (11) 

Set parameters ru, r0, β, and ng 

Set number of glowworms = Ng 

Initialize glowworms 

Let Cs (t) be the location of glowworm s at time t 

for s = 1 to Ng do: % Non-dominated sorting 

{ 

0)0( rr s

d   

Assign RV 

Calculate CD 

} 

Compute luciferin level 

Set maximum iteration number = iter_max; 

Set t = 1; 

while (t ≤ iter_max) do:  

{ 

for each glowworm i do: % Movement 

{ 

Ns(t) = {k : )()( trtd s

dsk  ; and ls(t)<lk(t)}; 

For each glowworm k∈Ns(t) 

  





)(
)()(

)()(
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tNe se

sk
sk

s

tltl

tltl
tp  

k = selected glowworm ( p


) 

 )()()()1( tCtCtCtC skskss    

)}}()(,0max{,min{)1( )(tNg

s

ds

s

d s
nntrrtr    

} 

Computer information entropy J of all moved glowworms 

Combine all glowworms at time t-1 and all glowworms at time t 

for s = 1 to 2Ng do: % Non-dominated sorting 

{ 

Assign RV 

Calculate CD 

} 

Compute luciferin level 

Select the top Ng glowworms as the next generation 

t ←t + 1; 

} 
 

Fig. 3 Flowchart of the process of establishing the Pareto optimal sensor configurations 

 

 

 

To demonstrate the effectiveness of the proposed NMGSO algorithm, a long-span suspension 

bridge that crosses the Yangtze River in China is used as a numerical example. The main span of 

the bridge is 1,490 m and the two side spans are each 470 m in length. A full-joint streamlined flat 
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steel box girder is employed as the main girder. The steel box girder is 36.3 m wide and 3.0 m high, 

and its upper deck and bottom deck are 14 mm and 10 mm thick, respectively. The main cable is 

composed of 184 prefabricated parallel subsection cables, and each subsection cable contains 127 

high-strength steel wires. 

A total of 182 suspenders are used to transfer the loads from the box girder to the main cables. 

Each of the two gate-shaped towers consists of two rectangular single-box single-chamber 

reinforced concrete columns and three pre-stressed concrete crossbeams. The heights of the two 

towers are approximately 210 m (Zhou and Yi 2013c). A three-dimensional finite element model is 

established to provide input data for the OSP. The main girder and main towers are simulated by 

spatial beam elements, and the main cables and suspenders are simulated by 3D linear elastic truss 

elements with three DOFs at each node. The main girder is modeled with 92 elements and 93 

nodes. The length of each element of the main girder is approximately 16.1 m. The model is 

updated based on field measurement data. The mode shapes that are necessary for calculation of 

the information entropy are obtained using modal analysis. These results are not shown for brevity 

and can be found in (Zhou and Yi 2013c). The first vertical modal frequency is only 0.08979 Hz, 

which reveals the notably low stiffness of this long-span suspension bridge. Therefore, conducting 

SHM and condition assessment is significant. 

 

4.2 Results and discussion 
 

Although many simplifications are applied, the finite element model of the bridge has a large 

number of DOFs. Only the vertical DOFs of the main girder are considered for possible sensor 

placement in this case study because the vertical vibration of the main girder is the representative 

dynamic response of the entire bridge. Consequently, a total of 93 DOFs are available for sensor 

placement (i.e., Nd=93). The values of parameters ru, r0, β, ng, and Ng are problem specific. After 

extensive numerical experiments, it is suggested that the parameter ru and r0 can be selected as 

three-quarters and one-half of the N0, respectively. According to the characteristics of the 

information-entropy-based OSP problem involving multi-objective functions, the parameters β and 

ng are defined as approximately 0.03 and 100, respectively. The number of glowworms Ng is set to 

200 in this simulation, which was found to be sufficient for achieving the best performance. 

Because maintaining the diversity of the population is important to multi-objective optimization 

problems, increasing the number of glowworms is beneficial to finding the Pareto front with less 

iterations.  

The optimal sensor configurations are also computed using the PA-SSP algorithm to facilitate 

comparisons in terms of computational accuracy and efficiency. To display the outcomes 

intuitively, only the first two objective functions are taken into account. The partial Pareto points 

for 1, 3, 5, 10, 20, and 30 sensors are shown in Figs. 4(a)-4(f), respectively. These figures display 

the Pareto points obtained from both the NMGSO algorithm and the PA-SSP algorithm. It should 

be mentioned that in each case, the NMGSO algorithm is tested ten times, and the best results are 

selected. If the number of sensors is notably small, the exact Pareto front can be also calculated 

with an exhaustive search (ES). In Figs. 4(a) and 4(b), the exact Pareto front is also shown. It can 

be observed from Figs. 4(a) and 4(b) that the Pareto front provides a wide variety of Pareto 

optimal sensor configurations. Because it is different from the traditional OSP problem in which 

there is only one optimal sensor configuration, a set of Pareto solutions exist in the 

information-entropy-based OSP problem. In this work, only a subset of Pareto points is plotted in 

the figure such that the data points can be displayed clearly. When the number of sensors that must 
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be placed is small, e.g., one sensor and three sensors, both the NMGSO algorithm and the PA-SSP 

algorithm can find the exact Pareto solutions, as shown in Figs. 4(a) and 4(b). And when the 

number of sensors that must be placed is large, the information entropy indices of the optimal 

sensor configurations calculated by the PA-SSP algorithm are higher than that extracted by the 

NMGSO algorithm, as shown in Fig. 4(c)-(f). Therefore, the optimal sensor configurations 

extracted by the NMGSO algorithm are closer to the exact Pareto front because the PA-SSP 

algorithm eliminates many meaningful solutions such that feasible solutions in the search space 

are limited and the iterations can continue. The larger the number of sensors, the greater the 

number of meaningful solutions eliminated, and thus, the degree of deviation increases with the 

increasing sensor number. The NMGSO algorithm, which searches the optimal sensor 

configurations randomly and blindly, is immune to the sensor number and structural properties. 

Even with a large number of sensors, this algorithm can converge to the Pareto front with high 

accuracy. Thus, the proposed NMGSO algorithm provides an effective method for finding the 

optimal sensor configurations for the information-entropy-based OSP problem. The optimal sensor 

locations of the Pareto points marked in Fig. 4 for 5, 10, and 20 sensors are listed in Table 1.  

In the PA-SSP algorithm, the sensors are placed one by one. The feasible solutions increase 

dramatically with the increase in the number of sensors, which accordingly increase the time 

required to search the Pareto solutions. Pruning the Pareto set can improve the computational 

speed. However, certain useful Pareto solutions are lost, and the precision is reduced. Even so, the 

calculation is time-consuming, especially for large-scale structures with a large number of 

measured and measurable DOFs. It is well known that a dense distribution of sensors for structural 

condition assessment is an inevitable trend in the field of SHM (Spencer et al. 2004).  

The iteration numbers of the NMGSO algorithm for 1, 3, 5, 10, 20, and 30 sensors are 

approximately 1, 10, 30, 100, 500, and 1000, respectively. Although the iteration number grows 

with the increasing number of sensors, multi-point, parallel, global, and random search 

mechanisms enable 1000 iterations to finish in tens of seconds, which demonstrates a high 

computational efficiency. 

 

 

 
Table 1 Optimal sensor locations for 5, 10, and 20 sensors and for the Pareto points marked in Fig. 4 

Sensor 

number 

Method Optimal sensor locations 

5 sensors 

NMGSO 24 37 47 43 70                

PA-SSP 24 37 47 43 70                

10 sensors 

NMGSO 25 26 33 46 48 49 62 66 68 69           

PA-SSP 25 26 29 35 43 46 50 51 69 70           

20 sensors 

NMGSO 10 16 25 26 33 35 37 43 45 48 49 50 52 54 56 61 62 63 70 80 

PA-SSP 24 25 26 27 29 30 33 45 46 47 50 55 62 65 66 68 69 70 73 80 

*The numbers in the table denote the serial number of the DOFs counted from the left tower 
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Fig. 4 Pareto front for optimal sensor configurations 

 

 

 

5. Conclusions 
 

Identifying the parameters of large-scale structures with fewer uncertainties is significant for 

structural condition assessment in SHM. The information entropy, which is a unique scalar 

measure of the uncertainties in the estimate of the structural parameters, provides a rational 

objective for the OSP problem. When information entropy is introduced, the OSP problem 

becomes a multi-objective optimization problem with discrete variables. In this paper, an NMGSO 

algorithm based on the basic GSO algorithm is proposed for extracting the Pareto sensor 

configurations. Selected improvements, i.e., the coding system, the distance, the luciferin 

definition, and nondirective movement, are developed such that the concept of the basic GSO 

algorithm can be applied to the information-entropy-based OSP problem. From the numerical 

simulation, certain conclusions and recommendations are summarized as follows. 

(1) The locations of the glowworms in the basic GSO algorithm are coded by real vectors, 

which cannot be directly implemented in the OSP problem with discrete variables. To overcome 

this hurdle, the one-dimensional binary coding system is adopted in the NMGSO algorithm. Each 

glowworm represents a feasible sensor configuration. The location of the glowworm is coded by a 

binary permutation. Accordingly, the Euclidean distance is replaced by the Hamming distance, 
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which exactly describes the difference between two feasible sensor configurations.  

(2) Non-dominated sorting is introduced to distinguish the glowworms. Two indices, i.e., the 

RV and the CD, are used to evaluate the superiority or inferiority of a glowworm. Subsequently, 

the luciferin level of a glowworm is defined as a function of the RV and the CD. Thus, the 

neighbors of a glowworm can be found conveniently, and comparison of conflicting objective 

functions is effectively avoided. The movement scheme of a glowworm is converted to relocate 

certain incongruous sensors for which the number of incongruous sensors is selected randomly. 

This nondirective movement is particularly effective in maintaining the diversity of glowworms in 

the population.  

(3) Finding the Pareto solutions of the information-entropy-based OSP problem is a challenging 

task if the number of measurable DOFs and the number of sensors that must be placed are large. 

The derivative-free and meta-heuristic searching mechanism makes the NMGSO algorithm 

immune to the sensor number and structural properties. The numerical simulation results indicate 

that the NMGSO algorithm can effectively converge to the solutions that infinitesimally approach 

the exact Pareto front. The NMGSO algorithm outperforms the PA-SSP algorithm both in 

computational accuracy and efficiency, as demonstrated in the numerical example.  

It should be noted that the GSO algorithm is a high-performance optimization method, and this 

paper represents only an elementary attempt to apply this concept to the OSP problem. Further 

developments will be carried out in future research. 
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