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Abstract.  This study develops a two stage procedure to identify the structural damage based on the 
optimized artificial neural networks. Initially, the modal strain energy index (MSEI) is established to extract 
the damaged elements and to reduce the computational time. Then the genetic algorithm (GA) and artificial 
neural networks (ANNs) are combined to detect the damage severity. The input of the network is modal 
strain energy index and the output is the flexural stiffness of the beam elements. The principal component 
analysis (PCA) is utilized to reduce the input variants of the neural network. By using the genetic algorithm 
to optimize the parameters, the ANNs can significantly improve the accuracy and convergence of the 
damage identification. The influence of noise on damage identification results is also studied. The simulation 
and experiment on beam structures shows that the adaptive parameter selection neural network can identify 
the damage location and severity of beam structures with high accuracy. 
 

Keywords:  damage identification; modal strain energy index; artificial neural network; genetic algorithm; 

principal component analysis 

 
 
1. Introduction 
 

Damage identification in an early stage is a critical issue to ensure the structural integrity and 

safety. Identifying damage can extend the service life and reduce the maintenance cost of the 

structure. The damage identification has the key importance to promote the structure safety. 

Structural damage identification has two problems: damage index selection and the accuracy of 

damage identification. Modal strain energy change (MSEC) is sensitive to the local damage. 

Meanwhile the artificial neural network can identify the damage exactly. The combination of the 

modal strain energy (MSE) and artificial neural networks has the potential to solve the two 

problems of damage identification. 

Shi and Law (2002) utilized the MSEC to detect the damage location and to derive the 

sensitivity of the modal strain energy. Only incomplete measured mode shapes are required to 

detect the damage location and severity. Choi and Samali (2008, 2010) extracted the MSEC from 

the intact and damaged structure to establish the damage index, from which the damage location 

and severity are identified. This method is effective in severe damage and ineffective in slight 
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damage. Hsu (2008) implemented the MSEC to detect the damage in a frame structure, by 

improving the iterative process and considering the modal error, noise and incomplete 

measurement. Yan and Ren (2010, 2011) investigated the modal strain energy sensitivity to 

identify the damage location and extent. The first order sensitivity formulae of element for a real 

symmetric undamped structure are derived based on the algebraic eigensensitivity method. Dixit 

(2011) proposed the damage detection method based on the modal strain energy. The mass and 

stiffness formula are derived to establish the damage index. 

The MSE has the good ability to locate the damage area accurately and ANNs can adaptively 

achieve the pattern recognition to obtain the damage severity. Many researchers have combined 

the MSE and ANNs to locate and qualify damage. Xu (2006) introduced the MSE to locate the 

damage and ANNs to qualify the damage. Kim (2008) developed the acceleration signals and 

ANNs to monitor the occurrence and location of damage in structures. Bakhary and Hao (2007, 

2010) proposed the damage detection method based on the vibrational parameter and ANNs. The 

neural network model is established by the statistical method. The modal parameters are input of 

the ANNs, and the damage location and severity are obtained. González (2008) proposed the 

damage detection based on ANNs and statistical method. The inputs of ANNs are frequencies and 

mode shapes, and outputs are mass and stiffness. Park (2009) proposed the sequential approaches 

for damage detection in beams using time-modal features and ANNs. Firstly an acceleration-based 

neural network is designed to detect the occurrence of damage. Then a modal feature-based neural 

network is designed to estimate the location and extent. Dackermann (2010) developed a method 

to identity defects combined the principal component analysis (PCA) and neural networks 

ensembles. PCA-compressed damage index values are used as inputs to evaluate location and 

severity. González-Pérez (2011) introduced the ANNs for structural damage identification in 

vehicular bridge. The method can predict the location and severity with high accuracy in the 

bridge. 

The present research has shown that the MSE combined with ANNs can identify the damage 

extents when the scale of neural networks is small. Nevertheless the practical structure is complex 

and has many degrees of freedom (DOFs) involved. The ANNs have many limitations for training 

a reliable network model such as the high computational cost, low accuracy and convergence 

problem. The genetic algorithm (GA) optimized neural network can improve the limitation of 

neural network. In this study, two step procedures are proposed. Firstly, the modal strain energy 

index is used to locate the damage. Secondly, the genetically trained ANNs is employed to qualify 

the damage extents. The PCA reduces the input variables of neural network and the computational 

cost. The genetic algorithm is implemented to optimize the parameters of the ANNs and achieve 

the automate parameter selection in different damage cases. The accuracy and convergence of 

damage identification are improved obviously by the genetically trained ANNs. 

 

 

2. Methodology 
 

2.1 Modal strain energy 
 

The modal strain energy of Bernoulli-Euler beam is defined as Eq. (1) (Shi 2002) 
2
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where EI  is the flexural stiffness of the cross section, x  is the longitude along the axis of beam, 

y  is the vertical deformation of beam. 

The modal strain energy of beam in the i-th mode shape and the j-th element is denoted as 
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where ( )i x  is the i-th mode shape of the beam. 

The stiffness change of beam in the i-th mode shape and the j-th element is expressed as Eq. (3) 

(Dackermann 2010) 
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where superscript d  denotes the damaged status,  ''

i x  is the i-th curvature mode shape of 

beam. 

Considering the whole available m  measurement modes, the damage index is given by 
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To enhance the performance of damage identification, the damage index j  is transformed 

into the standard normal space and the normalized modal strain energy index (MSEI) is 

established as 
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where 
j

  and 
j

 are the mean and standard deviation value of j  respectively. 

 

2.2 Principal Component Analysis (PCA) 
   

PCA is a statistical method to reduce the dimensionality. It linearly transforms an original set to 

a smaller set. The compressed variants are the linear components of original variants, and the 

components are uncorrelated. The PCA can be used to reduce the input of neural networks 

effectively. The four steps of data compression by PCA are shown as follows. Step 1, the data are 

normalized by 
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where, ijx  is the samples, m  is the total sample numbers, jx  and js  are the mean and 

standard values of samples respectively, ijx~ is the scandalized samples. 

Step 2, the covariant matrix [ ]C  is established as 
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Step 3, the eigenvalues i  and eigenvectors { }iP  of covariant matrix [ ]C  are calculated by 

Eq. (8) (Dackermann 2010) 

[ ]{ } { }i i iC P P                             (8) 

Step 4, the accumulated contribution rate (ACR) of the first r  principal components is 

defined as 
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The first principal component (PC) represents the most significant contribution of the data set, 

and it has the largest eigenvalue and associated eigenvector. The second PC is orthogonal to the 

first PC and has the second significant contribution of the data set. When the accumulated 

contribution rate of the first r components is big enough, it is considered that the first r  

components conclude the most information of all m  original variants. The first r  components 

are chosen to reduce the dimension for damage identification. 

 

2.3 GA Trained ANNs 
 
The ANNs are regarded as nonlinear mathematical functions that map a set of input variables to 

the output variables. The backpropagation neural network (BPNN) is a multiple layer forward 

network and it consists of an input layer, an output layer and several hidden layers. The neural 

network with two hidden layers is utilized in this study. The input of the ANNs is modal strain 

energy deviations of element and the output is elemental flexural stiffness. The steepest descent 

learning algorithm is chosen to obtain high learning accuracy. We set learning rate 0.3, momentum 

constant 0.9 and error tolerance 0.0001 for training parameters. The Sigmoid function is chosen as 

the transfer function to train the neural networks.  

The parameters are chosen by a trial procedure in the most proposed research. In this study, the 

parameters of neural networks such as learning coefficients, momentum coefficients and numbers 

of neurons in each hidden layer are optimized by genetic algorithm. The flow chart of GA 

optimized ANNs is shown in Fig. 1. 

The GA is a global searching process based on the Darwin’s principal of natural selection and 

evolution. It consists of three main operations: selection, mutation and crossover. The GA starts 

with an initial population, and the initial population is generated randomly with real numbers 

between 0 and 1. Each chromosome in the population is real coded and contains the number of 

neurons in two hidden layers, learning and momentum coefficients of neural network. The 

population size of 30 is selected in this study. The objective function is defined as 
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Fig. 1 Flow chart of GA optimized ANNs 
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where, n  is the output number of neural network, iy  is the true output of BPNN of i-th node, 

io  is the predicted output of BPNN of i-th node. 

The fitness values are calculated by fitness function for the selection operator. The fitness value

F is defined as 

1

1 f

F
E




                             (11) 

The chromosomes are selected for reproduction of the future populations based on their fitness 

with the selection operation. The crossover operator takes the chromosomes of two parents, 

randomly selected and then exchanges part of the genes, which results in two new chromosomes 

for the child generation. The simulated binary crossover (SBX) is chosen in this paper. The 

probability of crossover defines the ratio of the number of offspring produced in each generation to 

the population size. The mutation operator introduces a change in one or more of chromosome 

genes. The probability of mutation is defined as the ratio of the number of mutated genes to the 

total number of genes. The process is stopped when the number of generations is completed or the 

mean square error is less than the predefined value. 
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Table 1 Damage cases of simply supported beam 

Case no. Damaged elements Severity 

1 6 10% 

2 6 50% 

3 6,10 10%,20% 

4 6,10 20%,50% 

 
 

Table 2 Natural frequencies of intact and damaged beam 

Case no. Mode1 Mode2 Mode3 Mode4 Mode5 

Intact 22.88 91.37 205.04 363.12 564.49 

1 22.81 90.89 204.72 362.85 562.04 

2 22.24 87.45 202.52 360.82 545.52 

3 22.53 90.85 202.43 362.26 556.70 

4 21.68 90.18 196.00 360.38 540.77 

 
 

3. Numerical example 
 

3.1 Numerical Model 
 
The dimension of simply supported beam is 2.0 m× 0.02 m× 0.04 m, with the density of 7850 

kg/m
3
, poison ratio of 0.3, elastic modular of 1.96×10

11 
N/m

2
. The damage of beam is modeled by 

reduction of flexural stiffness. The stiffness reduction are 10%, 20% and 50%, and the 

corresponding damage ratios are 0.1, 0.2 and 0.5 respectively. The ANSYS software package is 

used for finite element simulation, and the beam is divided into 20 elements along the length. The 

first five natural frequencies and mode shapes are extracted to calculate the modal strain energy 

and the MSEI are established by Eq. (5). In order to investigate the noise effect on the performance 

of the proposed method, two noise levels are considered. The 0.1% and 3% are considered for 

frequencies and mode shapes respectively as noise level A. The 0.1% and 10% are considered for 

frequencies and mode shapes respectively as noise level B. Two damaged elements are 6 and 10 

respectively. Four damage cases are listed in Table 1. 

The first five natural frequencies of the intact and four damaged cases in beam are listed in 

Table 2. It can be observed that the presence of damage in beam causes a small decrease in the 

natural frequencies in all damage cases. Thus the natural frequency change cannot identify the 

damage location clearly. 

The first five mode shapes of intact beam and damaged beam in the case 4 are shown in Fig. 2. 

It also can be observed that the damage causes a small change of mode shapes. It is difficult to 

identify the damage location from the change of mode shapes. 
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Fig. 2 The first five mode shapes of intact and damaged beam 

 
 

3.2 Localization 
 

The MSEI are calculated by the first five natural frequencies and mode shapes via Eq. (5). Then 

the damage locations in four damage cases are determined. Fig. 3 shows the MSEI result without 

noise and the Figs. 4 and 5 show the MSEI results with two noise levels. 

It can be observed in Fig. 3 that the MSEI can identify the location without noise exactly in the 

single and multiple damage cases. Figs. 4 and 5 show the MSEI values of four damage cases when 

the frequencies and mode shapes are contaminated by noises. In order to enhance the identification 

effect, those elements whose MSEI exceed 0.4 are selected as suspected damage elements. As 

shown in the Figs. 4 and 5, the suspected elements are damaged elements in four damage cases. 

Thus, the locating ability of MSEI is demonstrated when the modal data are contaminated by 

noise. 

 

 

Fig. 3 MSEI values in Case 1- Case 4 without noise 
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Fig. 4 MSEI values in Case 1- Case 4 with 3% noise 

 

 

 

Fig. 5 MSEI values in Case 1- Case 4 with 10% noise 

 

 

3.3 Qualification 
 
3.3.1 Principal component selection 
The principal component analysis is utilized to compress the input nodes of the neural networks. 

The beam is divided into twenty elements and the first five mode shapes are used. Thus the 

number of samples is 20. The ‘princomp’ function in MATLAB is utilized to transfer MSEI to the 

principal component space. According to the Eq. (11), the contributions of twenty components are 
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calculated in Fig. 6. 

From Fig. 6, it can be observed the first component accounts for 26.2% of the original data, the 

first and second components contribute 50.1% of the data and the first three components 

contribute to 62.5%. The cumulative contribution of last four components is less than 2.2%. In this 

study, the components are chosen as the input of neural network when the accumulated 

contribution rate of the first r components is 97%. Therefore the first sixteen components which 

represent 97.8% of original data are regarded as the most significant components. The first sixteen 

components are used as input for the neural networks. 

 

3.3.2 GA trained BPNN 
The backpropagation neural network has one input layer, one output layer and two hidden 

layers. The PCA compressed MSEI is the input of network and the elemental flexural stiffness is 

the output of network. The number of neurons in the hidden layers, learning coefficients and 

momentum coefficients are optimized by the genetic algorithm. The beam has twenty elements and 

the first five mode shapes are considered. The total 600 samples are generated, out of which 540 

are used for training and the rest of 60 are used for testing. 

The genetic algorithm has three procedures by selection, crossover and mutation. The 

population size of 30 is selected in this study. A crossover probability of 0.9 is adopted as it suits 

many engineering problems. A mutation probability of 0.01 is selected. The process is stopped 

when 30 generations are completed or the mean square error is less than the given value of 0.0001. 

The parameters of GA trained BPNN are listed in Tables 3-5. 

The optimized parameters of neural network are utilized to obtain the damage extents. The 

qualification results are shown in the next section. 

 

3.4 Results 
 

The identified results of four damage cases without noise are shown in Fig. 7. And the results 

with two noise levels are shown in Figs. 8 and 9 respectively. 

 

 

 

Fig. 6 Cumulative contribution of principal components 
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Table 3 GA optimized BPNN parameters without noise 

Case no. 
Nodes of 1st 

layer 

Nodes of 

2nd layer 

Learning 

coefficients 

Momentum 

coefficients 

Mean square 

error 
Iterations 

1 16 13 0.7353 0.4468 0.0000969 116 

2 15 12 0.7251 0.4231 0.0000926 194 

3 10 7 0.7521 0.4325 0.0000922 136 

4 15 10 0.7361 0.4136 0.0000969 159 

 

 
Table 4 GA optimized BPNN parameters with 3% noise 

Case no. 
Nodes of 1st 

layer 

Nodes of 

2nd layer 

Learning 

coefficients 

Momentum 

coefficients 

Mean square 

error 
Iterations 

1 17 11 0.7265 0.4326 0.0000928 176 

2 12 10 0.7163 0.4569 0.0000961 231 

3 11 9 0.7952 0.4422 0.0000914 165 

4 13 7 0.7225 0.4551 0.0000923 241 

 

 
Table 5 GA optimized BPNN parameters with 10% noise 

Case no. 
Nodes of 1st 

layer 

Nodes of 

2nd layer 

Learning 

coefficients 

Momentum 

coefficients 

Mean square 

error 
Iterations 

1 15 11 0.7145 0.4628 0.0000935 374 

2 15 9 0.7233 0.4447 0.0000938 221 

3 10 6 0.7624 0.4644 0.0000954 259 

4 14 8 0.7065 0.4982 0.0000940 336 

 

 

The proposed algorithms identify the damage extents exactly without noise in all the single and 

multiple damage cases according to Fig. 7. Damage quantification is successful with a maximum 

of 7% error under 3% measurement noise as shown in Fig. 8. Damage quantification is successful 

with a maximum of 12% error under 10% measurement noise as Fig. 9. 

 

3.5 Discussion 
 

The training error curve of the original BPNN and genetic trained BPNN in case 4 with 10% 

noise is shown in Fig. 10. The original BPNN has low convergence speed and trends to the local 

extreme value, but the neural network can search the most suitable value via the genetic algorithm. 

236



 

 

 

 

 

 

Structural damage identification based on genetically trained ANNs in beams 

 

 

 

 

Fig. 7 Damage extents of Case 1- Case 4 without noise 

 

 

 

 

Fig. 8 Damage extents of Case 1- Case 4 with 3% noise 
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Fig. 9 Damage extents of Case 1- Case 4 with 10% noise 

 
 

 

Fig. 10 Mean square error of BP and GA trained NN with 10% noise 

 
 

The relationship between damage ratio and generation of element 6 without noise are shown in 

Figs. 11 and 12. From Figs. 11 and 12, the GA-BPNN generates 13 times to obtain the stable 

identified results and the original BPNN needs at least 24 times in case 4. The relationship 

between damage ratio and generation of element 6 with 10% noise are shown in Figs. 13 and 14. 

From Figs. 13 and 14, the GA-BPNN generates 18 times to obtain the stable identified results and 

the original BPNN needs at least 28 times in case 4. The convergence speed to achieve the correct 

identified results are promoted by the GA trained BPNN. It can be observed that the genetically 

trained neural network performance better than the original neural network even when the modal 

data contaminated by the noise. 
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Fig. 11 Convergence history of BPNN for four damage cases without noise 

 
 

 

Fig. 12 Convergence history of GA-BPNN for four damage cases without noise 

 

 

 

Fig. 13 Convergence history of BPNN for four damage cases with 10% noise 
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Fig. 14 Convergence history of GA-BPNN for four damage cases with 10% noise 

 
 

The GA-BPNN method can identify the damage extents in all the single and multiple damages 

with high accuracy. The genetically trained neural works has higher convergence speed and 

achieve the results more accurately than the neural networks. 

 

 

4. Experimental example 
 

The laboratory example is a steel cantilever beam as shown in Fig. 15. The beam is 50.1 mm 

wide, 3.0 mm high and 750 mm long as illustrated in Fig. 16. The mass density was measured as 

8.02610
3
 kg/m

3
. To assure that the boundary condition was not altered in each testing, two thick 

blocks were welded on both sides of the clamped end as shown in Fig. 16. 

The structure is tested in the intact state and four damage cases respectively which are given in 

Table 6. The beam is first tested without damage as ‘Case 0’. Afterwards, the beam is cut at 

Location 1 as shown in Fig. 16 with depth of d = 5 mm, 10 mm, and 15 mm gradually, 

corresponding to ‘Case 1’, ‘Case 2’, ‘Case 3’ respectively. In ‘Case 4’, the beam is additionally cut 

at Location 2 with depth of d = 10 mm. The width of the cuts is b =5 mm in all the damage cases. 
 

 

Fig. 15 Experimental beam specimen 
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Fig. 16 Beam specimen setup (Unit: mm) 

 
 
Table 6 Damage cases of cantilever beam 

Case 1 Case 2 Case 3 Case 4 

Location 1  

d = 5 mm 

Location 1  

d = 10 mm 

Location 1  

d = 15 mm 

Location 1  

d = 15 mm 

Location 2  

d = 10 mm 

 
 

The frequency response function is shown in Fig. 17. The measured frequencies in the different 

states are shown in Table 7. 

 

 

 

Fig. 17 Frequency response function 
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Table 7 Measured frequencies in the different cases 

 Case 0 Case 1 Case 2 Case 3 Case 4 

Modes Freq.  

(Hz) 

Freq.  

(Hz) 

Diff.  

(%) 

Freq.  

(Hz) 

Diff.  

(%) 

Freq.  

(Hz) 

Diff.  

(%) 

Freq.  

(Hz) 

Diff.  

(%) 

1 3.499  3.438  -1.75% 3.500  0.02% 3.426  -2.09% 3.422  -2.22% 

2 21.848  21.851  0.01% 21.518  -1.51% 21.497  -1.61% 21.201  -2.96% 

3 60.290  60.280  -0.02% 59.580  -1.18% 59.668  -1.03% 59.003  -2.13% 

4 118.819  118.685  -0.11% 117.399  -1.20% 116.817  -1.69% 116.611  -1.86% 

5 194.708  193.715  -0.51% 190.254  -2.29% 188.426  -3.23% 187.289  -3.81% 

 

 
The damage identification results of case 1-4 in cantilever beam are shown in Fig. 18. From Fig. 

18, the MSEI can identify the damage location with high accuracy under measurement noise. 

Damage quantification is successful with a maximum of 9.5% error due to the measurement noise. 

The proposed algorithm is verified in the steel cantilever experiment with acceptable accuracy. 

 

 

 

 

Fig. 18 Damage identification results of Case 1- Case 4 in cantilever beam experiment 
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5. Conclusions 

 

The two stage procedures are proposed to identify the damage of the beam structures. Firstly, 

the modal strain energy index is established to identify the damage location. Secondly, the 

principal component analysis is utilized to reduce the inputs of the neural networks and the genetic 

algorithm trained neural networks are utilized to identify the damage severity. The PCA is an 

effective method to reduce the inputs of neural network and save the computing time. A numerical 

example of the simply supported beam and experimental example of cantilever beam are studied to 

verify the method. The identification results of the numerical and experimental examples show 

that the genetically trained neural networks have higher identification accuracy and convergence 

speed than neural networks even in the presence of measurement noise in the modal data.  
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