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Abstract.  Helical structures made of superelastic shape memory alloys are widely used as interventional 
medical devices and active actuators. These structures generally undergo large deformation during 
expansion or actuation. Currently their behaviour is modelled numerically using the finite element method or 
obtained through experiments. Analytical tools are absent. In this paper, an analytical approach has been 
developed for analyzing the mechanical responses of such structures subjected to axial and torsional loads. 
The simulation results given by the analytical approach have been compared with both numerical and 
experimental data. Good agreements between the results indicate that the analysis is valid. 
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1. Introduction 
 

Helical steel structures have long been used to make springs and braded hose pipes. Analytical 

formulas exist to model their behaviour. More recently helical structures made of superelastic 

shape memory alloys (abbreviated to SMA) such as Nitinol, have been used as interventional 

medical stents (Roguin et al. 1999, Hill et al. 2004, Zhou et al. 2008) and actuator devices 

(Chaudhry and Rogers 1991, Degeratu 2008, Khan and Srinivasan 2011, Spinella and Dragoni 

2010, von Riesen 2008, Yates and Kalamkarov 2013). These structures in general undergo large 

deformation. For example, a stent has to be folded to small volume for delivery and it expands 

once it is released from a delivery catheter. The current means to investigate the mechanical 

behaviours in the design of such structures are limited to the finite element analysis (abbreviated to 

FEA) or experiments. Although the FEA is a valuable tool, it has several drawbacks such as its 

solver-dependent nature, the complexity in creating the correct finite element model and the 

prolonged computational time. On the other hand, a well devised experiment can be expensive. 

Therefore, it is desirable to have an analytical method, as a complement to the FEA or experiments, 

which can accurately predict the behaviour of the SMA helical structures. 

Theoretical solutions to a helical structure subjected to axial and torsional loads are available in 
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literatures (Mansfield 1980). However, these theoretical solutions were developed for linear elastic 

material. For superelastic helical structure, the martensite formation can be initiated as loading is 

increased, which greatly increases the complexity of the problem. Therefore, those theoretical 

solutions based on a linear elastic material model are no longer applicable for superelastic SMA 

helical structures. 

This paper presents attempts to develop an analytical approach for analysis of the mechanical 

responses of the superelastic SMA helical structures subject to axial and torsional loads. The 

layout of the paper is as follows. The basic assumptions made to the SMA material are discribed in 

Section 2. Section 3 derives the main theory constituting the analytical model. The simulation 

results are provided in Section 4. Finally, a summarization to the paper is given in Section 5. 

 

 

2. Basic assumptions 
 

The true material properties of a superelastic SMA, well-illustrated in the publications 

(Auricchio et al. 1997, Aurrichio and Sacco 1997, Boyd and Lagoudas 1996, Qidwai and 

Lagoudas 2000, Brocca et al. 2002, Peultier et al. 2006, Zhu and Zhang 2007, Arghavani et al. 

2010, He and Sun 2011), are very complex. It is necessary to make certain degrees of 

simplification to the material model in order to derive an analytical solution for the present 

problem. Here, three assumptions are made to the material model. 

First, it is assumed that the superelastic normal and shear deformation behaviours are 

independent of each other (Toi et al. 2004), meaning that the shear stress-strain relationship of the 

material is not affected by the normal loading, or vice versa. 

Second, it is assumed that the shear stress-strain relationship of a superelastic SMA is 

qualitatively similar to the normal stress-strain relationship (Toi et al. 2004). Therefore, material 

constants of the shear stress-strain relationship can be determined by the normal results obtained 

from a uniaxial tensile test, as shown in Table 1, in which 𝜇 is the poisson’s ratio and 𝜁 is a 

coefficient.  

 

 

 
Table 1 Material constants of normal and shear stress-strain relationships 

Normal Shear Description 

𝐸𝐴 𝐺𝐴 = 𝐸𝐴/2(1 + 𝜇)
 Elastic and shear modulus of Austenite 

𝐸𝑀 𝐺𝑀 = 𝐸𝑀/2(1 + 𝜇) Elastic and shear modulus of Martensite 

𝜎𝑀
𝑠  𝜏𝑀

𝑠 = 𝜎𝑀
𝑠 /𝜁 Starting transformation stress of loading 

𝜎𝑀
𝑓

 𝜏𝑀
𝑓
= 𝜎𝑀

𝑓
/𝜁 End transformation stress of loading 

𝜎𝐴
𝑠 𝜏𝐴

𝑠 = 𝜎𝐴
𝑠/𝜁 Starting transformation stress of unloading 

𝜎𝐴
𝑓
 𝜏𝐴

𝑓
= 𝜎𝐴

𝑓
/𝜁 End transformation stress of unloading 

𝜀𝐿 𝛾𝐿 = 𝜀𝐿 Maximum residual strain 
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The third assumption regards a simplified constitutive law for the superelastic behaviour of 

SMA. Although various constitutive models of the superelastic behavior of SMA have been 

proposed in literatures (Auricchio et al. 1997, Aurrichio and Sacco 1997, Boyd and Lagoudas 

1996, Qidwai and Lagoudas 2000) based on theories of thermodynamics or general plasticity, 

these material constitutive laws are too complex to be implemented analytically. Atanackovic and 

Achenbach and Achenbach (1989) derived the moment-curvature relation for a superelastic SMA 

beam subject to pure bending. In their model, it has been assumed that 𝐸𝐴 = 𝐸𝑀, 𝜎𝑀
𝑠 = 𝜎𝑀

𝑓
 and 

𝜎𝐴
𝑠 = 𝜎𝐴

𝑓
 for the material, leading to that the loading-unloading paths of the fully austenite phase 

and the fully martensite phase are parallel on the stress-strain graph, and so are the loading and 

unloading plateaus. Furthermore, it has been assumed that if the unloading started from a point on 

the loading plateau, it proceeds along a line parallel to the loading-unloading path of the fully 

austenite phase.  

This paper adopts a simplified constitutive law for the superelastic SMA so that a theoretical 

model for the problem under consideration can be derived. It is similar to that given in (Achenbach 

and Achenbach 1989) except that the differences between 𝐸𝐴and𝐸𝑀, 𝜎𝑀
𝑠 and𝜎𝑀

𝑓
, and 𝜎𝐴

𝑠 and 𝜎𝐴
𝑓
 

are taken into account. The martensite volume fraction 𝜉 is assumed to be proportional to the 

stress 𝜎 during loading plateau, given by 

𝜉 =
𝜎−𝜎𝑀

𝑠

𝜎𝑀
𝑓
−𝜎𝑀

𝑠
                               (1) 

and the Young’s modulus of the material is taken as a function of the martensite volume fraction 

𝜉, given by 

𝐸𝜉 = 𝐸𝐴 + 𝜉(𝐸𝑀 − 𝐸𝐴)                         (2) 

The normal stress-strain relationship for a SMA in the superelastic range is given in Fig. 1, 

where 𝜀𝑀
𝑠 , 𝜀𝑀

𝑓
, 𝜀𝐴

𝑠 and 𝜀𝐴
𝑓
are respectively the starting transformation strain of loading, the end 

transformation strain of loading, the starting transformation strain of unloading, and the end 

transformation strain of unloading, given by 

𝜀𝑀
𝑠 =

𝜎𝑀
𝑠

𝐸𝐴
 , 𝜀𝑀

𝑓
=
𝜎𝑀
𝑓

𝐸𝑀
+ 𝜀𝐿                                                      (3) 

𝜀𝐴
𝑠 =

𝜎𝐴
𝑠

𝐸𝑀
+ 𝜀𝐿  , 𝜀𝐴

𝑓
=
𝜎𝐴
𝑓

𝐸𝐴
                         (4) 

and 𝐸𝐿 and 𝐸𝑈are respectively the slopes of loading and unloading plateaus, given by 

𝐸𝐿 =
𝜎𝑀
𝑓
−𝜎𝑀

𝑠

𝜀𝑀
𝑓
−𝜀𝑀

𝑠
                             (5) 

𝐸𝑈 =
𝜎𝐴
𝑓
−𝜎𝐴

𝑠

𝜀𝐴
𝑓
−𝜀𝐴

𝑠
                             (6) 

According to the second assumption, the martensite fraction 𝜉𝜏 due to shear loading and shear 

modulus 𝐺 can be written as 

𝜉𝜏 =
𝜏−𝜏𝑀

𝑠

𝜏𝑀
𝑓
−𝜏𝑀

𝑠
                             (7) 
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and 

𝐺𝜉𝜏 = 𝐺𝐴 + 𝜉𝜏(𝐺𝑀 − 𝐺𝐴)                           (8) 

 

 

3. Analysis 
 

3.1 Beam subjected to pure bending 
 

Consider now a straight beam subjected to a bending moment M, as shown in Fig. 2, where the 

dash-dotted line represents the neutral surface and t is the thickness of the beam. Strain 𝜀 in a 

layer whose distance is y from the neutral surface is given by 

𝜀 = 𝑘𝑦                                 (9) 

where 𝑘 is the curvature of the beam at a certain moment. According to Eq. (9), the further a layer 

is away from the neutral surface, the larger the strain in the layer is, and the maximum strain in the 

beam occurs at the outmost surface of the beam, given by 

𝜀𝑚𝑎𝑥 = 𝑘
𝑡

2
                              (10) 

If 𝜀𝑚𝑎𝑥 is smaller than 𝜀𝑀
𝑠 , i.e. 

𝜀𝑚𝑎𝑥 = 𝑘
𝑡

2
< 𝜀𝑀

𝑠 ⇒ 𝑘 <
2𝜀𝑀
𝑠

𝑡
                      (11) 

the entire beam throughout the section remains elastic. In this case, the stress distribution across 

the beam, which is a function of both 𝑘 and 𝑦, is given by 

 

 

Fig. 1 Normal stress-strain diagram of superelastic SMA 
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Fig. 2 A beam subjected to bending 

 

 

𝜎(𝑘, 𝑦) = 𝐸𝐴𝜀 = 𝐸𝐴𝑘𝑦                          (12) 

 

If k becomes greater than 2𝜀𝑀
𝑠 /𝑡, the outmost layer of the beam will first reach point A in Fig. 1 

and the beam is consequently divided into a transformation region and an elastic core of fully 

austenite. As the beam is further bent, the transformation region develops towards the neutral 

surface and the elastic core of fully austenite becomes smaller. On the outer border 𝑦𝑒 of the 

elastic core, the strain equals the starting transformation strain of loading 𝜀𝑀
𝑠 . Therefore, 𝑦𝑒 can be 

found by 

𝜀(𝑦𝑒) = 𝑘𝑦𝑒 = 𝜀𝑀
𝑠 ⇒ 𝑦𝑒 =

𝜀𝑀
𝑠

𝑘
                                                 (13) 

The stress distribution within the elastic core, i.e., 𝑦 < 𝑦𝑒, is the same as Eq. (12). An arbitrary 

point in the transformation region, i.e., 𝑦  𝑦𝑒, proceeds along line AB in Fig.1. Therefore, the 

stress distribution outside the elastic core is given by 

𝜎(𝑘, 𝑦) = 𝜎𝑀
𝑠 + 𝐸𝐿(𝜀 − 𝜀𝑀

𝑠 ) = 𝜎𝑀
𝑠 + 𝐸𝐿(𝑘𝑦 − 𝜀𝑀

𝑠 )             (14) 

Eq. (14) remains valid until the outmost layer reaches point B in Fig. 1. In this situation, the 

maximum strain equals the end transformation strain of loading 𝜀𝑀
𝑓

and the critical curvature can 

be found by 

𝜀𝑚𝑎𝑥 = 𝑘
𝑡

2
= 𝜀𝑀

𝑓
⇒ 𝑘 =

2𝜀𝑀
𝑓

𝑡
                       (15) 

When 𝑘  2𝜀𝑀
𝑓

, the beam is divided into three distinct regions, i.e., an elastic core of fully 

austenite – region I, a transformation middle region – region II, and a fully martensite outer region 

– Region III. The border between regions I and II is given by Eq. (13). The strain equals the end 

transformation strain of loading 𝜀𝑀
𝑓

at the border between regions II and III. Therefore, there is 

𝜀(𝑦𝑡) = 𝑘𝑦𝑡 = 𝜀𝑀
𝑓
⇒ 𝑦𝑡 =

𝜀𝑀
𝑓

𝑘
                      (16) 

In the elastic core, the stress distribution is again the same as Eq. (12). In the transformation 

region, the stress distribution is the same as Eq. (14). A point in region III proceeds along line CB 

in Fig. 1. Therefore, the stress distribution in this region is given by 

𝜎(𝑘, 𝑦) = 𝐸𝑀(𝜀 − 𝜀𝐿) = 𝐸𝑀(𝑘𝑦 − 𝜀𝐿)                  (17) 
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In summary, the stress distribution across the beam during bending can be written as 

𝜎(𝑘, 𝑦) = 𝐸𝐴𝑘𝑦;  𝑤ℎ𝑒𝑛 𝑘 ≤
2𝜀𝑀
𝑠

𝑡
                     (18) 

𝜎(𝑘, 𝑦) = {
𝐸𝐴𝑘𝑦, 0 < 𝑦 ≤

𝜀𝑀
𝑠

𝑘

𝜎𝑀
𝑠 + 𝐸𝐿(𝑘𝑦 − 𝜀𝑀

𝑠 ),
𝜀𝑀
𝑠

𝑘
< 𝑦 ≤

𝑡

2

;  𝑤ℎ𝑒𝑛 
2𝜀𝑀
𝑠

𝑡
< 𝑘 ≤

2𝜀𝑀
𝑓

𝑡
             (19) 

𝜎(𝑘, 𝑦) =

{
 
 

 
 𝐸𝐴𝑘𝑦, 0 < 𝑦 ≤

𝜀𝑀
𝑠

𝑘

𝜎𝑀
𝑠 + 𝐸𝐿(𝑘𝑦 − 𝜀𝑀

𝑠 ),
𝜀𝑀
𝑠

𝑘
< 𝑦 ≤

𝜀𝑀
𝑓

𝑘

𝐸𝑀(𝑘𝑦 − 𝜀𝐿),
𝜀𝑀
𝑓

𝑘
< 𝑦 ≤

𝑡

2

;  𝑤ℎ𝑒𝑛 𝑘  
2𝜀𝑀
𝑓

𝑡
             (20) 

Consider now unbending of the beam after it is bent. In this case, the curvature of the beam at 

the end of bending has to be taken into account because this curvature acts as the initial curvature 

of the unbending process. Denote 𝑘0as the initial curvature of unbending in subsequent discussion. 

The stress distribution across the beam during unbending will be a function of k, y and 𝑘0.  

First, consider the case when 𝑘0 < 2𝜀𝑀
𝑠 /𝑡. In this case, the entire beam is elastic at the 

beginning of unbending. As k decreases, the stress-strain relationship of any point in the beam 

proceeds along AO in Fig. 1. Therefore, the stress distribution in the whole cross section of the 

beam is given by 

𝜎(𝑘, 𝑦; 𝑘0) = 𝐸𝐴𝑘𝑦                         (21) 

When 2𝜀𝑀
𝑠 /𝑡 < 𝑘0 < 2𝜀𝑀

𝑓
/𝑡, the beam is initially divided into two regions i.e., an elastic core 

and a transformation region at the beginning of unbending. The border between the two regions is 

given by𝑦 = 𝜀𝑀
𝑠 /𝑘0 , according to Eq. (13). In the elastic core, i.e., 𝑦 < 𝜀𝑀

𝑠 /𝑘0 , the stress 

distribution is the same as Eq. (21). The attention is focused on the stress distribution in the 

transformation region, i.e., 𝑦  𝜀𝑀
𝑠 /𝑘0. Consider an arbitrary point in the transformation region. 

At the beginning of unbending, this point is on line AB in Fig. 1, denoted by point E. The initial 

strain 𝜀0 of this point is 𝑘0𝑦, and the initial stress 𝜎0 is given by 

𝜎0 = 𝜎𝑀
𝑠 + 𝐸𝐿(𝑘0𝑦 − 𝜀𝑀

𝑠 )                      (22) 

As k decreases, the stress-strain relationship of this point proceeds along a path following lines 

EF, FD and finally DO in Fig. 1. During the course, there are two critical values for k occurring at 

points F and D, respectively. To find out the two critical values for k, the strains at points F and D 

have to be obtained first. Considering both Eqs. (1) and (22), the martensite fraction 𝜉at point E 

becomes 

𝜉 =
𝜎0−𝜎𝑀

𝑠

𝜎𝑀
𝑓
−𝜎𝑀

𝑠
=
𝐸𝐿(𝑘0𝑦−𝜀𝑀

𝑠 )

𝜎𝑀
𝑓
−𝜎𝑀

𝑠
                      (23) 

Substituting Eq. (23) into Eq. (2), Young’s Modulus𝐸𝑦, which is the slope of line EF, can be 

found as 

𝐸𝑦 = 𝐸𝐴 +
𝐸𝐿(𝑘0𝑦−𝜀𝑀

𝑠 )

𝜎𝑀
𝑓
−𝜎𝑀

𝑠
(𝐸𝑀 − 𝐸𝐴)                                          (24) 
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Through Eq. (24), the stress 𝜎 and strain𝜀  at point F can be related to the stress and strain at 

point E by 

𝜎1−𝜎0

𝜀1−𝜀0
= 𝐸𝑦                             (25) 

In addition, note that point F is on line DC. Therefore, the stress and strain at point F have to 

satisfy 

𝜎 = 𝜎𝐴
𝑓
+ 𝐸𝑈(𝜀 − 𝜀𝐴

𝑓
)                        (26) 

By solving Eqs. (25) and (26) together and considering Eq. (22), the strain 𝜀 at point F can be 

written as 

𝜀 =
𝜎𝑀
𝑠 −𝜎𝐴

𝑓
−𝐸𝐿𝜀𝑀

𝑠 +𝐸𝑈𝜀𝐴
𝑓
+(𝐸𝐿−𝐸𝑦)𝑘0𝑦

𝐸𝑈−𝐸𝑦
                                         (27) 

Using Eq. (9), the critical value for k at point F can be found as 

𝑘 
𝑐𝑟 =

𝜀1

𝑦
=
𝜎𝑀
𝑠 −𝜎𝐴

𝑓
−𝐸𝐿𝜀𝑀

𝑠 +𝐸𝑈𝜀𝐴
𝑓
+(𝐸𝐿−𝐸𝑦)𝑘0𝑦

(𝐸𝑈−𝐸𝑦)𝑦
                 (28) 

The strain at point D is the end transformation strain of unloading 𝜀𝐴
𝑓
. Therefore, the critical 

value for k at point D is 

𝑘2
𝑐𝑟 =

𝜀𝐴
𝑓

𝑦
                               (29) 

With the two critical values for k having been found, the rest work to find the stress distribution 

is trivial. When k is smaller than 𝑘0but larger than 𝑘 
𝑐𝑟, the stress-strain relationship of any point 

in the transformation region proceeds along line EF, and the stress distribution becomes 

𝜎(𝑘, 𝑦; 𝑘0) = 𝜎𝑀
𝑠 − 𝐸𝐿𝜀𝑀

𝑠 + (𝐸𝐿 − 𝐸𝑦)𝑘0𝑦 + 𝐸𝑦𝑘𝑦             (30) 

When k is smaller than 𝑘 
𝑐𝑟 but larger than 𝑘2

𝑐𝑟, the stress-strain relationship of any point in the 

transformation region proceeds along line FD, and the stress distribution is 

𝜎(𝑘, 𝑦; 𝑘0) = 𝜎𝐴
𝑓
+ 𝐸𝑈(𝑘𝑦 − 𝜀𝐴

𝑓
)                    (31) 

When k becomes smaller than 𝑘2
𝑐𝑟 , the stress-strain relationship of any point in the 

transformation region proceeds along line DO, and the stress distribution is  

𝜎(𝑘, 𝑦; 𝑘0) = 𝐸𝐴𝑘𝑦                        (32) 

Finally, consider the case when 2𝜀𝑀
𝑓
/𝑡 < 𝑘0. In this case, the beam is divided into three regions 

at the beginning of unbending, i.e., a fully austenite elastic core, a transformation region and a 

fully martensite outer region. According to Eq. (20), the border between the elastic core and the 

transformation region is given by 𝑦𝑒 = 𝜀𝑀
𝑠 /𝑘0. The border between the transformation region and 

the fully martensite region is given by𝑦𝑡 = 𝜀𝑀
𝑓
/𝑘0. In the elastic core, the stress distribution is the 

same as Eq. (21). In the transformation region, the stress distribution follows Eqs. (30)-(32) as k 

decreases. For an arbitrary point in the fully martensite region, its stress-strain relationship 

proceeds along a path following lines BC, CD and finally DO in Fig. 1. The critical values for k 

occurs at points C and D. Eq. (29) has given the critical value for k at point D. At point C, the 
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strain equals the starting transformation strain of unloading 𝜀𝐴
𝑠. Therefore the critical value for k at 

point C is 

𝑘3
𝑐𝑟 =

𝜀𝐴
𝑠

𝑦
                                 (33) 

When k is smaller than 𝑘0but larger than 𝑘3
𝑐𝑟, the stress-strain relationship of a point in the 

fully martensite region proceeds along line BC and the stress distribution is  

𝜎(𝑘, 𝑦; 𝑘0) = 𝐸𝑀(𝑘𝑦 − 𝜀𝐿)                        (34) 

When k is smaller than 𝑘3
𝑐𝑟 but larger than𝑘2

𝑐𝑟, the stress distribution in the fully martensite 

region is the same as Eq. (31). When k is smaller than𝑘2
𝑐𝑟, the stress distribution is the same as Eq. 

(32).  

In summary, the stress distribution across the beam during unbending is given by 

𝜎(𝑘, 𝑦; 𝑘0) = 𝐸𝐴𝑘𝑦, 𝑘 < 𝑘0;  𝑤ℎ𝑒𝑛 𝑘0 <
2𝜀𝑀
𝑠

𝑡
                  (35) 

𝜎(𝑘, 𝑦; 𝑘0) =

{
 
 

 
 𝐸𝐴𝑘𝑦,  𝑓 𝑘 < 𝑘0＆ 𝑦 <

𝜀𝑀
𝑠

𝑘0
   𝑘 < 𝑘2

𝑐𝑟＆ 𝑦  
𝜀𝑀
𝑠

𝑘0

𝜎𝑀
𝑠 − 𝐸𝐿𝜀𝑀

𝑠 + (𝐸𝐿 − 𝐸𝑦)𝑘0𝑦 + 𝐸𝑦𝑘𝑦,  𝑓 𝑘 
𝑐𝑟 < 𝑘 < 𝑘0＆ 𝑦  

𝜀𝑀
𝑠

𝑘0

𝜎𝐴
𝑓
+ 𝐸𝑈(𝑘𝑦 − 𝜀𝐴

𝑓
),  𝑓 𝑘2

𝑐𝑟 < 𝑘 < 𝑘 
𝑐𝑟＆ 𝑦  

𝜀𝑀
𝑠

𝑘0

;   (36) 

;  𝑤ℎ𝑒𝑛 
2𝜀𝑀
𝑠

𝑡
< 𝑘0 <

2𝜀𝑀
𝑓

𝑡
 

𝜎(𝑘, 𝑦; 𝑘0)

=

{
 
 
 
 

 
 
 
 𝐸𝐴𝑘𝑦,  𝑓 𝑘 < 𝑘0＆ 𝑦 <

𝜀𝑀
𝑠

𝑘0
   𝑘 < 𝑘2

𝑐𝑟＆
𝜀𝑀
𝑠

𝑘0
< 𝑦 <

𝜀𝑀
𝑓

𝑘0
   𝑘 < 𝑘2

𝑐𝑟＆
𝜀𝑀
𝑓

𝑘0
< 𝑦

𝜎𝑀
𝑠 − 𝐸𝐿𝜀𝑀

𝑠 + (𝐸𝐿 − 𝐸𝑦)𝑘0𝑦 + 𝐸𝑦𝑘𝑦,  𝑓 𝑘 
𝑐𝑟 < 𝑘 < 𝑘0＆

𝜀𝑀
𝑠

𝑘0
< 𝑦 <

𝜀𝑀
𝑓

𝑘0

𝜎𝐴
𝑓
+ 𝐸𝑈(𝑘𝑦 − 𝜀𝐴

𝑓
),  𝑓 𝑘2

𝑐𝑟 < 𝑘 < 𝑘 
𝑐𝑟＆

𝜀𝑀
𝑠

𝑘0
< 𝑦 <

𝜀𝑀
𝑓

𝑘0
   𝑘2

𝑐𝑟 < 𝑘 < 𝑘3
𝑐𝑟＆ 𝑦  

𝜀𝑀
𝑓

𝑘0

𝐸𝑀(𝑘𝑦 − 𝜀𝐿),  𝑓 𝑘3
𝑐𝑟 < 𝑘 < 𝑘0＆ 𝑦  

𝜀𝑀
𝑓

𝑘0

 

;  𝑤ℎ𝑒𝑛 𝑘0  
2𝜀𝑀
𝑓

𝑡
                            (37) 

where   and & are “or” and “and” operations, respectively. 

Using the stress distribution across the beam discussed above, it is easy to get the bending 

moment. For a beam with a rectangular cross-section, the bending moment as a function of the 

curvature k is given by 

𝑀(𝑘) = 2𝑏 ∫ 𝜎(𝑘, 𝑦)𝑦𝑑𝑦
𝑡/2

0
                       (38) 

1278



 

 

 

 

 

 

Theoretical analysis of superelastic SMA helical structures subjected to axial… 

 

 

Fig. 3 A beam subjected to torsion 
 

 

where b is the width of the beam. In Eq. (38), it is assumed that the stress distribution of the region 

in compression is the same as that of the region in tension but has the opposite sign. However, it is 

not difficult to take the differences of stress between compression and tension into account based 

on the discussion above to derive the stress distribution in compression separately. In this case, Eq. 

(38) needs to be modified to 

𝑀(𝑘) = 𝑏 ∫ 𝜎𝑡(𝑘, 𝑦)𝑦𝑑𝑦
𝑡/2

0
+ 𝑏∫ 𝜎𝑐(𝑘, 𝑦)𝑦𝑑𝑦

0

−𝑡/2
            (39) 

where𝜎𝑡(𝑘, 𝑦) is the stress distribution in tension and 𝜎𝑐(𝑘, 𝑦)  is the stress distribution in 

compression. For a beam with a circular cross-section, the bending moment is given by 

𝑀(𝑘) = 4∫ 𝜎(𝑘, 𝑦)𝑦√𝑟2 − 𝑦2𝑑𝑦
𝑅

0
                   (40) 

where r is the radius of the cross-section.  

 

3.2 Beam subjected to pure torsion 
 

In this section, a straight beam subjected to a torque T is considered, as shown in Fig.3. 

Because it is assumed in section 2 that the shear stress-strain relationship is similar to the normal 

stress-strain relationship, the derivation of stress distribution across a beam subjected to torsion 

will therefore be similar to the derivation given in section 3.1. One major difference between 

bending and torsion is the relationship between the strain and the deformation. In bending, the 

normal strain is related to the curvature of the beam through Eq. (9). In torsion, the shear strain 𝛾 

in a circular cross-section is related to the twist of the beam 𝑘𝑥𝑦via 

𝛾 = 𝑟𝑘𝑥𝑦                             (41) 

where r is the radius of the layer at which the shear strain is calculated. Note that the form of Eq. 

(41) is similar to that of Eq. (9). Therefore, the stress distribution across the beam in torsion should 

have a similar form as that of bending. The detailed derivation for torsion is not provided for 

simplicity. The results are directly given below. 

For torsional loading, 

𝜏(𝑘𝑥𝑦, 𝑟) = 𝐺𝐴𝑘𝑥𝑦𝑟;  𝑤ℎ𝑒𝑛 𝑘𝑥𝑦 ≤
𝛾𝑀
𝑠

𝑅
                 (42) 

𝜏(𝑘𝑥𝑦, 𝑟) = {
𝐺𝐴𝑘𝑥𝑦𝑟, 0 < 𝑟 ≤

𝛾𝑀
𝑠

𝑘𝑥𝑦

𝜏𝑀
𝑠 + 𝐺𝐿(𝑘𝑥𝑦𝑟 − 𝛾𝑀

𝑠 ),
𝛾𝑀
𝑠

𝑘𝑥𝑦
< 𝑟 ≤ 𝑅

;  𝑤ℎ𝑒𝑛 
𝛾𝑀
𝑠

𝑅
< 𝑘𝑥𝑦 ≤

𝛾𝑀
𝑓

𝑅
         (43) 
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𝜏(𝑘𝑥𝑦, 𝑟) =

{
 
 

 
 𝐺𝐴𝑘𝑥𝑦𝑟, 0 < 𝑟 ≤

𝛾𝑀
𝑠

𝑘𝑥𝑦

𝜏𝑀
𝑠 + 𝐺𝐿(𝑘𝑥𝑦𝑟 − 𝛾𝑀

𝑠 ),
𝛾𝑀
𝑠

𝑘𝑥𝑦
< 𝑟 ≤

𝛾𝑀
𝑓

𝑘𝑥𝑦

𝐺𝑀(𝑘𝑥𝑦𝑟 − 𝛾𝐿),
𝛾𝑀
𝑓

𝑘𝑥𝑦
< 𝑟 ≤ 𝑅

;  𝑤ℎ𝑒𝑛 𝑘𝑥𝑦  
𝛾𝑀
𝑓

𝑅
             (44) 

For torsional unloading 

𝜏(𝑘𝑥𝑦, 𝑟; 𝑘𝑥𝑦0) = 𝐺𝐴𝑘𝑥𝑦𝑟, 𝑘𝑥𝑦 < 𝑘𝑥𝑦0;  𝑤ℎ𝑒𝑛 𝑘𝑥𝑦0 <
𝛾𝑀
𝑠

𝑅
            (45) 

𝜏(𝑘𝑥𝑦, 𝑟; 𝑘𝑥𝑦0) =

{
  
 

  
 𝐺𝐴𝑘𝑥𝑦𝑟,  𝑓 𝑘𝑥𝑦 < 𝑘𝑥𝑦0＆ 𝑟 <

𝛾𝑀
𝑠

𝑘𝑥𝑦0
   𝑘𝑥𝑦 < 𝑘𝑥𝑦2

𝑐𝑟 ＆ 𝑟  
𝛾𝑀
𝑠

𝑘𝑥𝑦0

𝜏𝑀
𝑠 − 𝐺𝐿𝛾𝑀

𝑠 + (𝐺𝐿 − 𝐺𝑦)𝑘𝑥𝑦0𝑟 + 𝐺𝑦𝑘𝑥𝑦𝑟,  𝑓 𝑘𝑥𝑦 
𝑐𝑟 < 𝑘𝑥𝑦 < 𝑘𝑥𝑦0＆ 𝑟  

𝛾𝑀
𝑠

𝑘𝑥𝑦0

𝜏𝐴
𝑓
+ 𝐺𝑈(𝑘𝑥𝑦𝑟 − 𝛾𝐴

𝑓
),  𝑓 𝑘𝑥𝑦2

𝑐𝑟 < 𝑘𝑥𝑦 < 𝑘𝑥𝑦 
𝑐𝑟 ＆ 𝑟  

𝛾𝑀
𝑠

𝑘𝑥𝑦0

 

;  𝑤ℎ𝑒𝑛 
𝛾𝑀
𝑠

𝑅
< 𝑘𝑥𝑦0 <

𝛾𝑀
𝑓

𝑅
                  (46) 

𝜏(𝑘𝑥𝑦, 𝑟; 𝑘𝑥𝑦0)

=

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 𝐺𝐴𝑘𝑥𝑦𝑟,  𝑓 𝑘𝑥𝑦 < 𝑘𝑥𝑦0＆ 𝑟 <

𝛾𝑀
𝑠

𝑘𝑥𝑦0
   𝑘𝑥𝑦 < 𝑘𝑥𝑦2

𝑐𝑟 ＆
𝛾𝑀
𝑠

𝑘𝑥𝑦0
< 𝑟 <

𝛾𝑀
𝑓

𝑘𝑥𝑦0

  𝑘𝑥𝑦 < 𝑘𝑥𝑦2
𝑐𝑟 ＆ 𝑟  

𝛾𝑀
𝑓

𝑘𝑥𝑦0

𝜏𝑀
𝑠 − 𝐺𝐿𝛾𝑀

𝑠 + (𝐺𝐿 − 𝐺𝑦)𝑘𝑥𝑦0𝑟 + 𝐺𝑦𝑘𝑥𝑦𝑟,  𝑓 𝑘𝑥𝑦 
𝑐𝑟 < 𝑘𝑥𝑦 < 𝑘𝑥𝑦0＆

𝛾𝑀
𝑠

𝑘𝑥𝑦0
< 𝑟 <

𝛾𝑀
𝑓

𝑘𝑥𝑦0

𝜏𝐴
𝑓
+ 𝐺𝑈(𝑘𝑥𝑦𝑟 − 𝛾𝐴

𝑓
),  𝑓 𝑘𝑥𝑦2

𝑐𝑟 < 𝑘𝑥𝑦 < 𝑘𝑥𝑦 
𝑐𝑟 ＆

𝛾𝑀
𝑠

𝑘𝑥𝑦0
< 𝑟 <

𝛾𝑀
𝑓

𝑘𝑥𝑦0

  𝑘𝑥𝑦2
𝑐𝑟 < 𝑘𝑥𝑦 < 𝑘𝑥𝑦3

𝑐𝑟 ＆ 𝑟  
𝛾𝑀
𝑓

𝑘𝑥𝑦0

𝐺𝑀(𝑘𝑥𝑦𝑟 − 𝛾𝐿),  𝑓 𝑘𝑥𝑦3
𝑐𝑟 < 𝑘𝑥𝑦 < 𝑘𝑥𝑦0＆ 𝑟  

𝛾𝑀
𝑓

𝑘𝑥𝑦0

 

;  𝑤ℎ𝑒𝑛 𝑘𝑥𝑦0  
𝛾𝑀
𝑓

𝑅
                           (47) 

where   and & are “or” and “and” operations, respectively, and 

𝛾𝑀
𝑠 =

𝜏𝑀
𝑠  

𝐺𝐴
, 𝛾𝑀
𝑓
=
𝜏𝑀
𝑓

𝐺𝑀
+ 𝛾𝐿                       (48) 

𝛾𝐴
𝑠 =

𝜏𝐴
𝑠

𝐺𝑀
+ 𝛾𝐿 , 𝛾𝐴

𝑓
=
𝜏𝐴
𝑓

𝐺𝐴
                        (49) 
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𝐺𝐿 =
𝜏𝑀
𝑓
−𝜏𝑀

𝑠

𝛾𝑀
𝑓
−𝛾𝑀

𝑠
                              (50) 

𝐺𝑈 =
𝜏𝐴
𝑓
−𝜏𝐴

𝑠

𝛾𝐴
𝑓
−𝛾𝐴

𝑠
                              (51) 

𝐺𝑦 = 𝐺𝐴 +
𝜏𝑀
𝑠 +𝐺𝐿(𝑘𝑥𝑦0𝑟−𝛾𝑀

𝑠 )

𝜏𝑀
𝑓
−𝜏𝑀

𝑠
(𝐺𝑀 − 𝐺𝐴)                  (52) 

𝑘𝑥𝑦 
𝑐𝑟 =

𝜏𝑀
𝑠 −𝜏𝐴

𝑓
−𝐺𝐿𝛾𝑀

𝑠 +𝐺𝑈𝛾𝐴
𝑓
+(𝐺𝐿−𝐺𝑦)𝑘𝑥𝑦0𝑟

(𝐺𝑈−𝐺𝑦)𝑟
                  (53) 

𝑘𝑥𝑦2
𝑐𝑟 =

𝛾𝐴
𝑓

𝑟
                             (54) 

and 

𝑘𝑥𝑦3
𝑐𝑟 =

𝛾𝐴
𝑠

𝑟
                             (55) 

Finally, the torque T applied to the beam as a function of the twist 𝑘𝑥𝑦 is given by 

𝑇(𝑘𝑥𝑦) = 2𝜋 ∫ 𝜏(𝑘𝑥𝑦, 𝑟)𝑟
2𝑑𝑟

𝑅

0
                    (56) 

Incidentally, here only the torque T of a beam with a circular cross section is given in detail 

because Eq. (41) stands exactly for this type of beam. For a beam with a rectangular cross section, 

there is no exact relationship between the shear strain 𝛾 and the twist𝑘𝑥𝑦 . Nevertheless, 

anapproximate solution can still be obtained by using the methodology provided above assuming 

(Young 1989) 

𝛾 ≈ 2𝑦𝑘𝑥𝑦                            (57) 

And torque T is therefore given by 

𝑇(𝑘𝑥𝑦) = 2𝑏 ∫ 𝜏(𝑘𝑥𝑦, 𝑦)𝑦𝑑𝑦
𝑡/2

0
                   (58) 

where b and t are the width and thickness of the beam.  

 

3.3 Helical structure subjected to axial load and torsion 
 

Consider now a helical structure subjected to an axial load P and a torque T, as shown in Fig. 4. 

Bending moment 𝑀𝑏and torque 𝑀𝑡on an arbitrary cross section of the helix coil are (Timoshenko 

1956) 

𝑀𝑏 = 𝑇 cos𝛼𝐻 − 𝑃𝑅𝐻 sin 𝛼𝐻                    (59) 

𝑀𝑡 = 𝑇 sin𝛼𝐻 + 𝑃𝑅𝐻 cos 𝛼𝐻                    (60) 

respectively, where 𝛼𝐻 is the pitch angle and 𝑅𝐻 is the radius of the helical structure. The 

bending moment 𝑀𝑏causes a change in curvature k of the coil. Therefore, the bending moment 

𝑀𝑏can be expressed in terms of the curvature k through Eqs. (38)-(40), where k is substituted with 

𝑘 − 𝑘    to take the initial curvature 𝑘    of the helix coil into account. Similarly, the torque 
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𝑀𝑡causes a change in twist 𝑘𝑥𝑦of the coil. Therefore, the torque 𝑀𝑡can be expressed in terms of 

the twist 𝑘𝑥𝑦through Eqs. (56)-(58), where𝑘𝑥𝑦 is replaced by 𝑘𝑥𝑦 − 𝑘𝑥𝑦
    to take the initialtwist 

𝑘𝑥𝑦
    of the helix coil into account.  

When only the axial load P is applied, Eqs. (59)-(60) can be simplified to 

𝑃𝑅𝐻 = −𝑀𝑏/ sin𝛼𝐻                          (61) 

𝑃𝑅𝐻 = 𝑀𝑡/ cos𝛼𝐻                           (62) 

respectively. Combining Eqs. (61) and (62) to eliminate the term 𝑃𝑅𝐻 gives 

𝑀𝑡 tan𝛼𝐻 +𝑀𝑏 = 0                         (63) 

According to the geometric relationship of a helical structure, the curvature k and twist 𝑘𝑥𝑦 

can be expressed in terms of the pitch angle 𝛼𝐻 and the radius 𝑅𝐻 via 

𝑘 = cos2 𝛼𝐻 /𝑅𝐻                          (64) 

𝑘𝑥𝑦 = cos𝛼𝐻 sin𝛼𝐻 /𝑅𝐻                       (65) 

Combining Eqs. (64) and (65) to eliminate𝑅𝐻 gives 

𝑘 tan𝛼𝐻 − 𝑘𝑥𝑦 = 0                        (66) 

Eqs. (63) and (66) are an equation set about variables𝑘, 𝑘𝑥𝑦  and𝛼𝐻 . According to the 

geometric relationship, the pitch angle 𝛼𝐻 is completely determined by the longitudinal length h 

of the helical structure if the change of the nominal length of the coil L during loading is negligible. 

For a given value of h, the corresponding pitch angle 𝛼𝐻 can be found by 

𝛼𝐻 = sin
− (

ℎ

ℎ0
sin𝛼𝐻0)                      (67) 

where 𝛼𝐻0 and ℎ0 are the initial pitch angle and longitudinal length, respectively. In an axial 

loading and unloading cycle, h  first increases from ℎ0 to ℎ  as the load P increases and then 

returns back to ℎ0 as the load is released. During this course, the pitch angle𝛼𝐻 can be found 

using Eq. (67). The curvature k and twist𝑘𝑥𝑦can be found by solving Eqs. (63) and (66) together. 

Finally, either Eq. (61) or (62) can be used to calculate the load P.  

If only the torque T is applied, Eqs. (59) and (60) become 

𝑀𝑏 = 𝑇 cos𝛼𝐻                           (68) 

𝑀𝑡 = 𝑇 sin𝛼𝐻                           (69) 

Combining Eqs. (68) and (69) to eliminate T yields 

𝑀𝑏 sin𝛼𝐻 −𝑀𝑡 cos 𝛼𝐻 = 0                     (70) 

Again using the geometric relationship of a helical structure, there is 

𝑅𝐻 =
𝐿 cos𝛼𝐻

2𝜋 
                            (71) 

where n is the number of turns of the helical structure. Substituting Eq. (71) into Eqs. (64) and (65) 

gives 
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𝑘 = 2𝜋𝑛 cos𝛼𝐻 /𝐿                          (72) 

𝑘𝑥𝑦 = 2𝜋𝑛 sin𝛼𝐻 /𝐿                         (73) 

Eqs. (70), (72) and (73) are an equation set about variables𝑘, 𝑘𝑥𝑦, 𝛼𝐻 and 𝑛. In a torsional 

loading and unloading cycle, the number of turns 𝑛 first increases from 𝑛0to𝑛  as the torque T 

increases, and then returns back to 𝑛0when the torque is released. For a given value of 𝑛, the 

corresponding curvature 𝑘, twist 𝑘𝑥𝑦 and pitch angle 𝛼𝐻 can be found by solving Eqs. (70), (72) 

and (73) simultaneously. Then, use either Eq. (68) or (69) to find the torque T.  

Finally, consider the case in which a torque T is applied with the longitudinal length ℎ being 

fixed. This is common when a helical structure is loaded by a torque in reality. In this case, the 

helical structure is subjected to an applied torque T as well as a reaction force P in the axial 

direction. According to Eq. (67), the pitch angle 𝛼𝐻 does not change because ℎ is fixed. Hence, 

from Eqs. (71)-(73), there are 

𝑅𝐻 =
 0

 
𝑅𝐻0                            (74) 

𝑘 =
 0

 
𝑘                                (75) 

𝑘𝑥𝑦 =
 0

 
𝑘𝑥𝑦
                              (76) 

where 𝑛0,𝑅𝐻0, 𝑘   and 𝑘𝑥𝑦
    are respectively the initial number of turns, radius, curvature and 

twist of the helical structure. As the torque T increases and then decreases, 𝑛 changes accordingly. 

For a given value of 𝑛, the corresponding radius 𝑅𝐻, curvature 𝑘 and twist 𝑘𝑥𝑦can be found 

through Eqs.(74)-(76). According to Eqs. (59) and (60), there are 

𝑇 = 𝑀𝑏 cos𝛼𝐻 +𝑀𝑡 sin 𝛼𝐻                    (77) 

𝑃 =
−𝑀𝑏 sin𝛼𝐻+𝑀𝑡 cos𝛼𝐻

𝑅𝐻
                       (78) 

Eqs. (77) and (78) are then used to find the torque T and the reaction force P.  

 

 

4. Simulation results 
 

Mathematica was used to implement the theoretical derivation given above due to its strong 

ability to deal with symbolic operations. In particular, function Piecewise was used to define the 

stress distributions, function Integrate to implement the integrations in Eqs. (38), (40), (56) and 

(58), and function FindRoot to solve the nonlinear equations. The simulation results of the 

analytical model were compared to either FEA results or experimental data. The FEA results were 

obtained using ABAQUS/Standard, unless otherwise stated, in which the built-in user subroutine 

for modelling superelastic material was used, which are based on the constitutive models given by 

(Auricchio et al. 1997, Aurrichio and Sacco 1997). Table 2 lists the material constants used for the 

simulations in this section (Toi et al. 2004). Those associated with shear stress-strain relations are 

not independent and can be calculated according to Table 1.  

As the first example, consider a straight beam subjected to a bending moment. The cross 

section of the beam is a 0.1 by 0.1 mm square. Fig. 5 shows the curves of the bending moment 

against the curvature. The solid and the dashed lines correspond to the analytical and the FEA 
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results, respectively. The green, red and blue lines correspond to three different magnitudes of 

curvatures to which the beam is bent. Note that the analytical results fit the FEA results very well 

for all three bending magnitudes. 

Secondly, consider a straight beam with a circular cross section subjected to a pure torsion. 

Diameter of the section is 0.1 mm. Fig. 6 shows the curves of the torque against the twist. The 

solid and dashed lines correspond to the analytical and FEA results, respectively. The green, red 

and blue lines correspond to three different magnitudes of twist the beam is subjected to. Note that 

the analytical results are still comparable to the FEA results, but the agreement between the two 

approaches is not as good as that of the pure bending cases. According to Fig. 6, the larger the 

twist is, the greater the difference between the analytical and FEA results is. In general, the 

analytical model tends to give stiffer results than FEA does during loading. 

 

 
Table 2 Material properties used in simulation 

Material constant Value Material constant Value 

𝐸𝐴 34000 (MPa) 𝜎𝐴
𝑓
 110.4 (MPa) 

𝐸𝑀 28500 (MPa) 𝜀𝐿 0.047 

𝜎𝑀
𝑠  427.8 (MPa) 𝜇 0.33 

𝜎𝑀
𝑓

 542.8 (MPa) 𝜁 √3 

𝜎𝐴
𝑠 210.5 (MPa)   

 

 

 

Fig. 5 Moment-curvature curves of a straight beam. The solid and dashed lines correspond to the analytical 

and FEM results, respectively 

1284



 

 

 

 

 

 

Theoretical analysis of superelastic SMA helical structures subjected to axial… 

 

 

Fig. 6 Torque-twist curves of a straight beam. The solid and dashed lines correspond to the analytical and 

FEM results, respectively 

 

 

 

Fig. 7 Force-displacement curves of a helical structure formed by a thin coil 
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Consider now a helical structure formed by a thin coil with a circular cross section whose 

radius is 0.1 mm. The initial radius𝑅𝐻0, the initial pitch angle 𝛼𝐻0 and the initial longitudinal 

length ℎ0 of the helical structure are 3.65 mm, 2.5∘and 10mm, respectively. Two load cases, i.e., 

the axial load and the torsional load, are considered for this structure.  

In the axial load case, the longitudinal length ℎ of the helical structure first increases to about 

ten times of its original length ℎ0, followed by a recovery as the load is gradually released. The 

analytical results are compared with the results obtained by FEA. Fig. 7 shows the 

force-displacement curves of this load case. The horizontal axis is the ratio of the current 

longitudinal length to the original longitudinal length. The blue-solid lines and the red triangles 

correspond to the analytical results and the FEA results, respectively. Note that the analytical 

results are the same as the FEA results. In Fig. 7, the unloading path completely overlaps the 

loading path; as a result, only one path is seen. This suggests that for a helical structure formed by 

a thin wire, the superelastic property of SMA due to the phase transformation is not initiated even 

though the structure is axially loaded up to ten times of the original length.  

In the torsional load case, both ends of the helical structure are fixed in the axial direction and a 

360 rotation is applied to one end relative to the other end about the central axis. As a result, the 

helical structure is subjected to a torque as well as an axial reaction force. Fig. 8 shows the curves 

of the torque versus the angle of rotation. Note that the analytical model and FEA model phase 

transformation is initiated in this load case. Fig. 9 shows the curves of the reaction axial force 

versus the angle of rotation. Again, a good agreement between the analytical and FEM results is 

observed. 

 

 

 

 

Fig. 8 Torque-angle of rotation curves of a helical structure formed by a thin coil 
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Fig. 9 Reaction force-angle of rotation curves of a helical structure formed by a thin coil 

 

 

 

 
 

Fig. 10 Torque-angle of rotation curves of a helical structure formed by a thick coil 
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Fig. 11 Reaction force-angle of rotation curves of a helical structure formed by a thick coil 

 

 

Fig. 12 Force-displacement curves of a stocky helical structure formed by a thick coil 
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Finally, consider a “stocky” helical structure formed by a thick coil with a circular cross section 

whose radius is 0.5 mm. The geometric parameters of the helical structure are the same as those 

for the previous example.  

In the first load case for the stocky helical structure, a torsional load is applied. Again, a 

360∘rotation is applied to one end and both ends of the helical structure are fixed in the axial 

direction. Fig. 10 shows the curves of the torque versus the angle of rotation. Fig. 11 shows the 

curves of the axial reaction force versus the angle of rotation. Good agreements between the 

analytical and FEA results for both the torque and the axial reaction force can be observed. 

Different from the previous thin coil helical structure, both the analytical model and FEA model 

predicts the deviation between the loading and unloading paths, meaning that the superelastic 

property of the material is initiated as a result of loading. As the magnitude of torsional load is 

increased, the difference between the loading and unloading paths will further increase. It is found 

that the analytical model can calculate large hysteresis loops formed by the loading and unloading 

paths as the torsional load is increased. However, the FEA model encounters numerical difficulties 

for large torsional load. 

In the second load case, an axial force is applied to the stocky helical structure. Three different 

load magnitudes are considered, where the longitudinal length of the helical structure is loaded to 

six, eight and ten times of the original length, corresponding to small, medium and large load, 

respectively. Instead of being compared to the FEA results obtained from ABAQUS, the analytical 

results are compared with the experimental data extracted from Toi et al. (2004). Fig. 12 shows the 

force-displacement curves, where the solid lines and the triangles correspond to the analytical 

results and the experimental data, respectively, and the green, red and blue colours correspond to 

the small, medium and large load magnitudes, respectively. Toi et al. (2004) also developed a finite 

element algorithm exclusively for a superelastic helical spring. The results of this analysis are also 

plotted in Fig. 12 in dashed lines for comparison. Note that the analytical approach predicts the 

force-displacement relations better than the FEA during loading and at the early stage of unloading. 

At the mid unloading stage, both the analytical and FEM results fail to follow the experimental 

data well. The discrepancy between the analytical results and the experimental data during this 

stage mainly owes to the assumption that the stress decreases linearly with the strain along a 

constant slope of 𝐸𝜉 until the unloading plateaus is reached whereas in reality 𝐸𝜉  gradually 

reduces as the stress level drops towards the unloading plateaus.At the final unloading stage, both 

the theoretical and FEM results are in good agreement with the experimental data again. The 

above comparison suggests that the analytical model is able to predict the force-displacement 

relationships of a stocky helical structure well and to some extent produce even better results than 

the FEA exclusively developed for a superelastic helical spring. 

 

 

5. Conclusions 
 

In this paper, an analytical model has been developed, which is capable of predicting the 

mechanical responses of superelastic SMA helical structures subject to axial and torsional loads. 

Three assumptions have been made to the material models, i.e., independence between the normal 

and shear behaviours, quantitively similarity between the normal and shear stress-strain 

relationships and a simplified material constitutive law. The simulation results of various structural 

models by using the analytical model developed in the paper are compared to the numerical results 

or experimental data. First, it is found that the results given by the analytical model compare well 
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with the FEA results. Second, when compared to the experimental data, the analytical model gives 

even better results than the FEA model during the loading phases. Various numerical simulations 

performed in this paper clearly show the capability of the analytical model to predict the large 

deformation of the helical structures and the non-linear behaviours in the material. 

It should be noted that the theoretical approach developed in this paper has its limitations. First, 

it is assumed in section 2 that the superelastic normal and shear deformation behaviours are 

independent of each other. However, there exist experimental evidences that the superelastic 

normal and shear deformation behaviours are most likely to be coupled(Sun and Li 2002). The 

coupling leads to constitutive models for the material which is too complex to be implemented in 

our analytic approach. Second, the theoretical approach considers the situations in which only 

axial load is applied, only torsion is applied or both axial load and torsion are applied 

simultaneously. It does not take load histories into account, e.g. an axial load is applied and 

followed by an additional torsion or other loadings such as bending. Research has shown that the 

loading history could also change the constitutive model of an SMA sample (Berg 1995). 

Obviously, the material model used here is a simplification to otherwise rather intricate material 

behaviour, just as it was done by Atanackovic and Achenbach (1989) and Toi et al. (2004), without 

which the analytical approach would not be possible. Nevertheless, the results that we obtained 

compare favourably with the FEA and some experimental results which do not involve loading 

history. This indicates that the simplified model can still capture the main features of the SMA 

materials. Precisely which behaviour is more important than others in modelling SMA requires 

further investigation. 
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