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Abstract.    This study aims to propose a Bayesian approach to consider changes in temperature and vehicle 
weight as environmental and operational factors for vibration-based long-term bridge health monitoring. The 
Bayesian approach consists of three steps: step 1 is to identify damage-sensitive features from coefficients of 
the auto-regressive model utilizing bridge accelerations; step 2 is to perform a regression analysis of the 
damage-sensitive features to consider environmental and operational changes by means of the Bayesian 
regression; and step 3 is to make a decision on the bridge health condition based on residuals, differences 
between the observed and predicted damage-sensitive features, utilizing 95% confidence interval and the 
Bayesian hypothesis testing. Feasibility of the proposed approach is examined utilizing monitoring data on 
an in-service bridge recorded over a one-year period. Observations through the study demonstrated that the 
Bayesian regression considering environmental and operational changes led to more accurate results than 
that without considering environmental and operational changes. The Bayesian hypothesis testing utilizing 
data from the healthy bridge, the damage probability of the bridge was judged as no damage. 
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1. Introduction 
 

Maintaining and improving civil infrastructures including bridge structures are keen technical 
issues in many countries. Developing an effective maintenance strategy relies on a timely decision 
on the health condition of the structure. Structural health monitoring (SHM) using vibration data 
thus has been recognized as one of the promising technologies for providing a timely decision on 
the bridge health condition. Most precedent studies on SHM specifically examine changes in 
modal properties of structures (e.g., Doebling et al. 1996).The fundamental concept of this 
technology is that modal parameters are functions of structures’ physical properties. Therefore, a 
change in physical properties, such as reduced stiffness resulting from damage, will detectably 
change these modal properties. In fact, many techniques to identify the hidden information of 
structural integrity in the vibration data have been proposed to diagnose bridge structures 
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(Deraemaeker et al. 2007, Dilena and Morassi 2011 and Kim et al. 2012). However, real bridge 
structures are subject to changing environmental and operational conditions that affect structural 
integrity information during the long in-service period. Some components in the signals affected 
by those environmental and operational effects lurk in the measured vibration data and disguise 
themselves as structural responses (Sohn et al. 2003, and Deraemaeker et al. 2007). As in-service 
effects on vibration monitoring of bridges, temperature, wind-induced and traffic-induced 
vibrations and traffic mass effects are factors to be considered. Focusing on short and medium 
span bridges, however, temperature and traffics are dominant factors affecting the vibration of 
bridges (Peeters and De Roeck 2001, and Cunha et al. 2013). Therefore, how to consider those 
environmental and operational effects in long-term bridge health monitoring is a crucial issue. 

This study is intended to investigate a way to consider time-varying temperature and vehicle 
weight as environmental and operational factors for long-term vibration-based bridge health 
monitoring (BHM) by means of a Bayesian approach, which is an improvement from previous 
researches considering only temperature as an environmental factor by Kim et al. (2011, 2013a).   

The proposed Bayesian approach consists of three steps. Step 1 is to identify damage-sensitive 
features (damage indicators, DIs) from coefficients of the auto-regressive (AR) model utilizing 
bridge accelerations (Nair et al. 2006, Kim et al. 2012, 2013b). Since AR coefficients are closely 
linked with features of bridge vibrations, the DI changes due to changes in the bridge health 
condition as well as environmental and operational conditions during the monitoring campaign. 
Step 2 is to perform a regression analysis of the DIs identified in step 1 (observed DIs (DIob’s)) to 
consider environmental and operational changes by means of the Bayesian regression (Kitagawa 
and Gersch 1984). The Bayesian regression is useful to examine long-term monitoring data 
effectively by online updating. Step 3 is to make a decision on the bridge health condition based 
on residuals utilizing 95% confidence interval and the Bayesian hypothesis testing (Sankararaman 
and Mahadevan 2011). The residuals are differences between the DIob’s and the DI predicted by 
means of the Bayesian regression in step 2 (predicted DIs (DIpr’s)).  

The Bayesian approach is applied to investigate monitoring data of an in-service bridge. The 
data were measured at a seven-span plate-Gerber bridge recorded over a one-year period. This 
study considers time-varying temperature and vehicle weight as environmental and operational 
factors respectively. Vehicle weights are identified utilizing a bridge weigh-in-motion (BWIM) 
system (Moses1979 and Heng et al. 2011) installed on the bridge. All the data is taken from the 
healthy bridge, since no damage and deterioration was reported during the monitoring period. The 
influence of time-varying environmental and operational factors is investigated by comparing three 
cases: Case 1 is to utilize acceleration, temperature and vehicle weight data considering 
temperature and vehicle weight as environmental and operational factors; Case 2 is to utilize 
acceleration and temperature data considering temperature as environmental factor; and Case 3 is 
to utilize only acceleration data without considering environmental and operational changes. 

 
 

2. A Bayesian approach for long-term BHM to consider environmental changes 
 
2.1 Identification of damage-sensitive features from AR coefficients: step 1 
 
Many studies focus on changes in system frequencies and structural damping constants for the 

structural diagnosis of bridges by utilizing a linear time series model such as the AR model (e.g., 
Kim et al. 2012, 2013c). However, there exist drawbacks in modal parameter–based bridge 
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diagnosis using time series models; e.g., the optimal time series model for vibration responses of 
bridge structures usually comprises a higher-order term, and as a result the optimal model 
identifies even spurious modal parameters, which causes false system frequencies and damping 
constants. Those false modal parameters make it difficult to choose the proper modal parameters 
affected by structural damage. The drawback of the classical method is the driving force behind 
this study. This study considered an alternative parameter based on AR coefficients as a 
damage-sensitive feature for the vibration-based BHM because both system frequency and 
damping constant are related to AR coefficients. 

Step 1 is to identify the DIob from coefficients of the AR model of bridge acceleration 
responses. This paper includes only a brief description about the DI without covering details, since 
theoretical backgrounds of utilizing AR coefficients as a damage-sensitive feature have already 
investigated by Nair et al. (2006) for a model building structure and by Kim et al. (2013b, 2013c) 
for a model bridge and thus details can be fully accessed in the studies.  

Linear dynamic system can be idealized using the AR model shown in Eq. (1) (Kim et al. 2012, 
2013c).  

                           (1) 

where zk denotes the k-th output of a system, ai is the i-th AR coefficient, p is the optimal AR order 
and ek indicates the k-th error. The optimal AR order, which is obtainable by means of Akaike 
Information Criteria (AIC) (Akaike 1974), is used in this study. AIC is given by Eq. (2) 

                       (2) 

where n indicates the number of data, m represents AR order, and E2 means square of prediction 
error. The AIC consists of two terms; the first term is a log-likelihood function and the second 
term is a penalty function for the number of the AR order.  

The DIob is defined by Eq. (3) (Nair et al. 2006 and Kim et al. 2013c). 

                         (3) 

where a1, a2 and a3 indicate the first, second and third AR coefficients respectively. Since the AR 
coefficients are closely linked with bridge vibrations, the DIob changes due to changes in bridge 
health condition as well as environmental and operational conditions. Nair et al. (2006) showed 
that the first three AR coefficients are the most significant among all the coefficients of the AR 
model utilizing data from the laboratory experiment on a model building. Kim et al. (2013b) also 
observed that the DIob, considering up to the third order of the AR coefficients, is a promising 
parameter in bridge health monitoring, since the DIob is observed to be the most sensitive to 
damage through a bridge-moving vehicle laboratory experiment. 

 
2.2 Regression analysis to consider environmental changes by Bayesian regression: step 2 
 
2.2.1 Introduction 
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In a long-term bridge monitoring, the DIob varies due to time-varying environmental and 
operational conditions. This study adopts the Bayesian regression to cope with influences of these 
time-varying environmental and operational conditions on the DIob’s. The idea is to predict DIs 
(DIpr) considering environmental and operational effects in a regression model. If DIpr are 
comparable with DIob’s then the residual that is the difference between the DIpr and DIob will be 
small enough. In other words the residuals are fitted within a confidence interval statistically. 
Therefore this study monitors statistical changes of residuals of newly observed DIob’s. If the 
residual of the DIob’s crosses a confidence level, it can be treated as a potential anomaly. 

Step 2 is to perform a regression analysis of the DIob’s identified in the step 1 to consider 
influences from environmental and operational factors by means of the Bayesian regression as an 
online updating method (Kitagawa and Gersch 1984). 

 
2.2.2 Bayesian regression algorithm 
The state space model for the Bayesian regression is given by Eqs. (4) and (5). 

                     (4) 

                     (5) 

where xt and yt are the state matrix and observation at a time t respectively. vt and wt denote noise 
at t. For any particular model of the time series, F, G and Ht are known. The future state can be 
predicted in terms of the Kalman filter as (Kitagawa and Gersch 1984) 

1|11|   tttt xFx                   (6) 

TT
1|11| GQGFFVV   tttt                  (7) 

where 1| ttx and 1| ttV denote the predicted conditional mean matrix and covariance matrix at t 

under the condition of the state at t-1 respectively. Q stands for the covariance matrix of vt. The 
filtered state also can be estimated as 

 1|1||   ttttttttt y xHKxx                  (8) 

  
  1||  tttttt VHKIV              (9) 

where Kt is the Kalman gain defined by Eq. (10). 
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T
1|



  Rtttttttt HVHHVK           (10) 

where R denotes the variance of wt. This study yields recursive computations for filtered estimates 
of the state matrix, and calculates predictions and residuals. Prediction at t ( ) are defined by Eq. 
(11). 
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Residuals at t (rt), difference between the observation and prediction at t, are defined by Eq. 
(12). 

                  (12) 
  
2.2.3 Application to this study 

This study adopts DIob at t ( ) as yt and DIpr at t ( ) as  respectively. Moreover, this 

study adopts a time-series model to consider environmental factors defined by Eq. (13). 
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where q stands for the model order. αi and βi are model parameters.  and wt denote 
environmental and operational factors and noise at t respectively. In other words, this study adopts 
the following relationships for the parameter and matrixes in Eqs. (4) and (5). 

)(
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IF (Identity matrix)                   (15) 

0G  (Null matrix)                     (16) 
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1R                  (19) 

Moreover the initial mean and covariance matrixes can be described as 

0x 0|0 (Null matrix)                 (20) 

IV 0|0 (Identity matrix)                     (21) 

The flowchart of the Bayesian regression analysis to consider environmental changes in this 
study is shown in Fig. 1. 

 
2.3 Decision-making on bridge health condition based on residuals: step 3 
 
Step 3 is to make a decision on bridge health condition based on residuals utilizing 95% 

confidence interval and the Bayesian hypothesis testing. In the context of bridge health monitoring, 
we assumed that the residuals follow a normal distribution (Jiang and Mahadevan 2008). The 
residuals are differences between the DIob in the step 1 and the DIpr from the Bayesian regression 
in the step 2. 
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Fig. 1 Flowchart of the Bayesian regression analysis to consider environmental changes 
 
 
2.3.1 Decision-making utilizing 95% confidence interval 
This study adopts a fitting probability of the residuals within 95% confidence interval. The 

threshold for the 95% confidence interval is represented by μ±1.96σ, where μ and σ indicate the 
mean and standard deviation of the residuals respectively. The 95% confidence interval means that 
the interval contains 95% of the residuals of observations taken from the healthy bridge. Therefore, 
if the fitting probability is much less than 95%, there might be some changes in the bridge health 
condition. 

 
2.3.2 Decision-making utilizing the Bayesian hypothesis testing 
In Bayesian statistics, it is possible to compute the probability of a hypothesis conditionally on 

observed data. Quantities that are conditional on observed data are called posterior, and the 
posterior odds is used for comparing hypothesis as shown in Eq. (22). 
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If the null hypothesis (H0) is defined as ‘healthy’ and the alternate hypothesis (H1) is defined as 
‘damage’. The posterior odds are obtained by utilizing priors and marginal likelihoods as follows. 
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where D refers to the data obtained during monitoring, )H()H( 01 pp indicates the prior odds, and 

)H|( 1Dp  and )H|( 0Dp  are called the marginal likelihoods. 
We call the ratio of the marginal likelihoods as Bayes factor (B), which is defined as the ratio of 

likelihood of the two scenarios ‘damage’ and ‘healthy’ as follows (e.g., Kass and Raftery 1995). 
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where θ0 and θ1 are parameters under H0 and H1 respectively. 
If the Bayes factor is greater than 1, it implies that the data favor the hypothesis H1 and hence 

suggests that there is damage. If the Bayes factor is less than 1, then there is no damage. 
According to Jeffreys (1998), a Bayes factor such that 1<B<3 is ‘barely worth mentioning’, 
3<B<10 is ‘substantial’, 10<B<30 is ‘strong’, 30<B<100 is ‘very strong’, and B>100 is ‘decisive’. 
In other words, B<1 is ‘nothing (no damage)’, 1<B<3 is ‘very small’, 3<B<10 is ‘small’, 10<B<30 
is ‘strong’, 30<B<100 is ‘very strong’ and B>100 is ‘decisive (damage)’. In practical applications, 
it might provide a threshold to decide an inspection, e.g. an emergency inspection if the Bayes 
factor gets more than 100 continuously, although more comprehensive studies are needed. 

 
 

3. Long-term monitoring on an in-service plate-Gerber bridge 
 

This study utilizes data monitored at a short span steel girder bridge recorded over a one year 
period. The seven-span plate-Gerber bridge shown in Fig. 2 is the observed bridge, which is 
located on a busy national road in Japan. The bridge properties are summarized in Table 1. The 
plan view with sensor locations on the observation span is shown in Fig. 3. Therein, UA-1, UA-2, 
DA-1 and DA-2 stand for accelerometers (high sensitivity accelerometers made by Tokyo Sokki 
Kenkyujo Co., Ltd.) to measure acceleration responses of steel girders on up (UA) and down (DA) 
lanes. The sampling rate was 200 Hz for acceleration measurements. Thermometers (thermocouple 
thermometers made by Tokyo Sokki Kenkyujo Co., Ltd.) are denoted by T-5 and T-6. Temperature 
is measured once every hour. A BWIM system (Moses 1979 and Heng et al. 2011) is installed in 
the bridge, and this study also utilizes the vehicle’s whole weight estimated by the BWIM system. 

 
Table 1 Properties of the observation bridge 

Construction year 1960

Bridge length (m) 186.4

Span length (m) Hanging girder 16.0

Anchorage girder 40.8
Width (m) 8.0
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It demonstrated that the regression analysis considering environmental and operational changes 
(Case 1) leads to more accurate results than that without considering environmental and 
operational changes (Case 3). It is also obvious that the fitting probability in Case 1 is greater than 
that in Case 2 at the sensors of UA-1. It demonstrated that the regression analysis considering both 
temperature and vehicle weight as environmental and operational factors (Case 1) leads to more 
accurate results than that considering only temperature as an environmental factor (Case 2), even 
though the differences are negligible except UA-1 in which UA-1 is located on the entering span 
of the up lane and easily affected by large dynamic wheel loads of the vehicles activated when the 
vehicles pass on the expansion joint of the entering span (Kim et al. 2007). From this result, it 
would be reasonable to consider only temperature under condition less affected by passing 
vehicles. 

 
4.2 Bayes factor for decision-making on anomaly from residuals 
 
As an example of applying the Bayesian hypothesis testing, this study assumes that the null 

hypothesis is defined by Eq. (25) and the alternate hypothesis is defined by Eq. (26) 
(Sankararaman and Mahadevan 2011). 

                              (25) 

                              (26) 

where   denotes the mean value of the residual shown in Eq. (12). 
This study adopts the equation for B proposed by Jiang and Mahadevan (2008) shown in Eq. 

(27).  
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(27) 

where N denotes the number of the data and ri represents the i-th residual.  
Table 4 shows Bayes factor (B) of the residuals after t=156 for Cases 1, 2 and 3. The Bayes 

factors were 0<B<1 except UA-1 of Case 1. Therefore, the probability of damage of the 
observation bridge is ‘no damage’, which is natural since data from healthy bridge were 
considered. At UA-1 of Case 1, greater mean values with less standard deviation of the residuals 
than other cases would result in relatively bigger Bayes factor (see Eq. (27)). 

Table 5 shows the means and standard deviations of the residuals after t=156 in Cases 1, 2 and 
3. Observations from Tables 4 and 5 show that the greater the mean values with less standard 
deviation of the residuals led to bigger Bayes factors. 

0:H0 

0:H1 
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Table 4 Bayes factor of residuals after t=156 in Bayesian hypothesis testing in Cases 1, 2 and 3 

 UA-1 UA-2 DA-1 DA-2 
Case 1 1.26(very small) 0.10(no damage) 0.11(no damage) 0.13(no damage) 

Case 2 0.17(no damage) 0.09(no damage) 0.14(no damage) 0.16(no damage) 

Case 3 0.13(no damage) 0.16(no damage) 0.11(no damage) 0.10(no damage) 

 
 

Table 5 Mean values and standard deviations of the residuals after t=156 in Cases 1, 2 and 3 

 UA-1 UA-2 DA-1 DA-2 

μ σ μ σ μ σ μ σ 

Case 1 -0.0042     0.020 -0.0013     0.038 0.0012    0.020 0.0027    0.034 

Case 2 -0.0025     0.024 -0.0010     0.042 0.0017    0.021 0.0035    0.035 

Case 3 -0.0025     0.030 -0.0045     0.047 0.0012    0.021 0.0014    0.038 

 
 
5. Conclusions 
 

This study investigated a way to consider changes in temperature and vehicle weight as 
environmental and operational factors for long-term vibration-based BHM by applying a Bayesian 
approach to long-term monitoring data on an in-service plate-Gerber bridge. The Bayesian 
approach consists of three steps: step 1 is to identify damage-sensitive features from coefficients of 
the AR model utilizing bridge accelerations; step 2 is to make a regression analysis of the 
damage-sensitive features to consider environmental and operational changes by means of the 
Bayesian regression; step 3 is to make a decision based on the residuals utilizing 95% confidence 
interval and the Bayesian hypothesis testing. Observations through this study could be summarized 
as follows.  
(1) The Bayesian regression considering environmental and operational changes led to more 

accurate results than that without considering environmental and operational changes. 
(2) Regression considering only temperature change was comparable with the regression 

considering changes in temperature and vehicles on the bridge. From this result, it could be 
concluded that considering only temperature as an environmental factor would be useful in 
vibration-based long-term monitoring. 

(3) In the Bayesian hypothesis testing utilizing data from the healthy bridge, the damage 
probability of the bridge was judged as no damage. However greater mean values with less 
standard deviation of residuals led to a bigger Bayes factor, which suggests further 
investigations on establishing a proper hypothesis, for instance “H0: =0±” where  denotes 
a bias of mean residuals, etc. 
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