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Abstract. This paper proposed a structural time-varying damage detection method by using 
synchrosqueezing wavelet transform. The instantaneous frequencies of a structure with time-varying 
damage are first extracted using the synchrosqueezing wavelet transform. Since the proposed 
synchrosqueezing wavelet transform is invertible, thus each individual component can be reconstructed and 
the modal participation factor ratio can be extracted based on the amplitude of the analytical signals of the 
reconstructed individual components. Then, the new time-varying damage index is defined based on the 
extracted instantaneous frequencies and modal participation factor ratio. Both free and forced vibrations of a 
classical Duffing nonlinear system and a simply supported beam structure with abrupt and linear 
time-varying damage are simulated. The proposed synchrosqueezing wavelet transform method can 
successfully extract the instantaneous frequencies of the damaged structures under free vibration or vibration 
due to earthquake excitation. The results also show that the defined time-varying damage index can 
effectively track structural time-varying damage. 
 

Keywords:  synchrosqueezing wavelet transform; instantaneous frequency; modal participation factor ratio; 

time-varying damage detection 

 
 
1. Introduction 
 

Civil engineering structures often suffer local or global damage when they are subjected to 

earthquakes, tornados and other extreme loads. The structural damage causes structural dynamic 

characteristic properties vary over time and leads to non-stationary responses. Moreover, during 

the oscillation, the degree of structural damage usually varies from minor to severe. To track the 

structural damage evolution during the vibration, it is quite necessary to identify the time-varying 

structural parameters such as instantaneous modal frequencies and mode shapes from the 

measured responses.  

In recent years, identification of time-varying structures and damage detection based on 

time-frequency representation (TFR) analysis method has been attracting wide attention. Various 
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time-frequency methods proposed in literature include short-time Fourier transform (STFT), 

Gabor transform, Cohen class quadratic distribution, Hilbert-Huang transform (HHT) (Huang et al. 

1998, 1999) and continuous wavelet transform (CWT) (Kijewski and Kareem 1999, 2007). Among 

the above mentioned methods, HHT and CWT play the most important role without adding more 

complexity. Huang et al. (1998) explored a sifting procedure called empirical modal 

decomposition (EMD) to decompose a multi-component signal into several intrinsic mode 

functions (IMFs), then Hilbert spectral analysis was employed to realize the extraction of 

instantaneous characteristics of non-stationary signals. To solve mode mixing problem in EMD, 

Wu and Huang (2009) further developed ensemble empirical modal decomposition (EEMD). Over 

the last two decades, HHT has been successfully applied in many engineering fields. However, 

since HHT belongs to empirical analysis method, it still encounters a few problems in practical 

application, for example, HHT still have some difficulties in negative frequency, distortion, 

non-convergence EMD and the ambiguity of IMF definition (Huang et al. 2005). In addition, HHT 

can’t decompose a signal with overlapping modal frequencies (Chen and Wang 2012). 

Wavelet transform as one of the time-frequency analysis tools has attracted wide attention in 

recent years. Ruzzene et al. (1997) introduced complex wavelet transform to estimate natural 

frequencies and viscous damping ratios from responses of both free and ambient vibrations. Hou et 

al. (2006) employed a wavelet-based structural health monitoring technique to extract 

instantaneous mode shapes from the responses due to earthquake excitations. More recently, Xu 

and Shi (2012) combined wavelet theory and state-space method for the identification of dynamic 

parameters in linear time-varying system. Although wavelet transform has been widely used in 

time-varying parameter identification or damage detection, Kijewski and Kareem (2003) pointed 

out that wavelet transform can’t always provide finer enough frequency resolution for long period 

signal components which is marked for vibration response of civil engineering structures. 

Therefore, how to get a clear view of time-frequency curves about measured signal remains a 

problem to be resolved. 

More recently, Daubechies et al. (2012) explored a new wavelet based time-frequency method 

named synchrosqueezing wavelet transform, which is a combination of wavelet analysis and 

reallocation method. Their proposed method can effectively reassign time frequency curves to get 

more accurate results, and decompose an arbitrary signal to a linear superposition of several 

approximate harmonics at ease. Wu et al. (2011) presented an EMD-inspired synchrosqueezing 

method to extract close spaced instantaneous frequencies. Li and Liang (2012a,b) proposed a 

generalized synchrosqueezing transform (GST) approach to detect and diagnose gearbox faults due 

to the diffusions of the TFR energy along time or frequency axes. Although the developed 

synchrosqueezing wavelet transform is powerful to extract instantaneous frequencies of signals 

and reconstruct individual signal components, practical applications are still relatively rare, 

especially in the field of civil engineering.  

Civil engineering structures are prone to damage even failure when they are subjected to 

earthquakes or other extreme loads. Structural damage often causes changes in physical parameters, 

such as stiffness, damping and mass. These changes in physical parameters in turn affect the 

dynamic behavior of the structure. In the last few decades, vibration based damage detection 

methods have attracted tremendous amount of attention (Yan et al. 2007, Kopsaftopoulos and 

Fassois 2013). The basic idea of these methods is that modal parameters are functions of physical 

properties. Any damage such as stiffness reduction may cause detectable changes in frequency, 

mode shapes and so on. Recently, the wavelet transform based time-frequency analysis methods 

were developed for civil structural damage detection. For instance, Rucka (2011) dealt with the 
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wavelet-based damage detection technique on a cantilever beam. Golmohamadi et al. (2012) 

proposed an effective method for damage estimation based on statistical moments of the energy 

density function of the vibration response in the time-frequency domain by using CWT. 

In this paper, synchrosqueezing wavelet transform is introduced to estimate instantaneous 

frequencies of structures with time-varying damage. A nonlinear Duffing system with free and 

forced vibrations is simulated as numerical examples to validate the accuracy and effectiveness of 

the method. The estimated instantaneous frequencies can be directly employed to detect the 

presence and the quantification of damage severity. However, frequency as a damage index only 

relates well with the change of global stiffness but is less sensitive to local stiffness reduction 

(Doebling et al. 1998, Yang and Wang 2010, Fayyadh et al. 2011). On the other hand, mode shapes 

and its derivatives are more promising in the detection of both location and degree of damage. To 

effectively detect the structural damage, combined indices of natural frequency and mode shape 

are more widely used (Pandey and Biswas 1994, Jaishi and Ren 2006, Yan et al. 2006, Yang and 

Liu 2006, Wang and Lin 2007). In this study, a new time-varying damage index is defined, which 

just needs to know the instantaneous frequency and the modal participation factor ratio and does 

not require mass normalized mode shape. The effectiveness of this new damage index is validated 

by a numerical simply supported beam with abrupt and linear time-varying damage, while the 

accuracy of instantaneous frequency is verified by a nonlinear Duffing system. 

 

 

2. Theoretical background 
 

2.1 Continues wavelet transform 
 

Wavelet transform is a time-frequency signal processing method which relies on the 

introduction of an appropriate basis. Detailed information regarding wavelet transform and its 

application can be found in (Mallat 1999). For a given parent wavelet function 𝜓(𝑡), that is 

𝜓(𝑡) ∈ 𝐿2(𝑅) , a family of wavelet 𝜓𝑎,𝑏(𝑡) is generated by dilations and translations of itself, 

𝜓𝑎,𝑏(𝑡) =
1

√𝑎
 𝜓 (

𝑡−𝑏

𝑎
)                             (1) 

where a is a scale factor which plays the role of the inverse of frequency, and b is a translation 

factor related to time. The CWT of any signal x(t) is defined by 

 𝑊𝑥(𝑎, 𝑏) = ∫ 𝑥(𝑡)
1

√𝑎

∞

−∞
𝜓(

𝑡−𝑏

𝑎
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 d𝑡                        (2) 

in which 𝜓 (
𝑡−𝑏

𝑎
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
  represents the complex conjugate of a family of wavelet 𝜓(

𝑡−𝑏

𝑎
). Wavelet 

coefficients 𝑊𝑥(𝑎, 𝑏)  represent a measure of the similitude between the dilated parent wavelet 

and the signal x(t) at scale a and time b. The mapping between scale factor a and frequency 𝜔 

facilitates displaying wavelet coefficients in time-frequency plane.  

The selection of an appropriate type of parent wavelet function is crucial for the effectiveness 

of CWT. Though there are many parent wavelets used in practice, of both discrete and continuous 

form, this paper shall focus on the complex Morlet wavelet transform. In mathematics, complex 

Morlet wavelet is a wavelet composed of a complex exponential carrier multiplied by a Gaussian 

window(Bernardino and Santos-Victor 2007), and the mathematical expression of this wavelet is 
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 𝜓σ(𝑡) = 𝑐σπ
−
1

4𝑒−
𝑡2

2 (𝑒−𝑖σ𝑡 − 𝜅𝜎)                   (3) 

where 𝜅𝜎 = 𝑒
−
𝜎2

2  is defined by the admissibility criterion and the normalisation constant 𝑐𝜎 is 

 𝑐𝜎 = (1 + 𝑒
−𝜎2 − 2𝑒−

3𝜎2

4 )−
1

2                      (4) 

The Fourier transform of the complex Morlet wavelet is 

𝜓̂σ(𝜔) = 𝑐σπ
−
1

4 (𝑒
−
(σ−𝜔)2

2 − 𝜅𝜎𝑒
−
𝜔2

2 )                   (5) 

The value of 𝜎 determines the value of the central frequency Fc and the frequency bandwidth Fb. 

Fc is the position of the global maximum of 𝜓̂𝜎(𝜔) which is given by the solution of Eq. (6) 

 (𝐹𝑐 − σ)
2 − 1 = (𝐹𝑐

2 − 1)𝑒−σ𝐹𝑐                (6) 

The parameter 𝜎 in the complex Morlet wavelet allows trade between time and frequency 

resolutions. As a result, one can obtain the optimum resolution by changing the value 

of 𝜎 continuously. Sparsity of wavelet coefficients is usually used as the rule for evaluating the 

wavelet base, and it can be measured with wavelet entropy (Lin and Qu 2000). Therefore, in this 

study, the optimal value of parameter 𝜎 is obtained by finding the minimal value of wavelet 

entropy. 

 
2.2 Synchrosqueezing wavelet transform 
 

A practical time-varying response signal usually includes several components, and each 

component has its own local features, such as instantaneous frequency. The definition of 

instantaneous frequency is the derivative of the phase of the analytical signal, whose real part and 

imaginary part are real signal itself and its Hilbert transform, respectively. The objective of the 

synchrosqueezing wavelet transform is to extract instantaneous frequency by characterizing time 

frequency plane. Set a typical time varying signal as the sum of n IMFs and a residual (Huang et al. 

1998, 1999). 

       𝑥(𝑡) = ∑ 𝑥𝑖(𝑡)
𝑛
𝑖=1 + 𝑟(𝑡)                         (7) 

in which, each IMF  𝑥𝑖(𝑡) = 𝐴𝑖(𝑡)cos(𝜙𝑖(𝑡))  is an oscillating function. 𝐴𝑖(𝑡)  and 𝜙𝑖(𝑡) 
represent time-varying amplitude and phase angle respectively. The change in time of 𝐴𝑖(𝑡) and 

𝜙′𝑖(𝑡) is much slower than the change of 𝑥(𝑡) itself, and 𝑟(𝑡) represents noise or observation 

error. What we need to do is extracting the amplitude factor 𝐴𝑖(𝑡) and instantaneous frequency 

𝜙′𝑖(𝑡) for each i by refining time frequency curves.  

Signals of Eq. (7) arise naturally in the area of civil engineering. After performing CWT of a 

vibration signal, several different algorithms (Kijewski and Kareem 2003, Hou et al. 2006) can be 

employed to support wavelet ridge extraction. Nevertheless, a meaningful research (Daubechies 

and Maes 1996) indicates that wavelet coefficients itself is an oscillating function of time even for 

the simplest harmonic wave function. If the parent wave function 𝜓 has fast decay, its Fourier 

transform 𝜓̂(𝜉) is approximately equal to zero in the negative frequencies: 𝜓̂(𝜉) = 0, for 𝜉 < 0, 

and is concentrated around 𝑎 = 𝜔0 𝜔⁄ . Take 𝑥(𝑡) = 𝐴cos(𝜔𝑡) for example, and we can rewrite 

wavelet coefficients 𝑊𝑥(𝑎, 𝑏) by Plancherel’s theorem, as  
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𝑊𝑥(𝑎, 𝑏) =
1

2𝜋
∫𝑥 (𝜉)√𝑎𝜓̂(𝑎𝜉)̅̅ ̅̅ ̅̅ ̅̅ 𝑒𝑖𝑏𝜉d𝜉 =

𝐴

4𝜋
∫[𝛿(𝜉 − 𝜔) + 𝛿(𝜉 + 𝜔)]√𝑎𝜓̂(𝑎𝜉)̅̅ ̅̅ ̅̅ ̅̅ 𝑒𝑖𝑏𝜉d𝜉 

             =
𝐴

4𝜋
√𝑎𝜓̂(𝑎𝜔)̅̅ ̅̅ ̅̅ ̅̅ ̅𝑒𝑖𝑏𝜔                           (8) 

in which, 𝑥(𝜉) is the Fourier transform of signal x(t), 𝜓̂(𝜉) =
1

√2π
∫ 𝜓(𝑡)
∞

−∞
𝑒−𝑖𝜉𝑡d𝑡  represents 𝜓 

in frequency domain. Debechies and Maes (1996) indicates that although 𝑊𝑥(𝑎, 𝑏) is spread out 

in scale a, its oscillatory behavior in time b points to the original frequency 𝜔,  no matter what the 

value of a would be. Consequently, the instantaneous frequency is preliminarily estimated by 

taking derivatives of wavelet coefficients. The formula of the computation is shown as 

𝜔𝑥(𝑎, 𝑏) = {

−𝑖𝜕𝑏𝑊𝑥(𝑎,𝑏)

𝑊𝑥(𝑎,𝑏)
  |𝑊𝑥(𝑎, 𝑏)| > 0

∞   |𝑊𝑥(𝑎, 𝑏)| = 0
                      (9) 

In the synchrosqueezing step, the energy from time-scale plane is transferred to the 

time-frequency plane according to a map between (𝑎, 𝑏) and (𝜔𝑥(𝑎, 𝑏), 𝑏) . The frequency 

variable 𝜔 and scale factor a were “binned”, namely discretized, i.e., 𝑊𝑥(𝑎, 𝑏) was computed 

only at discrete points ai, with 𝑎𝑖 − 𝑎𝑖−1 = (𝛥𝑎)𝑖, and its synchrosqueezing value was likewise 

determined merely at the centers 𝜔𝑙  of successive bins [𝜔𝑙 −
1

2
𝜔,𝜔𝑙 +

1

2
𝜔 ], with 𝜔𝑙 −

𝜔𝑙−1 = 𝜔. Therefore, the synchrosqueezing wavelet transform of x(t) is expressed as 

 𝑇𝑥(𝜔𝑙, 𝑏) = ∑ 𝑊𝑥(𝑎𝑖, 𝑏)𝑎𝑖
−3 2⁄

𝑎𝑖:|𝜔𝑥(𝑎𝑖,𝑏)−𝜔𝑙|≤𝛥𝜔 2⁄ (𝛥𝑎)𝑖              (10) 

If frequency 𝜔 and scale a are treated as continuous variables, the analog of the Eq. (10) is  

𝑇𝑥(𝜔, 𝑏) = ∫ 𝑊𝑥(𝑎, 𝑏)𝑎
−3 2⁄

𝑎:|𝜔𝑥(𝑎,𝑏)−𝜔𝑙|≤𝛥𝜔 2⁄
d𝑎                (11) 

In practice, Thakur et al. (2013) noted that the discrete wavelet transform samples the CWT 

coefficient 𝑊𝑥(𝑎, 𝑏) at the locations (𝑎𝑖, 𝑏), where 𝑎𝑖 = 2
𝑖/𝑛𝑣 , 𝑖 = 1,… , 𝐿𝑛𝑣, L is a nonnegative 

integer and controls the interest largest scale value, the number of voices 𝑛𝑣 is a user-defined 

parameter that controls the number of scales and its value was recommended as 32. Then, the 

discrete wavelet transform coefficient is given with respect to 𝑛𝑎 = 𝐿𝑛𝑣 log-scale samples of the 

scale a, and this leads to some considerations on estimating Tx. First, due to the lower resolutions 

in the lower frequencies (larger scales), the frequency domain is divided into na components on a 

log scale. Second, the transform 𝑎(𝑖) = 2𝑖/𝑛𝑣 , 𝑑𝑎(𝑖) = 𝑎
log (2)

𝑛𝑣
d𝑖, leads to the modification 

integrand 𝑊𝑥(𝑎, 𝑏)𝑎
−1/2 log (2)

𝑛𝑣
d𝑖 in Eq. (11). Since 𝛥𝑖 = 1 , the discrete synchrosqueezing 

wavelet transform 𝑇𝑥(𝜔𝑙, 𝑏) of Eq. (10) can be further calculated as 

𝑇𝑥(𝜔𝑙, 𝑏) = ∑ 𝑊𝑥(𝑎𝑖, 𝑏)𝑎𝑖
−1 2⁄

𝑎𝑖:𝜔𝑥(𝑎𝑖,𝑏)∈ [𝜔𝑙−
1

2
𝜔,   𝜔𝑙+

1

2
𝜔]

log (2)

𝑛𝑣
             (12) 

in which, 𝜔𝑙 = 2
𝑙𝜔 1

𝑚𝑡
 (𝑙 = 0, 1, 2, … , 𝑛𝑎 − 1) for a signal 𝑥(𝑡) is discretized over an interval 

of length 𝑚𝑡.  𝑡 is the discretization period, 𝑚 is total number of discretization points and 

its log2 value should be a nonnegative integer, and 𝜔 =
1

𝑛𝑎−1
log2 (

𝑚

2
). 

As a result, signals with the expression of Eq. (7) will have a frequency image |𝑇𝑥(𝜔𝑙 , 𝑏)| 
composed of several curves in the time-frequency plane. The instantaneous frequency curves can 
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be extracted by maximizing a functional of the energy of the curve. 

Unlike most TFR methods, synchrosqueezing wavelet transform allows individual 

reconstruction of component signals. In other words, synchrosqueezing wavelet transform is 

invertible. It is expressed by Eqs. (13) and (14) that the original signal can be reconstructed after 

synchrosqueezing wavelet transform is performed. 

∫ 𝑊𝑥(𝑎, 𝑏)𝑎
−3 2⁄

∞

0

 d𝑎 =
1

2𝜋
∫ ∫ 𝑥(𝜉)𝜓̂(𝑎𝜉)̅̅ ̅̅ ̅̅ ̅̅ 𝑒𝑖𝑏𝜉𝑎−1d𝑎d𝜉

∞

0

∞

−∞

     

=
1

2𝜋
∫ ∫ 𝑥(𝜉)𝜓̂(𝑎𝜉)̅̅ ̅̅ ̅̅ ̅̅ 𝑒𝑖𝑏𝜉𝑎−1d𝑎d𝜉

∞

0

∞

0

 

= ∫ 𝜓̂(𝜁)̅̅ ̅̅ ̅̅∞

0

d𝜁

𝜁
∙
1

2𝜋
∫ 𝑥(𝜉)𝑒𝑖𝑏𝜉d𝜉
∞

0
                      (13) 

where 𝜓̂(𝜁) represents the Fourier transform of parent wavelet function 𝜓(𝑡), 𝜓̂(𝑎𝜉) is the 

complex conjugate of  𝜓(𝑎𝜉) . By defining a normalizing constant  𝐶𝜓 =
1

2
∫ 𝜓̂(𝜁)̅̅ ̅̅ ̅̅∞

0

d𝜁

𝜁
, the 

original signal can be estimated as 

     𝑥(𝑏) = ℜ𝔢[𝐶𝜓
−1(∫ 𝑊𝑥(𝑎, 𝑏)𝑎

−3 2⁄ d𝑎
∞

0
)]                 (14) 

where ℜ𝔢[]  returns the real part of the objective function. In the piecewise constant 

approximation corresponding to the binning in a, Eq. (14) becomes 

𝑥(𝑏) ≈ ℜ𝔢[𝐶𝜓
−1∑ 𝑊𝑥(𝑎, 𝑏)𝑖 𝑎𝑖

−3 2⁄ (𝛥𝑎)𝑖] = ℜ𝔢[𝐶𝜓
−1∑ 𝑇𝑥(𝜔𝑙, 𝑏)(𝛥𝜔)𝑙 ]         (15) 

Since a wide range of practical response signals accord with the assumptions given by 

synchrosqueezing algorithm, each component of analyzed signal can be estimated successfully, 

provided a sufficiently fine division of frequency bins {𝜔𝑙}.  

 

2.3 Time-varying damage index 
 

Since structural damage often causes the changes of modal parameters, therefore, structural 

modal parameters such as frequency and mode shape or their combinations can be used for 

structural damage detection. As one of the candidate damage indices, structural modal flexibility is 

commonly used for structural damage detection (Pandey and Biswas 1994). With mode shapes 

normalized to unit mass, as 𝜱𝑴𝜱𝑻 = 𝑰, The modal flexibility and its increment can be obtained 

from the modal data as 

𝑭 = 𝜱𝜴−𝟏𝜱𝑻 = ∑
𝜙𝑖  𝜙𝑖 

𝑇

𝜔𝑖 
2

𝑁
𝑖=1                       (16a) 

     𝜟 = 𝑭 − 𝑭𝑑                            (16b) 

in which, 𝜱 = [𝝓𝟏  𝝓𝟐 …  𝝓𝑵  ] is the mass normalized mode shape matrix, the subscript i 

represents the i
th
 order mode. M and I are mass matrix and identity matrix, respectively. 𝜔𝑖  is the 

i
th
 order modal frequency and 𝜴 = diag(𝜔𝑖 

2). N is the number of degree of freedom (DOF). 𝑭 

and 𝑭𝒅 are modal flexibility matrices for the intact and the damaged cases, respectively. 𝜟 

reflects the change of flexibility matrix, which can be used to detect structural damage. The modal 

flexibility matrix converges rapidly with the increase of modal frequency, and thus only a few low 
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order modes suffice to make a good estimation of the flexibility matrix.  

Recently, the modal flexibility index has been widely applied in the field of structural damage 

detection. However, it is difficult to obtain complete information about modal flexibility in 

practice, especially for structures suffering time-varying damage. Furthermore, it is hard to obtain 

the mass normalized mode shape. Inspired by the equations of modal flexibility damage index, we 

present a new time-varying damage index which just needs to know the instantaneous frequency 

and the modal participation factor ratio and does not require mass normalized mode shape.   

Set displacement responses (similarly, other measured responses such as acceleration and 

velocity also can be used) of two nodes (s and l) are known, termed as xs(t) and xl(t). They can be 

simply expressed in the modal coordinates:  

{
𝑥𝑠 (𝑡) = 𝜙𝑠1𝑞1 + 𝜙𝑠2𝑞2 +𝜙𝑠3𝑞3 +⋯+ 𝜙𝑠𝑁𝑞𝑁
𝑥𝑙 (𝑡) = 𝜙𝑙1𝑞1 + 𝜙𝑙2𝑞2 + 𝜙𝑙3𝑞3 +⋯+ 𝜙𝑙𝑁𝑞𝑁

               (17) 

in which, [𝜙𝑠1  𝜙𝑠2  𝜙𝑠3 …  𝜙𝑠𝑁 ] and [𝜙𝑙1  𝜙𝑙2  𝜙𝑙3 …  𝜙𝑙𝑁 ] represent the s
th
 and l

th
 row vectors 

of mode shape matrix, respectively. [𝑞1  𝑞2 …  𝑞𝑁 ] is the modal coordinate vector, and N denotes 

the number of DOF of the structure. Each IMF 𝜙𝑠𝑖𝑞𝑖 or 𝜙𝑙𝑖𝑞𝑖 from the measured responses can 

be reconstructed by the proposed syncrhrosqueezing wavelet transform, thus the analytic signal of 

each IMF can be defined as a complex function which has itself as real part and its Hilbert 

transform as imaginary part 

{
 
 

 
 
𝑍𝑠1 (𝑡) = 𝜙𝑠1𝑞1 + H[𝜙𝑠1𝑞1] = 𝜙𝑠1(𝑡)𝐴𝑞1(𝑡)𝑒

−𝑗𝜃𝑞1(𝑡)

 𝑍𝑠2 (𝑡) = 𝜙𝑠2𝑞2 + H[𝜙𝑠2𝑞2] = 𝜙𝑠2(𝑡)𝐴𝑞2(𝑡)𝑒
−𝑗𝜃𝑞2(𝑡)

𝑍𝑙1 (𝑡) = 𝜙𝑙1𝑞1 + H[𝜙𝑙1𝑞1] = 𝜙𝑙1(𝑡)𝐴𝑞1(𝑡)𝑒
−𝑗𝜃𝑞1(𝑡)

 𝑍𝑙2 (𝑡) = 𝜙𝑙2𝑞2 + H[𝜙𝑙2𝑞2] = 𝜙𝑙2(𝑡)𝐴𝑞2(𝑡)𝑒
−𝑗𝜃𝑞2(𝑡)

⋮

              (18) 

where H[] denotes the Hilbert transform. With the node s as reference point (usually the position 

where the maximum response happens), the modal participation factor ratio of the first order mode 

between node l and node s, 𝜑𝑙1,𝑠1 can be defined as 

𝜑𝑙1,𝑠1(𝑡) =
𝜙𝑙1(𝑡)

𝜙𝑠1(𝑡)
=

𝜙𝑙1(𝑡)𝐴𝑞1(𝑡)𝑒
−𝑗𝜃𝑞1(𝑡)

𝜙𝑠1(𝑡)𝐴𝑞1(𝑡)𝑒
−𝑗𝜃𝑞1(𝑡)

=
|𝑍𝑙1 (𝑡)|

|𝑍𝑠1 (𝑡)|
               (19) 

Other modal participation factor ratio of higher order mode between node l and node s can be 

expressed in a similar way. 

Once the instantaneous frequencies and modal participation factor ratios are obtained, a new 

time-varying damage index (TVDI) is defined as 

TVDI𝑙 (𝑡) = 1 −
∑ [

𝜑𝑙𝑖,𝑠𝑖(𝑡)

𝜔𝑖(𝑡)
]
2

𝑁
𝑖=1

∑ [
𝜑𝑙𝑖,𝑠𝑖
𝑑 (𝑡)

𝜔𝑖
𝑑(𝑡)

]

2

𝑁
𝑖=1

                        (20) 

where  𝜔𝑖(𝑡)  is the instantaneous frequency of the i
th
 order mode,  𝜑𝑙𝑖,𝑠𝑖(𝑡)  is the modal 

participation factor ratio of the i
th
 order mode between node l and node s, N represents the number 

of DOF. The superscript d denotes the damage state. The new damage index TVDI indicates the 

degree of damage ranging from 0 (intact) to 1 (collapse). It should be noted that the modal 
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participation factor ratio  𝜑𝑙𝑖,𝑠𝑖(𝑡) is not normalized to mass. Since the new damage index TVDI 

is a function of the ratio of 𝜑𝑙𝑖,𝑠𝑖(𝑡) to 𝜑𝑙𝑖,𝑠𝑖
𝑑 (𝑡), the scale caused by no mass-normalization will 

be removed in Eq. (20) on condition that the mass keep invariant during damage process. 

 

 

3. Instantaneous frequency extraction 
 

Classical Duffing equation is usually employed to simulate nonlinear motion of 

mass-spring-damper systems. A Duffing equation in this example is given as (Feldman 2011) 

𝑥̈ + 0.05𝑥̇ + 𝑘1𝑥 + 𝑘2𝑥
3 = 0                          (21) 

where linear stiffness k1 and cubic stiffness k2 are 1 and 0.01 respectively. The motion begins with 

𝑥0 = 10，𝑥̇ = 0, and its response is simulated using 4th Runge-Kutta method with time interval 

of 0.1 seconds. Correspondingly, the Duffing system with forced vibration is adopted to establish 

the viability and effectiveness of synchrosqueezing wavelet transform. The excitation is set as 

Gaussian white noise with zero mean and 0.1g (gravitational acceleration) standard deviation. To 

study the effect of noise on instantaneous frequency extraction, 5% simulated Gaussian white 

noise is added to the displacement responses. The noise intensity is defined by the following 

signal-to-noise ratio (SNR) 

 

 
 

 
 

Fig. 1 Displacement responses of Duffing system: (a) Original signal with free vibration, (b) Original signal 

with Gaussian white noise excitation, (c) Noisy signal with free vibration and (d) Noisy signal with 

Gaussian white noise excitation 
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SNR = 20log10
𝐴signal

𝐴noise
= 10log10

𝐴signal
2

𝐴noise
2   (in dB)                (22) 

where 𝐴signal and 𝐴noise refer to the root mean square value of the signal and the noise, 

respectively. Noise level means the ratio of 𝐴noise
2  to 𝐴signal

2 . For example, SNR equals 13 dB 

according to Eq. (22) when 5% Gaussian white noise is simulated. Fig. 1 shows the displacement 

responses of the Duffing nonlinear system. 

Synchrosqueezing wavelet transform is then performed to extract instantaneous frequency 

curves according to CWT of response signals. The extracted instantaneous frequency is plotted 

using a solid line, while the identified instantaneous frequency by extracting wavelet ridges is 

plotted using a dashed line in Fig. 2. 

It can be clearly seen from Fig. 2 that the identified instantaneous frequency by 

synchrosqueezing wavelet transform decreases rapidly at the beginning and gradually approaches 

an asymptotic value (0.16 Hz) of the corresponding linear system. This phenomenon also means 

that cubic stiffness is dominant in large amplitude and then linear behavior stand out, with 

nonlinear effect gradually becoming unimportant. Compared with the results by wavelet transform 

method, synchrosqueezing wavelet transform improves the quality of time-frequency curves and 

avoid sawtooth phenomenon in wavelet transform, especially for signals contaminated by 

Gaussian white noise. In addition, the end effects of wavelet transform also has great impact on the 

identified instantaneous frequency at the beginning time. However, synchrosqueezing wavelet 

transform reduces the end effects to an extent owing to its stability. 

 

  

  

Fig. 2 Time-frequency spectrum of Duffing system: (a) Original signal under free vibration, (b) Original 

signal under Gaussian white noise excitation, (c) Noisy signal under free vibration and (d) Noisy 

signal under Gaussian white noise excitation 
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Therefore it is concluded that the new introduced synchrosqueezing wavelet transform method 

can extract instantaneous frequency more effectively and accurately than wavelet transform when  

Gaussian white noise is injected to the simulated displacement responses. The improvement for the 

accuracy of frequency extraction plays an important role on damage detection in the next section 

because the proposed time-varying damage index TVDI in Eq. (20) is mainly consist of 

instantaneous frequencies and modal participation factor ratio. 

 

 

4. Damage detection 
 

To verify the effectiveness of the proposed method, a simply supported beam with dimensions: 

width of cross section b=0.2 m, height of cross section h=0.2 m and length of the beam L=5 m is 

simulated. The material parameters are: the modulus of elasticity E=210Gpa and the mass density 

𝜌=7800 kg/m
3
. The finite element model of the beam is discretized to 20 equal length elements. 

The number of nodes and elements of the finite element model are marked in Fig. 3. 

For single damage detection, four damage scenarios (DS1-DS4) are considered, which are 

described in Table 1. The structural damage is simulated by reducing Young’s modulus at a 

particular element location. For DS1 and DS3, the free vibration of the simply supported beam is 

simulated, while the simply supported beam is subjected to 1940 El Centro earthquake excitation 

for DS2 and DS4. The direct integral calculus method of Newmark is used to simulate the 

displacement, velocity and acceleration responses of each node, with time interval of 0.02s. To 

consider the influence of noise, 5% simulated Gaussian white noise is added to the response 

signals. For simplicity, the responses of free vibration for DS3 and the responses to earthquake for 

DS4 are plotted in Fig. 4. 

 

 

 

Fig. 3 A finite element model of the simply supported beam 

 

 
Table 1 Four damage scenarios with single damage location 

Damage scenario Damage location Stiffness reduction Excitation 

DS1 Element 5 and 6 reduce suddenly 40% at time t=2s Free vibration 

DS2 Element 5 and 6 reduce suddenly 40% at time t=2s 
Earthquake ground 

motion 

DS3 Element 5 and 6 
reduce linearly 40% over period of t=2s and 

t=6s 
Free vibration 

DS4 Element 5 and 6 
reduce linearly 40% over period of t=2s and 

t=6s 

Earthquake ground 

motion 
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Fig. 4 Displacement response of simply supported beam without Gaussian white noise: (a) Node 11 in DS3, 

(b) Node 6 in DS3, (c) Node 11 in DS4 and (d) Node 6 in DS4 

 

 

 

Synchrosqueezing wavelet transform is performed on displacement response of node 6 to 

extract the instantaneous frequency. Then set node 11 as reference point, and use IMFs 

reconstructed from displacement responses of nodes 6 and 11 to calculate the modal participation 

factor ratio of the first order mode according to Eq. (17) to (19). The same method is employed to 

extract the instantaneous frequency and modal participation factor ratio for intact scenario. Then 

the values of TVDI can be calculated using Eq. (20). Fig. 5 shows the values of TVDI for four 

damage scenarios. It can be clearly seen from Fig. 5, the proposed damage index effectively detect 

the occurrence of damages, whether the stiffness reduces suddenly or linearly. The sudden increase 

of TVDI at time point t=2s in Figs. 5(a) and 5(b) is linked to the sudden 40% stiffness reduction at 

the same time point. Accordingly, as presented in Figs. 5(c) and 5(d), the linear reduction of 

stiffness over a period between t=2s and t=6s results in that the value of TVDI increases linearly 

during the same time period. It can also be found that the added Gaussian white noise has some 

impact on damage detection results. However, the occurrence of damage can still be accurately 

detected. As shown in Fig. 5, the values of TVDI do not always equal to zero before the abrupt or 

linear damage is inflicted. The main reason for this phenomenon is the end effects of wavelet 

transform. End effects can also be found in the final seconds of response signals. For example, 

there are some increasing and decreasing of values of TVDI in Figs. 5(a) and 5(c) during t=10s to 

t=12s. For free vibration, there is another reason accounting for the change of TVDI between t=10s 
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and t=12s. The amplitude of displacement response under free vibration gradually decreases to 

noise level even approximates to zero, which leads to low signal to noise ratio. As a consequence, 

the effectiveness and accuracy of the instantaneous frequency identification and the modal 

participation factor ratio extraction will be influenced to an extent, and thus the calculated TVDI 

exhibits oscillatory behavior. However, the proposed method can still effectively track the 

time-varying damage except at the beginning and end of vibration. 

To further verify the effective of the proposed method for multiple damage evolution detection, 

the above mentioned simply supported beam with two damage locations is considered. Stiffness of 

elements 5 and 6 reduces linearly 40% over the period of t=2s and t=6s, while 40% stiffness 

reduction is imposed on elements 15 and 16 at time point t=9s. The 1940 El Centro earthquake is 

used as external excitation and Newmark integration method is employed to simulate the 

displacement responses of all 21 nodes with time interval of 0.02s. Displacement responses of 

nodes 6 and 16 are selected to extract instantaneous frequencies by using synchrosqueezing 

wavelet transform. Just like scenarios with single damage location, node 11 is set as reference 

point, and IMFs reconstructed from displacement responses of nodes 6 and 11 are used to calculate 

the modal participation factor ratio of the first mode between node 6 and node 11 according to Eq. 

(19). Similarly, IMFs reconstructed from displacement responses of node 16 and node 11 are used 

to calculate the modal participation factor ratio of the first mode between node 16 and node 11.  

 

 

 

  

  

Fig. 5 Damage identification results for different damage scenarios: (a) DS1, (b) DS2, (c) DS3 and (d) DS4 
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(a) TVDI at Node 6 (b) TVDI at Node 16 

Fig. 6 Damage identification results of the simply supported beam with two damage locations 

 

 

The extraction of instantaneous frequencies and modal participation factor ratio for intact 

scenario follows a similar process. Then the values of TVDI at nodes 6 and 16 can be solved by Eq. 

(20), respectively. The variations of TVDI over time are presented in Fig. 6. As one can see from 

Fig. 6, Linear stiffness reduction of Element 5 and 6 between t=2s and t=6s and sudden stiffness 

reduction of element 15 and 16 at t=9s are basically reflected by the variation of TVDI in Fig. 6(a) 

and 6(b), respectively. The phenomenon that the values of TVDI do not always equal to zero 

before damage is inflicted also exists in Fig. 6(a) and 6(b). End effects of synchrosqueezing 

wavelet transform account for this phenomenon. The presence of the Gaussian white noise 

decreases the accuracy of damage detection, nevertheless, the trend of stiffness reduction at node 6 

and node 16 seems not affected. Therefore, it is feasible to use TVDI for tracking the damage 

evolution of simply supported beam with two or multiple damage locations. 

 

 

5. Conclusions 
 
In this paper, synchrosqueezing wavelet transform is introduced to extract instantaneous 

frequency and reconstruct IMFs from the measured responses of structures with time-varying 

damage. Then the instantaneous modal participation factor ratio is further identified from the 

reconstructed IMFs. Based on the instantaneous frequency and modal participation factor ratio, the 

TVDI is defined as a new damage index for the time varying damage detection. A Duffing 

nonlinear system and a simply supported beam with free and forced vibrations are simulated as 

numerical examples. Based on the numerical results, the following conclusions can be drawn: 

(1) The instantaneous frequency can be directly extracted for Duffing nonlinear systems 

subjected impulsive loads or Gaussian white noise excitations by using the proposed 

synchrosqueezing wavelet transform. 

(2) The defined TVDI can effectively detect abrupt or linear time-varying single damage for 

beam structures, even when response signals are contaminated by Gaussian white noise. 

(3) From the simulation of the simply support beam, the defined TVDI can also effectively detect 

multiple damages in beams subjected to earthquake excitations.  

  

0 2 4 6 8 10 12
0

0.1

0.2

0.3

 

 

Non noise

5% noise

0 2 4 6 8 10 12
0

0.1

0.2

0.3

 

 

Non noise

5% noise

T
V

D
I 

 

T
V

D
I 

 

Time(sec)  Time(sec)  

131



 

 

 

 

 

 

Jing-Liang Liu, Zuo-Cai Wang, Wei-Xin Ren and Xing-Xin Li 

 

Acknowledgments 
 

This study is sponsored by the National Natural Science Foundation of China (NSFC) under 

Grants No.51078357 and No.51208165. The results and opinions expressed in this paper are those 

of the authors only. 

 

 

References 
 

Bernardino, A. and Santos-Victor, J. (2005), “A real-time Gabor primal Sketch for visual attention”, 

IBPRIA-2nd Iberian Conference on Pattern Recognition and Image Analysis, Estoril, Portugal. 

Chen, G.D. and Wang, Z.C. (2012), “A signal decomposition theorem with Hilbert transform and its 

application to narrowband time series with closely spaced frequency components”, Mech. Syst. Signal Pr., 

28, 258-279. 

Daubechies, I. and Maes, S. (1996), A nonlinear squeezing of the continuous wavelet transform based on 

nerve models, (Eds., A. Aldroubi and M. Unser),Wavelets in Medicine and Biology, CRC Press. 

Daubechies, I., Lu, J.F. and Wu, H.T. (2011), “Synchrosqueezed wavelet transforms: An empirical mode 

decomposition-like tool”, Appl. Comput. Harmon. A., 2(30), 243-261. 

Doebling, S.W., Farrar, C.R. and Prime M.B. (1998). “A summary review of vibration-based damage 

identification methods”, Shock Vib. Dig., 30 (2), 91-105. 

Fayyadh, M.M., Razak, H.A. and Ismail, Z. (2011), “Combined modal parameters-based index for damage 

identification in beamlike structures: theoretical development and verification”, Arch. Civil Mech. Eng., 

11(3), 587-609. 

Feldman M. (2011), “Hilbert transform applications in mechanical vibration”, Mech. Syst. Signal Pr., 25(3), 

735-802. 

Golmohamadi, M., Badri, H. and Ebrahimi, A. (2012), “Damage diagnosis in bridges using wavelet”, 

Proceedings of the IACSIT Coimbatore Conferences, Singapore. 

Hou, Z.K., Hera, A, and Shinde, A. (2006), “Wavelet-based structural health monitoring of earthquake 

excited structures”, Comput. -Aided Civil Infrastruct. Eng., 21,268-279. 

Huang, N.E. and Shen, S.S.P. (2005), Hilbert-Huang transform and its application, World Scientific 

Publishing Company, London. 

Huang, N.E., Shen, Z. and Long, S.R. (1999), “A new view of nonlinear water waves: the Hilbert spectrum”, 

Annual Rev. Fluid Mech., 31,417-457. 

Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C. and Liu, H.H. 

(1998), “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary 

time series analysis”, P. R. Soc. Lond. A, 454(1971), 903-995. 

Jaishi, B. and Ren, W.X. (2006), “Damage detection by finite element model updating using modal 

flexibility residual”, J. Sound Vib., 290(1-2), 369-387. 

Kijewski, T. and Kareem, A. (1999), “Applications of wavelet transform in earthquake, wind and ocean 

engineering ”, Eng. Struct., 21(2),149-167. 

Kijewski, T. and Kareem, A. (2003). “Wavelet transforms for system identification in civil engineering”, 

Comput.-Aided Civil Infrastruct. Eng., 18(5), 339-355. 

Kijewski, T. and Kareem, A. (2007), “Nonlinear signal analysis: time-frequency perspectives”, J. Eng. 

Mech., 133(2), 238-245. 

Kopsaftopoulos, F.P. and Fassois S.D. (2013), “A functional model based statistical time series method for 

vibration based damage detection, localization, and magnitude estimation”, Mech. Syst. Signal Pr., 39(1-2), 

143-161. 

Li, C. and Liang, M. (2012a), “A generalized synchrosqueezing transform for enhancing signal 

time–frequency representation ”, Mech. Syst. Signal Pr., 9(92), 2264-2274. 

Li, C. and Liang, M. (2012b), “Time-frequency signal analysis for gearbox fault diagnosis using a 

132

http://www.sciencedirect.com/science/article/pii/S0165168412000746
http://www.sciencedirect.com/science/article/pii/S0165168412000746
http://www.sciencedirect.com/science/article/pii/S0888327011002895


 

 

 

 

 

 

Structural time-varying damage detection using synchrosqueezing wavelet transform 

 

generalized synchrosqueezing transform”, Mech. Syst. Signal Pr., 1(26), 205-217. 

Lin, J. and Qu, L. (2000), “Feature extraction based on morlet wavelet and its application for mechanical 

fault diagnosis”, J. Sound Vib., 234(1), 135-148. 

Mallat, S. (1999), A wavelet tour of signal processing, Academic Press, New York. 

Pandey, A.K. and Biswas, M. (1994), “Damage detection in structures using changes in flexibility”, J. Sound 

Vib., 169(1), 3-17. 

Rucka, M. (2011), “Damage detection in beams using wavelet transform on higher vibration modes”, J. 

Theor. Appl. Mech, 49(2), 399-417. 

Ruzzene, M., Fasana, A., Garibaldi, L. and Piombo, B. (1997), “Natural frequencies and dampings 

identification using wavelet transform: application to real data”, Mech. Syst. Signal Pr., 11(2), 207-218. 

Thakur, G., Brevdo, E., Fučkar, N.S. and Wu, H.T. (2013), “The Synchrosqueezing algorithm for 

time-varying spectral analysis: Robustness properties and new paleoclimate applications”, Signal Process, 

93(5), 1079-1094. 

Wang, J., Lin, C. and Yen, S. (2007), “A story damage index of seismically-excited buildings based on 

modal frequency and mode shape”, Eng. Struct., 29(9), 2143-2157. 

Wu, H.T., Flandrin, P. and Daubechies, I. (2011), “One or two frequencies? The synchrosqueezing answers”, 

Adv. Adap. Data Anal., 13, 29-39. 

Wu, Z.H. and Huang, N.E. (2009), “Ensemble empirical mode decomposition: a noise-assisted data analysis 

method”, Adv. Adap. Data Anal., 1(1), 11-41. 

Xu, X., Shi, Z.Y. and You, Q. (2012), “Identification of linear time-varying systems using a wavelet-based 

state-space method”, Mech. Syst. Signal Pr., 26, 91-103. 

Yan, W.J., Ren, W.X. and Huang, T.L. (2012), “Statistic structural damage detection based on the 

closed-form of element modal strain energy sensitivity”, Mech. Syst. Signal Pr., 28,183-194. 

Yan, Y.J., Cheng L., Wu, Z.Y. and Yam, L.H. (2007), “Development in vibration-based structural damage 

detection technique”, Mech. Syst. Signal Pr., 21(5), 2198-2211. 

Yang, Q.W. and Liu, J.K. (2006), “A coupled method for structural damage identification”, J. Sound Vib., 

296(1-2),401-440. 

Yang, Z. and Wang, L. (2010). “Structural damage detection by changes in natural frequencies”, J. Intel. 

Mater. Syst. Str., 21, 309-319. 

 

 

133

http://www.sciencedirect.com/science/article/pii/S0888327011002895
http://www.sciencedirect.com/science/article/pii/S0165168412004240
http://www.sciencedirect.com/science/article/pii/S0165168412004240


 




