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Abstract. Two hyperbolic displacement models are used for the bending response of simply-supported
orthotropic laminated composite plates resting on two-parameter elastic foundations under mechanical
loading. The models contain hyperbolic expressions to account for the parabolic distributions of transverse
shear stresses and to satisfy the zero shear-stress conditions at the top and bottom surfaces of the plates. The
present theory takes into account not only the transverse shear strains, but also their parabolic variation
across the plate thickness and requires no shear correction coefficients in computing the shear stresses. The
governing equations are derived and their closed-form solutions are obtained. The accuracy of the models
presented is demonstrated by comparing the results obtained with solutions of other theories models given in
the literature. It is found that the theories proposed can predict the bending analysis of cross-ply laminated
composite plates resting on elastic foundations rather accurately. The effects of Winkler and Pasternak
foundation parameters, transverse shear deformations, plate aspect ratio, and side-to-thickness ratio on
deflections and stresses are investigated.
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1. Introduction

Laminated composite plates are increasingly used as structural components in engineering
applications, and many approximate analytical and numerical methods have been developed for
calculating their mechanical behavior. Composite laminated structures are widely used,
particularly in aerospace engineering due to their superior mechanical properties. By virtue of their
high strength to weight ratios and because of their mechanical properties in various directions,
they can be tailored as per requirements. Further, they combine a number of unique properties,
including corrosion resistance and high damping. These unique properties have resulted in the
expanded use of the advanced composite materials in structures subjected to mechanical loading.
Examples are provided by structures used in high-speed aircraft, spacecraft, etc. A laminated plate
consists of several laminae each with a fiber oriented at a specified angle. This is generally made
by stacking several thin layers of fibers at the desired locations and angles in a matrix and
consolidating them to give the required thickness. The fiber orientation in each thin layer can be
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arranged in a specific manner so as to achieve the required properties of the structural member
(Rao 1999).

There is a number of plate theories that are used to represent the kinematics of deformation.
The most widely used is the classical plate theory (CPT), in which straight lines or planes normal
to the neutral plate axis remain straight and normal after deformation. This theory thus neglects the
effect of transverse shear deformations, a condition that holds only in the case of slender plates. It
is well-known that for the case of foundation plates with small side-to-thickness ratio this
contribution cannot be neglected. In such cases, it becomes necessary to take into account shear
deformation effects. To confront this problem, various improved plate theories such as first-order
shear deformation plate theory (FPT) (see Akavci et al. 2007, Cheng and Batra 2000a and Lanhe
2004), in which the normality assumption is removed and the effect of transverse shear
deformation is considered, can be used. In fact, FPT needs a shear correction factor, which
depends not only on the material and geometric parameters, but also on the loading and boundary
conditions. Higher-order shear deformation plate theory (HPT) was developed for plates with
rectangular cross-sections that account for the strain distribution through the depth to satisfy the
boundary conditions on the upper and lower surfaces without the need for a correction coefficient
(see Cheng and Batra 2000a, b, Reddy 2000). Also, the sinusoidal shear deformation plate theory
(SPT) was developed by Zenkour (20044, b, 2006). In this theory, trigonometric terms are used for
the displacements in addition to the initial terms of a power series through the thickness. The form
of the assumed displacements of this theory is simplified by enforcing traction-free boundary
conditions at the plate faces. No transverse shear correction factors are needed because a correct
representation of the transverse shear strain is given. Carrera (2002) has presented an overview of
available theories and finite elements for multilayered, anisotropic, composite structures. In
Carrera and Ciuffreda (2005), a unified formulation has been used to compare about 40 theories
for multilayered, composites and sandwich plates subjected to transverse pressure with various
in-plane distributions.

A plate on an elastic foundation belongs to the problem of mutual action between two media.
Plates supported by elastic foundations are commonly encountered technical problems in many
engineering applications. The studies of plates resting on elastic foundations have attracted the
attentions of many researchers (Jaiswal and lyengar 1993, Chudinovich and Constanda 2000,
Dumir 2003, Tsiatas 2010, Akgoz and Civalek 2011 and Al Khateeb and Zenkour 2014). Early
research adopted single-parameter Winkler model to simulate the foundation. It considered that the
displacement on a foundation surface is limited only on the loaded domain, which conflicts with
the practical response situation. In some analyses of plates on elastic foundations, a single
parameter is used to describe the foundation behavior (Akavci et al. 2007). In this model it is
assumed that there is a proportional interaction between the external forces and the deflection of
the applied point in the foundation. Liew et al. (1996) studied the differential quadrature method
for Mindlin's plates on Winkler foundation. Eratll and Akoz (1997) used a new function to
examine Mindlin's plate on Winkler foundation.

The response of structural elements resting on the one- and two-parameter foundation is usually
analyzed by assuming that the foundation supports compressive as well as tensile stresses, which
simplifies the analysis considerably. Two-parameter elastic foundation model can reflect the
practical deformation of a foundation, so it is widely accepted by investigators. Many researchers
have modeled the foundations with two parameters. One of these models is the Pasternak model.
This two-parameter model takes into account the effect of shear interaction among the points in the
foundation (Chien and Chen 2006), and the well-known Winkler model is one of its special cases.
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Han and Liew (1997) investigated numerical differential quadrature method for Reissner-Mindlin's
plates on two-parameter elastic foundations. Omurtag and Kadioglu (1998) investigated the
vibration of Kirchhoff's plates on Winkler and Pasternak foundations. Singh et al. (2007)
investigated the post buckling response of laminated composite plate on elastic foundation with
random system properties. Zenkour (2009) discussed the refined sinusoidal theory for functionally
graded plates on elastic foundations. Based on a refined sinusoidal plate theory, Zenkour et al.
(2010) presented the bending response of functionally graded viscoelastic beams resting on elastic
foundations. Also, Zenkour et al. (2011) investigated the bending of a fiber-reinforced viscoelastic
composite plate resting on elastic foundations. Shen and Zhu (2012) investigated postbuckling of
sandwich plates with nanotube-reinforced composite face sheets resting on elastic foundations.
Recently, Zenkour et al. (2013) studied the bending of cross-ply laminated plates resting on elastic
foundations under thermo-mechanical loading. Also, Zenkour et al. (2014) investigated the effects
of hygrothermal conditions on cross-ply laminated plates resting on elastic foundations.

In this study, additional two hyperbolic displacement models for laminated composite plates
resting on elastic foundations are proposed. Analytical solutions for the bending response of
symmetric and anti-symmetric cross-ply laminated plates resting on elastic foundations are
obtained. Based on the principle of virtual displacements, the governing equations are deduced.
The interaction between the plate and the elastic foundations is considered and included in the
equilibrium equations. Pasternak model is used here to describe the two-parameter elastic
foundation, and getting a special case of Winkler foundation model. Numerical results for
deflections and stresses are presented. It is found that both the models are able to provide accurate
solutions.

2. Governing equations

Consider a rectangular laminated plate of length a, width b and uniform thickness h (see Fig.
1). The plate is composed of n orthotropic layers oriented at angles 84,65, ..., 8,,. The material of
each layer is assumed to possess one plane of elastic symmetry parallel to the x-y plane. Perfect
bending between the orthotropic layers and mechanical properties is assumed. Let the plate be
subjected to a transverse load q(x,y).

2.1 Winkler-Pasternak foundations

Pasternak model is the most natural extension of the Winkler one. It considers a shear
interaction between the spring elements by connecting the ends of the springs to a plate of an
incompressible shear layer. The reaction-deflection relation of the shear layer and spring elements
is given by

9% | 92
By = Kuw = Ko (555 + 553) w @
where Ef, w, Kw and Kp are the density of reaction of foundation, transverse displacement,
normal (Winkler) and shear (Pasternak) foundation stiffnesses, respectively, If the foundation is
modeled as the linear Winkler foundation, the coefficient Kp in Eq. (1) is zero.



1572 Ashraf M. Zenkour

Shear layer

ITTITITITITTITT] Winkler's springs

Fig. 1 Schematic diagram for the laminated plate resting on elastic foundations

2.2 Hyperbolic shear-deformation plate theory

The displacement field models are chosen such that to ensure zero transverse shear stresses on
top and bottom surfaces of the plate. The displacement field can be written in the unified form as

u(x'y;Z) = uo(x;}’) - Z%"’ ‘D(Z)u1(x,}’)
v(ny'Z) =v0(ny)_Zz_V;0+q)(Z)vl(xﬁy) (2)

W(X, Y, Z) = Wo(x’}’)

where u, v, and w are the displacements in the x, y, and z directions, ug, vy, and w, are
the mid-plane displacements; u, and v, are the rotations of normals to the mid-plane about the
x- and y-axis, respectively, ®(z) is a hyperbolic shape function. The shape function ®(z)
satisfies the conditions

do

_ h/2
dz =0,

z=+h/2 —h/2

d(2)dz=0 3)

By substituting the displacement relations given in Eq. (2) into the strain-displacement
equations of elasticity, the normal and shear strain components are obtained as

duo 2w oy
Exx J dx 1 ox? J dx l

9 92wy o
{Eyy} = 3y —zy 52 (F D(z) 3y @
L% + 6u0J 2 9%wy L% + 6u1J

ox E 0x0y ox E

do
{yxz: yyz} = E{ulruz}r €2=10

The stress-strain relationships, accounting for transverse shear deformation and thermal effects,
in the plate coordinates for the rth layer can be expressed as
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Oxx €11 €12 C16]" (Exx

gl — |c c c € Tyz) _ [Ca4  Cas]" (Vyz

yy=|612 €22 Ca6| 18, 1L (= e e (5)
T c c c y. Xz 45 55 Vxz

xy 15 26 66 xy

where c{j are the transformed elastic coefficients.

2.3 Equations of equilibrium
The governing equilibrium equations can be derived by using the principle of virtual

displacements. They given by the following forms as associated with the present unified
hyperbolic shear deformation theory

ONyyx | ONygy ONxy | ONyy _
ox + ay 0, ox + ay 0
azMxx azMxy azMyy —
Py +2 9%y 3y +q—E =0 (6)
0Sxx | 9Sxy _ 0Sxy | 9Syy _
ox + oy Qxz =0, ox + dy Qyz =0

where N;; and M;;(i,j = x,y) are the basic components of stress resultants and stress couples,
S;; are additional stress couples associated with the transverse shear effects, and Q;, are the

transverse shear stress resultants of a laminated composite plate that made up of n layers of
orthotropic lamina. They can be obtained by integrating Eq. (5) over the thickness of the plate.

4. Bending of cross-ply laminated plates

The determination of transverse deflections and stresses are of fundamental importance in the
design of many structural components. The present boundary-value problem associated with the
equilibrium of laminated plates involves solving the differential Eq. (6), subjected to a given set of
boundary conditions. An exact closed-form solution to Eq. (6) can be constructed when the plate is
of a rectangular geometry (Fig. 1) with the following edge conditions, loading, and plate
construction.

4.1 Boundary conditions

The following simply-supported boundary conditions along the edges of the plate are
considered

Vo=Wog =V, =Ny =My, =5, =0 at x=0,a 7
Ug =Wo=U; =Ny, =M,, =§,,=0 at y=0,b )

4.2 Distributed loading

We assume that the applied transverse load g can be expanded in the double-Fourier series as
q(x,y) = Xi21 X721 qij sin(Ax) sin(uy) (8)
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where A =in/a, u = jr/b;i and j are mode numbers. For the case of uniformly distributed
load, q;; = 16q,/(ijr?) for odd i and j and qi; = 0 otherwise. However, in the case of

sinusoidally distributed load, i =j =1 and gq;; = q, in which g, represents the intensity of the
load at the plate centre.

4.3 Plate construction

The plane stress-reduced material stiffness of the lamina are given by

Eq VizEr Va1 Ey _ E>
‘12 €22 = 1-v12V21 (9)

Cl1 =1 = = )
1-v12V21 1-vi2Va1  1-V13Vp

Cag = G23, Cs55 = G13, Cep = G12
where E;, G;; and v;; stand for Young's moduli, shear moduli and Poisson's ratios, respectively.
The plate construction may be cross-ply, i.e., 8, should be either 0° or 90°. This requires that
the index 1 in Eq. (9) in the first layer with 8; = 0" should be changed to 2 in the second layer
with 8, = 90° and vice versa.
Under the above specific conditions, the appropriate solution (ug, vy, wo, uq,v1) to EQ. (6) is
given by

(uo, Uy) (Uij, Xij) cos(Ax) sin(uy)
{ Wo } = X222 Wijsin(Ax) sin(uy) (10)
(vo, v1) (Vij, Yij) sin(Ax) cos(uy)

where U;j, V;j, Wi;, X;; and Y;; are arbitrary parameters.

5. Numerical results and discussions

The static behaviours of the simply-supported, orthotropic rectangular plates resting on elastic
foundations and subjected to mechanical loading are considered. The famous form of the shape
function ®(z) is introduced in many articles of the author and other investigators in the form

(z) = 2sin (%) (11)

which satisfies the conditions given in Eg. (3). The above sinusoidal form proves itself to present
accurate results when compared with the 3-D solution or any higher-order shear deformation
theory solutions. However, two additional forms of the shape function ®(z) will be examined
here. They are given for the higher-order shear deformation theories HSDT1 and HSDT2 in the
forms

m\ _h o4 (T2
HSDT1: d(z) = 7 cosh(3) ,;fsmh(h) (12)
cosh(;) -1
and
HSDT2: ®(z) = hsinh (%) — z cosh G) (13)

It is to be noted that the above two forms also satisfy the two conditions given in Eq. (3).
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All of the lamina are assumed to be of the same thickness and made of the same orthotropic
material. The lamina properties are given for two materials.

Material I (Brischetto 2012 and Reddy and Hsu 1980)

E1 = 25E2, GIZ = 613 = 0.5E2, 623 = 0.2E2, Vi = 0.25 (14)
Material 11 (Sahin 2005)
E]_ = 2.5E2, G12 = 613 = 0.5E2, 623 = 025E2, le =0.3 (15)

The results for cross-ply orthotropic rectangular plates resting on elastic foundations using both
HSDT1 and HSDT2 are reported in Tables 1-3. However, Figs. 2-8 have displayed by using
HSDT1 only. The improvement in the prediction of displacements and stresses by the present
theory will be discussed. All figures and Tables 2 and 3 are given by using material Il. The
deflection and stresses of the bending response are presented. Here, the 3-D solution of Pagano
(1970) and the solution of Brischetto (2012) for simply-supported rectangular plates under
sinusoidal mechanical loading are used to assess the improvement.

The following dimensionless forms are used

_ 10%n3 1 h
wW=——W, Kw= th, Kp = zKp, 01 = — Oxx
a*qo aqo (16)
_h __10h _10%n _10%p?
0y = aqo Uyy' 04 = aqo Tyz: 05 = aqq Txz» O = a2qq Txy

Table 1 Mechanical load applied to a three-layered (0°/90°/0°) laminated plate (b = 3a) using material |

a/h Tig%? Brischetto (2012) Present
3-D FSDT ED2 ED4 LD4 HSDT1  HSDT2
w 2.82 2.05 2.03 2.62 2.82 2.61568  2.63848
/o 1.14 0.614 0.637 1.11 1.14 1.00961  1.03301
1 (iE) -1.10 -0.614 -0.591 -1.06 -1.10 -1.00961 -1.03301
/o 0.109 0.0833 0.0791 0.100 0.109 0.10208  0.10271
4 2 (iE) -0.119 -0.0833 -0.0901 -0.111 -0.119 -0.10208 -0.10271
5, (ig) -0.0269 -0.0187 -0.0177 -0.0254 -0.0269 -0.02588 -0.02627
0.0281 -0.0187 -0.0189 0.0266 0.0281 0.02588  0.02627
a,(0) 0.0334 0.0234 0.0246 0.0346 0.0334 0.03418  0.03474
w 0.508 0.506 0.506 0.507 0.508 0.50693  0.50699
_ [ n 0.624 0.623 0.623 0.624 0.624 0.62392  0.62396
1 (iE) -0.624 -0.623 -0.623 -0.624 -0.624 -0.62392  -0.62396
100 3, (+ﬁ) 0.0253 0.0252 0.0251 0.0252 0.0253 0.02528  0.02529
*6 -0.0253 -0.0252 -0.0251 -0.0252 -0.0253 -0.02528 -0.02529
G, ( ig) -0.0083 -0.0083 -0.0083 -0.0083 -0.0083 -0.00831 -0.00831
0.0083 0.0083 0.0083 0.0083 0.0083 0.00831  0.00831

0,(0) 0.0108 0.0106 0.0108 0.0121 0.0108 0.01280 0.01292
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Table 1 presents the deflection and stresses of a three-layered (0°/90°/0°) composite plate
under mechanical load. Brischetto (2012) used some models as layerwise (LW) and the equivalent
single layer (ESL). ESL models are indicated with acronyms from ED1 to ED4 where E means
ESL approach, D indicates the use of the principle of virtual displacements (PVD). LW models are
indicated with acronyms from LD1 to LD4 where L means LW approach. The present results agree
extremely well with those obtained by Pagano (1970) and Brischetto (2012) where (6;,d,) =

%(01, 0,) and (G,,0,) = (0.104,0.010,). It is to be noted that the deflection and stresses are both

decreasing with the increase of the side-to-thickness ratio a/h. Table 2 displays the effects of the
number of layers on the defection w of rectangular plates resting on elastic foundations using the
two models HSDT1 and HSDT2 (a = 2b). A good agreement between HSDT1 and HSDT2 for
deflections is occurred. In addition, it is observed that the deflection w decreases as Winkler
parameter ky, and Pasternak parameter kp increase. Table 3 shows the effects of the aspect ratio
a/b and the foundation parameters xy, and kp on the stresses of the four-layer (0°/90°/90°/
0") laminated plates resting on elastic foundations (a = 4h). It is clear that the stresses o;, o,
0y, 05, and o, decrease as the elastic foundation parameters decrease. Also, they decrease by
increasing the aspect ratio a/b. Once again, a good agreement between the two models HSDT1
and HSDT?2 has been occurred.

In all figures, except otherwise stated, a = 10h. Fig. 2 shows the dimensionless central
deflection w versus the aspect ratio a/b (Fig. 2(a)) and the side-to-thickness ratio a/h (Fig.
2(b)). The deflection of the three-layer, cross-ply (0°/90°/0°) rectangular plates resting on elastic
foundations is illustrated for different elastic foundations. The deflection w decreases as the
aspect ratio a/b and side-to-thickness ratio a/h increase regardless of the type of the elastic
foundation. It observed from Fig. 2 that a decrement occurs for the central deflection w when the
plate is resting on Pasternak foundations.

Table 2 Effects of the thickness and number of layers on the deflection w of rectangular plates resting on
elastic foundations (a = 2b)

Jh oxe 0 (0°/90), (0°/90),
HSDT1 HSDT?2 HSDT1 HSDT?2 HSDT1  HSDT2
0.0 0.0 153733  1.53627 1.22034 1.21875 457624  4.55647
4 0.1 0.0 147912  1.47813 1.18337 1.18187 4.09634  4.08049
0.1 0.1 1.32444  1.32365 1.08225 1.08099 3.09524  3.08618
0.0 0.0 0.82917  0.82925 0.66674 0.66669 3.74181  3.73896
10 0.1 0.0 0.45330  0.45333 0.40002 0.40001 0.78911  0.78898
01 0.1 0.37044  0.37045 0.33408 0.33406 0.56795  0.56788
0.0 0.0 0.77981  0.77987 0.62831 0.62829 3.68235  3.68054
125 0.1 0.0 0.26855  0.26855 0.24796 0.24795 0.36859  0.36858
01 0.1 0.22248  0.22248 0.20816 0.20816 0.28702  0.28701
0.0 0.0 0.75295  0.75299 0.60741 0.60739 3.64992  3.64867
15 0.1 0.0 0.15648  0.15648 0.14906 0.14906 0.18739  0.18739

0.1 0.1 0.13332 0.13332 0.12789 0.12789 0.15512  0.15511
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Table 3 Effects of the foundation parameters and aspect ratio on the stresses in the (0°/90°/90°/0°)
laminated plates (a = 4h)

St a=>b a=2b a=23b
fesses  w - Kp HSDTL  HSDT2 HSDTL  HSDT2  HSDT1  HSDT2
00 00 793925  7.93956 110946 111106 035069 0.35223
o 01 00 558833 559126 104628 104795 034425 0.34579
01 01 409307 4.09648 0.88996  0.89173 030921 031074
00 00 577299 577895 250855 251015 137746  1.38877
o, 01 00 406353  4.06969 236569 237606 135216  1.36338
01 01 297625 298169 201227 202185 121456 122519
00 00 412793 416455 271779 2.74364  1.03934  1.95589
o, 01 00 290559  2.93279 256302 258780 100372 1.92013
01 01 212815 214873 218011 220203 170999  1.72551
00 00  17.83374 1808135 732581 747089  3.63521 3.70648
o5 01 00 1255203 1273338 690863  7.04654  3.56845  3.63871
01 01 919416  9.32920 587649 599609  3.20531  3.26991
00 00  27.84760 27.88724 654852 658248 248975 251325
o 01 00 1960161 1063895 617560  6.20850  2.44402  2.46730
01 01 1435684 1438862 525208 528305 219531 221723

Figs. 3 and 4 display the distributions of the transverse shear stresses g, and o5
through-the-thickness of four-layer, cross-ply, symmetric (0°/90°/90°/0%) and anti-symmetric
(0°/90°/0°/90") square (Fig. 3) and rectangular, a = 2b (Fig. 4) plates resting on elastic
foundations. It is to be noted that both o, and o5 decrease as the foundation parameters ky, and

Kp increase.
99— T T T 1T T 7T 1
8 F — K“,r = KP = 'D '
TN Ky =0.05,kp=0 1
BF N === - K“r:KP:Ol -_
.. 9F 4
=L 1
N ;
2F -
1 '---------.-—:.:.-.-.-_-.-.-.'_'.:_'.'_','_'_'_‘_'_;':_-;_-. ................ ]
o b1 [ PR B I I

02 04 06 08

1 12 14 16 18 2
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alh

(b) w versus a/h

Fig. 2 Dimensionless deflection w of a (0°/90°/0") rectangular plate resting on elastic foundations
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Fig. 6 Variation of ¢,(0.5) ina (0°/90°/90°/0") plate for different elastic foundations

Fig. 5 displays the distribution of the transverse shear stress g, through-the-thickness of
four-layer,  cross-ply, symmetri  (0°/90°/90°/0") and  anti-symmetric  (0°/90°/0°/
90") rectangular plates resting on Winkler/Pasternak elastic foundations. The shear stress
o, increases as the aspect ratio increases.

Fig. 6 shows the variation of the in-plane longitudinal stress o;(0.5) versus the
side-to-thickness ratio a/h and the aspect ratio a/b in four-layer, cross-ply, symmetric (0°/90°/
90°/0°) plates resting on elastic foundations. The in-plane longitudinal stress o; is decreasing
with the increase of the ratios a/h and a/b. As it is well known, the stress g, is decreasing with
the increase of the foundation parameters ky and xp.

Fig. 7 displays the variation of the transverse shear stress a5(0) versus the side-to-thickness
ratio a/h and the aspect ratio a/b in four-layer, cross-ply, symmetric (0°/90°/90°/
0") rectangular plates resting on elastic foundations. Once again, the shear stress o is decreasing
with the increase of the ratios a/h and a/b and with the increase of the foundation parameters.
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Fig. 7 Variation of ¢5(0) ina (0°/90°/90°/0") plate for different elastic foundations
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Fig. 8 Variation of g,(—0.5) ina (0°/90°/90°/0") plate for different elastic foundations

Finally, Fig. 8 shows the variation of the in-plane tangential stress g4(—0.5) versus the
side-to-thickness ratio a/h andthe aspect ratio a/b in four-layer, cross-ply, symmetric (0°/90°/
90°/0") rectangular plates resting on elastic foundations (a = 4h). It is to be noted that the stress
o¢ decreases by increasing the ratio a/h and the foundation parameters ky, and kp. Also, g is
no longer increasing with the increase of the aspect ratio a/b and has its maximum for different
aspect ratios depending on the foundation parameters ky, and xp.

6. Conclusions

The laminated composite plates resting on elastic foundations are described and discussed
using two models (HSDT1 and HSDT2). Closed-form solutions for bending analysis of cross-ply
orthotropic laminated plates are developed on the assumption that the transverse shear
displacement varies as a hyperbolic function across the thickness of the plates. For symmetric and
anti-symmetric cross-ply laminated rectangular plates, the equilibrium equations and associated
boundary conditions are obtained by the principle of virtual displacements. Navier's method is
used to obtain analytical solutions for the laminated plate subjected to simply-supported boundary
conditions. In order to verify the accuracy of the proposed models, numerical results are compared
with other theories models given in the literature and a good agreement is found to exist between
them. The interaction between the plate and the foundations is included in the formulations. The
results of our calculations for different parameters a/h, a/b, xw, and kp are investigated. The
subject of this paper is important in many fields and has received wide applications in modern
industries. Such plate structures can be found in various kinds of industrial applications like raft
foundations, storage tanks, swimming pools and in most civil engineering constructions. Also,
advanced composites are used extensively in aerospace and other structural applications because
of their low density, high strength and high stiffness.
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