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Abstract.  Proper placement of sensors plays a key role in construction and implementation of an effective 
structural health monitoring (SHM) system. This paper proposes a novel methodology called the distributed 
monkey algorithm (DMA) for the optimum design of SHM system sensor arrays. Different from the existing 
algorithms, the dual-structure coding method is adopted for the representation of design variables and the 
single large population is partitioned into subsets and each subpopulation searches the space in different 
directions separately, leading to quicker convergence and higher searching capability. After the personal 
areas of all subpopulations have been finished, the initial optimal solutions in every subpopulation are 
extracted and reordered into a new subpopulation, and the harmony search algorithm (HSA) is incorporated 
to find the final optimal solution. A computational case of a high-rise building has been implemented to 
demonstrate the effectiveness of the proposed method. Investigations have clearly suggested that the 
proposed DMA is simple in concept, few in parameters, easy in implementation, and could generate sensor 
configurations superior to other conventional algorithms both in terms of generating optimal solutions as 
well as faster convergence. 
 

Keywords:  structural health monitoring; optimal sensor placement; distributed monkey algorithm; 
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1. Introduction 
 

Large and complex civil infrastructures are being placed in new and extreme conditions for 

extended periods of time. As a result, concerns on the structural integrity, durability and reliability, 

i.e., the health state of the civil infrastructures continues to grow (Yi et al. 2012a, Lei et al. 2012a). 

Structural health monitoring (SHM) provides a vital manner for the safe operation of key civil 

infrastructures and enables operational cost reduction by performing prognostic and preventative 

maintenance (Lei et al. 2013a, b). In general, a typical SHM system includes three major 

components: a sensor system, data processing system (including data acquisition, transmission and 

storage), and health evaluation system (including diagnostic algorithms and information 
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management) (Wenzel 2009). Obviously, the efficiency of the SHM system relies on the acquired 

data to structural changes that may be obtained by an extended sensor network which ideally has 

sensor information at all the degrees of freedom (DOFs) of a finite element (FE) model used for 

monitoring the integrity of the structure. Practically, however, due to cost, weight and accessibility 

issues a limited number of locations can be instrumented. In such cases, a question that naturally 

arises is how to select a set with a minimum number of sensor locations from all possibilities, such 

that the data collected may provide the greatest opportunities for identification of the structural 

behavior. Otherwise, incomplete dynamic behaviors will be measured and an accurate structural 

safety assessment will be impossible. 

For a structure that has simple geometry, or smaller number of DOF, engineer’s experience or a 

trial-and-error approach may suffice to solve the problem. However, for those structures that were 

relatively less studied in the past, it is very difficult to determine the sensor locations according to 

past experience or empirical methods. In addition, for the large-scale complicated structure, 

candidate sensor positions are usually large (counts in order of thousands to tens of thousands) 

(Lei et al. 2013b). The amount of work for the sensor placement is thus not insignificant, and 

computation efficiency is of great concern. In order to detect sensitive changes within the structure, 

a more systematic and efficient approach is needed. Numerous techniques have been advanced for 

solving the optimal sensor placement (OSP) problem and are widely reported in the literature 

(Maul et al. 2007). These have been developed using a number of approaches, some based on 

gradient optimization approaches, others employing systematic optimization methods. However, 

gradient-based local optimization methods are unable to handle efficiently the multiple local 

optima and may present difficulties in estimating the global minimum. In the recent years, 

computational intelligence approaches have been extensively used for the optimization of OSP 

problems due to its many advantages over the classical optimization techniques such as global 

optimization, blind search and highly parallel properties. Among the emerged algorithms, the 

Genetic algorithm (GA), which is a global probabilistic search algorithm inspired by the Darwin’s 

survival-of-the-fittest theory (Holland 1975), has been proven as an effective and powerful tool to 

the OSP problem (Yi et al. 2011a). The mapping between the physical minimization variables and 

the chromosomes is the big difficulty in the application of GAs to the OSP problem. The 

traditional coding method is the simple one dimension binary coding method which is 

intuitionistic (Liu et al. 2006). However, the number of sensors will be changed in the crossover 

and mutation, which is impractical and should avoided (Yi et al. 2011a). In addition, the binary 

coding method requires increased string length and computational time especially in the 

large-scale structures where possible sensor combinations are large. Roy et al. (2009) and Chow et 

al. (2010) suggested using the integer coding method to get over the problem. Huang et al. (2010) 

proposed a kind of dual-structure coding approach to overcome the problem. Different genetic 

operators, such as force mutation (Yao et al. 1993), filter operator (Abdullah et al. 2001), and 

partially matched crossover (PMX) (Huang et al. 2005), have also been used in order to overcome 

these faults although the process of these particular genetic operators are complex and the 

computational efficiency is relatively low. Hwang and He (2006) used simulated annealing and 

adaptive mechanism to insure the solution quality and to improve the convergence speed. In 

addition, the GAs and other intelligent algorithms suffer from the curse of dimensionality, when 

the dimension of the parameter space increases, the computational time required to solve the 

problem tends to increase, while the quality of the solution tends to decrease (Ngatchou et al. 

2005). In order to improve the convergence speed and avoid premature convergence, some 

improved GAs have also been adopted to sensor placement problems, such as the elite genetic 
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algorithms (EGA) (Brooks et al. 1996), the virus evolutionary genetic algorithm (VEGA) (Yang et 

al. 2007), the coevolutionary genetic algorithm (CGA) (Lin et al. 2009), the multi-objective 

genetic algorithm (MGA) (Jia et al. 2009), and the generalized genetic algorithms (GGA) (Yi et al. 

2011b). The successful application of GAs in the sensor network design for the SHM system led to 

the development of several other intelligent approaches, such as the simulated annealing (SA) 

algorithm (Gou and Cui 2008), particle swarm optimization (PSO) algorithm (Kukunuru et al. 

2010), and Ant colony optimization (ACO) algorithm (Fidanova et al. 2012). However, in most of 

these approaches, either very limited network characteristics were considered, or several 

requirements of the application cases were not incorporated into the performance measure of the 

algorithm. 

The above discussion renders solving the OSP problems for complex structures difficult. 

Keeping these things in view, a novel intelligent algorithm called distributed monkey algorithm 

(DMA) that could tackle the practical civil engineering OSP problem with a large number of 

possible candidate sensor locations is proposed in this paper. Different from the existing intelligent 

algorithms, the DMA uses several small subpopulations in place of a single large population and 

simple monkey algorithm (SMA) is executed on each subpopulation separately, leading to quicker 

convergence and higher searching capability. The remainder of this paper is organized as follows: 

Section 2 presents the basic features and detailed implementation steps of the proposed algorithm. 

Section 3 introduces the performance index used to optimize sensor placement. In the following 

Section 4, the effectiveness of the proposed algorithm is demonstrated via a numerical simulation 

study for the OSP in a high-rise structure. Finally, in Section 5, some overall conclusions are 

drawn. 

 

 

2. Distributed monkey algorithm for sensor placement 
 

2.1 Basic concepts and ideas 
 

The monkey algorithm (MA) was developed originally by Zhao and Tang (2008), is a 

population-based algorithm, which is inspired by the mountain-climbing process of monkeys. The 

algorithm mainly consists of climb process, watch-jump process, and somersault process in which 

the climb process is employed to search the local optimal solution, the watch-jump process to look 

for other points whose objective values exceed those of the current solutions so as to accelerate the 

monkeys' search courses, and the somersault process to make the monkeys transfer to new search 

domains rapidly. After much repetitious iteration of the three processes, the mountaintop could be 

found by the monkeys (i.e., find the optimal value). 

For configurations with a small number of sensors, the MA could converge to close to global 

optimal solutions. But for larger configurations the run-time grows prohibitive. In fact, the climb 

process is so computationally expensive that it is impossible to run, in a reasonable time, enough 

MA iterations to adequately explore the parameter search space. An intuitive idea to overcome this 

defect is that the problem can be decomposed into subproblems of smaller size. This is the core 

idea of our proposed DMA, i.e., the entire population of monkeys is divided into a number of 

parallel subpopulations that are permitted to evolve independently to search the space in different 

directions. After the personal area deep-searching of all subpopulations have been finished, the 

best monkeys (initial optimal solutions) in every subpopulation are extracted and reordered into a 

new subpopulation. Then the deep-searching are processed again by another advanced intelligent 
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algorithm (harmony search algorithm, HSA) and the final optimal solution can be found. Fig.1 

displays a schematic drawing of the DMA. 

 

2.2 Coding method and initialization 
 
The OSP problem is a kind of single-objective optimization problem involving discrete-valued 

variables, which could be either the spatial coordinate or the number of DOFs on the FE model 

mesh excluding the constrained DOFs. Its mathematic model is a 0-1 programming problem, if the 

value of the -thj  code is 1, in which it denotes that a sensor is located on the -thj  DOF. In 

contrast, if the value of the -thj  code is 0, it denotes that no sensor is placed on the -thj  DOF. 

The total number of 1 is equal to the sensor number. However, the MA was originally designed to 

solve optimization problems with continuous variables (Zhao and Tang 2008, Lan et al. 2011). 

The mapping between the physical minimization variables and the monkey’s position is thus to 

become one of a big difficulty in the application of MA in addressing the OSP problem. To 

implement the MA in the OSP problem, it is necessary to devise a general coding system for the 

representation of the design variables first. 

Considering the characteristics of the OSP problem, a kind of dual-structure coding method is 

designed and adopted for the representation of the design variables in the DMA. Let ordered pair 

( , )x c  stand for the possible solutions of each monkey, where x  denotes the position vector in 

the DMA and c  means the binary vector which represents the sensor’s location, thus, an outline 

of solution representation using dual-structure coding method and initialization process are given 

as follows: 
 

 

 

 

Fig. 1 Schematic drawing of the DMA 
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Step (1): Suppose there are fnum  candidate sensor positions (i.e., the total DOF of the FE 

model), thus the fnum  integers from 1~ fnum  can be obtained. 

Step (2): For the monkey i  in the monkey population, its solution of the proposed 

optimization problem is denoted as 
,1 ,1 ,2 ,2 , ,( , ) {( , ),( , ),...., ( , )}i i i i i i i i fnum i fnump x c x c x c x c  , in which the 

component of the position vector ix  is the real number selected randomly from the interval 

[ , ]down up , where = 5down  , 5up  , and ic  is the binary vector which can be obtained by the 

follow equation (Yi et al. 2012b): 

                              
1

( )
1 i

i x
sig x

e





                           (1) 

When using equation (1), a judgment threshold   should be defined first. That is, if 

( )sig x  , then =0ic   (i.e., no sensor is located on this DOF); if ( )sig x  , then =1ic  (i.e., a 

sensor is located on this DOF). In this paper, the   is defined as 0.5, thus when select real 

number ix  randomly from the interval [ 5,5] , it can be found that 0.0067 ( ) 0.9933isig x   

and (0) 0.5sig   which proves that the judgment threshold given here is reasonable. 

Step (3): It should be noted that the total number of 1 may be not equal to the sensor number 

sp  after initialization process. In order to guarantee all the possible solutions in the monkey 

population satisfy the requirement, the initial monkey population is generated by regeneration 

method when this issue is encountered. 

In the iterative process of the proposed DMA, the position vector x , which satisfies the 

requirement of the MA, is used firstly; and then, the Eq. (1) is adopted to obtain the binary vector 

c  which subsequently is utilized to calculate the optimal objective value; as a consequence, each 

monkey will arrive at its own best position representing the personal optimal objective value 

( , )i if x c  when the iteration accuracy has been achieved or a relative large number of iterations 

has been reached. 

 

2.3 Distribution mode of multiple monkey populations 
 

As aforementioned, our proposed DMA uses several small subpopulations in place of a single 

large population and simple monkey algorithm (SMA) is executed on each subpopulation 

separately, which has simple concept, fast calculation speed, and good global search capability. 

After the initial monkey population is randomly generated, the monkeys are arranged from good to 

bad according to their optimal objective values to divide the whole population into subpopulations. 

The outline of the proposed distribution mode is as follows: 

Step (1): Suppose that there are M  monkey subpopulations needing to be defined and each 

subpopulation has N  monkeys. Thus, P M N   monkeys should be randomly generated to 

compose initial single large monkey population 
1 1 2 2{( , ),( , ),....., ( , )}p pP x c x c x c . 

Step (2): Calculate all monkeys’ fitness values ( , )i if x c and sort them from good to bad. 

Step (3): Divide P M N   monkeys into M  subpopulations. Among them, the monkey 

ranking 1st is assigned into 1st subpopulation, one ranking 2nd into 2nd sub-population, one 

ranking M  into thM  subpopulation, one ranking 1M   into 1st subpopulation, one ranking 

2M   into 2nd subpopulation, analogizing in sequence until all monkeys have been assigned. 
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2.4 Obtaining initial optimal solution using SMA 
 

Then, every subpopulation is used for personal area deep searching and to find the M  initial 

optimal solution using the SMA. The process of the SMA is summarized as follows: 

(1) Climb process 

Climb process is a step-by-step procedure to change the monkeys' positions from the initial 

positions to new ones that can make an improvement in the objective function. In this paper, the 

thought of large-step climb in reference (Wang et al. 2010) is taken during the climb process. The 

large-step climb process makes the monkeys’ positions greatly change before/after updating, 

which can expand the search extent of the potential solution. 

For the monkey i  in a subpopulation with the position 
,1 ,2 ,( , ,...., )i i i i fnumx x x x , 1,2, ,i N , 

an outline of the improved climb process is given as follows: 

Step (1): Randomly generate a integer vector ,1 ,2 ,( , ,...., )T

i i i i fnumx x x x      in the interval 

[ , ]as as ,  1,2,...,j fnum , respectively, where the parameter as  ( 0)as   is called the step 

length of the climb process. 

The step length as  plays a crucial role in the precision of the approximation of the local 

solution in the climb process. Usually, the smaller the parameter as  is, the more precise the 

solutions are. Considering the characteristics of the OSP problem, the as  should be defined as 1, 

2, or other positive integer. 

Step (2): Calculate (( ), )i i newf x x c  , update the monkeys’ position ix  with i ix x   (update 

ic  with  newc  accordingly) only if (( ), ) ( , )i i new i if x x c f x c   , otherwise keep ix  unchanged; 

Step (3): Repeat steps (1) to (2) until there is little change on the values of objective function in 

the neighborhood iterations or the maximum allowable number of iterations (called the climb 

number, denoted by Ns ) has been reached. 

It has to be noted that the “spillover” phenomenon sometimes occurs in step (2) and other steps 

(i.e., the new components in i ix x   may exceed the interval [ , ]down up ). Thus, here if a new 

component exceeds the upper limit up , then take the component to up ; if a new component 

below the lower limit down , then take the component to down . 

(2) Watch-jump process 

For each monkey, when it gets on the top of the mountain in the local area, it is natural to have 

a look and to find out whether there are other mountains around it higher than its present positions. 

If yes, it will jump to some place of the mountain watched by it from the current position (this 

action is called “watch-jump process”) and then repeat the climb process until it reaches the 

highest top of the mountain. 

For the monkey i  in a subpopulation, the outline of the proposed watch-jump process is as 

follows: 

Step (1): Randomly generate integer numbers ijx  from [ , ]ij ijx bs x bs  , {1,2,..., }j fnum , 

where the parameter bs  is a positive integer which represents the eyesight of the monkey (i.e. the 

maximal distance that the monkey can watch), thus the new position ,1 ,2 ,( , .... )T

i i i i fnumx x x x   can 

be obtained. 

Usually, the bigger the feasible space of optimal problem is, the bigger the value of the 

parameter bs  should be taken. The eyesight bs  can be determined by specific situations, like 
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the step length as , the eyesight bs  should also be defined as 1, 2, or other positive integer in 

sensor location problem. 

Step (2): Calculate ( , )i newf x c , update the monkeys’ position ix  with ix  provided that 

( , ) ( , )i new i if x c f x c  , otherwise go back to the Step (1). 

(3) Somersault process 

After repetitions of the climb process and the watch-jump process, each monkey will find a 

locally highest mountaintop around its initial point. In order to find a much higher mountaintop, it 

is natural for each monkey to somersault to a new search domain (this action is called “somersault 

process”). 

For the monkey i  in a subpopulation, the outline of the proposed somersault process is as 

follows: 

Step (1): Generate integer numbers   randomly from the interval [ , ]cs ds  (called the 

somersault interval which governs the maximum distance that monkeys can somersault). 

Step (2): Obtain the monkeys’ pivot 1 2( , ,..., )T

fnumps ps ps ps  by calculating all the monkeys' 

barycentre 
N

j ij

i

ps x N , {1,2,..., }j fnum . 

Step (3): Calculate ( | |)ij ij j ijx x round p x    , update the monkeys’ position with 

,1 ,2 ,( , ,... )i i i i fnumx x x x     provided that the new objective values of ix  are better, and then return to 

the large-step climb process; otherwise go back to the Step (1). 

The condition for terminating the SMA iteration could either be when the iteration accuracy has 

been achieved, or when a relative large number of iterations N  has been reached. For the 

problem considered in this paper, the ending condition of the SMA is chosen to be the later one to 

avoid redundant iteration. After all subpopulations finish the iteration operation, the initial solution 

1iP  can be obtained, where {1,2,..., }i M . 

 

2.5 Obtaining final optimal solution using HAS 
 
Although the SMA has proven its ability of finding near global regions within a reasonable 

time, it is comparatively poor at finding the precise optimum solution in the region to which the 

algorithm converges. Thus, here the HSA is employed to improve the precision of the initial 

solutions obtained by the SMA. After the personal area deep-searching of all subpopulations have 

been finished, the best M  monkeys in every subpopulation are extracted and reordered into a 

new subpopulation. Then the deep-searching are processed again by the HSA to obtain the final 

optimal solution. The HSA is a new meta-heuristic optimization method imitating the music 

improvisation process where musicians improvise their instruments’ pitches searching for a perfect 

state of harmony (Geem et al. 2001). The HSA is simple in concept, few in parameters, and easy 

in implementation, and it has good ability of global search although it is relatively inefficient in 

performing local search. This kind of combination is ideal to compensate deficiencies of the 

individual algorithms. Since the HSA is designed to solve engineering optimization problems with 

continuous design variables, the dual-structure coding method is adopted too. Correspondingly, the 

main steps of the improved HSA are as follows: 
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Fig. 2 Flowchart of the DMA for OSP 

 

 

Step (1): Initialize the harmony memory (HM). For initialization, the HM is a memory location 

where the M  initial optimal solutions are stored, i.e., ,1 ,1 ,2 ,2 , ,1 (( , ),( , ),...( , ))i i i i i i fnum i fnumP x c x c x c , 

where {1,2,..., }i M , and then, the M  harmony vector can be obtained and the worst one is 

denoted as 1mP . 

Step (2): Improvise a new harmony. A new harmony, ,1 ,2 ,1 ( , ,... )new new new new fnumP x x x , is 

generated based on three rules: 1) the memory consideration, 2) the pitch adjustment and 3) the 

random selection. Generating a new harmony is called “improvisation”. In the memory 

consideration, the harmony memory considering rate (HMCR), which varies between 0 and 1, is 

the rate of choosing one value from historic values stored in the HM, while (1-HMCR) is the rate 

of randomly selecting one value from other possible range of values. Generate a uniform random 

number, 1rand , between 0 and 1, if 1 HMCRrand  , the value of the first decision variable 
,1newx  

for the new vector is chosen from any of the values in the specified HM range 
1,1 2,1 ,1( , ,..., )Mx x x ; 

Otherwise, the values of the first decision variable is chosen from other possible range of values 

not in the specified HM range but within the range [ , ]down up . Values of the other decision 

variables are chosen in the same manner. 

Every component ,1newx  obtained by the memory consideration is examined to determine 
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whether it should be pitch-adjusted. Generate a random number, 2rand , between 0 and 1, if 

2 PARrand  , it should be pitch-adjusted, otherwise doing nothing. The pitch adjustment 

operation needs to use pitch adjusting rate (PAR) parameters as follows 

,1 ,11 ( +2 - )new newP round x v rand v                          (2) 

where, round  stands for rounding, v  means the arbitrary distance bandwidth, rand  denotes a 

random number between 0 and 1. 

Step (3): Update the harmony memory. If the new harmony vector 1newP  has better fitness 

function than the worst harmony 1mP  in the HM, the new harmony is included in the HM and the 

existing worst harmony is excluded from the HM. 

Step (4): Check the stopping criterion. If the stopping criterion (i.e., maximum number of 

improvisations Nh ) is satisfied, computation is terminated. Otherwise, Steps (2) and (3) are 

repeated. 

To sum up, the whole flowchart of the proposed DMA to find the optimal sensor locations 

presented herein is shown in Fig. 2, that can be fully implemented easily with the commercial 

software MATLAB (MathWorks, Natick, MA, USA). 

 

 

3. Objective function 
 

In the case under investigation the objective function is a weighting function that measures the 

quality and the performance of a specific sensor network design. In order to keep the original 

properties of the structure, the larger space angles among the measured modal vectors should be 

guaranteed. Carne and Dohmann (1995) thought that the modal assurance criterion (MAC) was an 

ideal scalar constant relating to the relationship between two modal vectors 

2( )
MAC

( )( )

T

i j

ij T T

i i j j

 


   
                           (3) 

where, i  and j  represent the thi  and thj  column vectors in matrix  , respectively, and 

the superscript T  denotes the transpose of the vector. 

In Eq. (3), the element values of the MAC matrix range between 0 and 1, where zero indicates 

that there is little or no correlation between the off-diagonal element MAC ( )i j i j  (i.e., the 

modal vector easily distinguishable) and one denotes that there is a high degree of similarity 

between the modal vectors (i.e., the modal vector fairly indistinguishable). For an optimal 

(orthogonal) set the MAC matrix would be diagonal, thus the size of the off-diagonal elements 

could be an indication of optimal result. 
In this paper, the biggest value in all the off-diagonal elements in the MAC matrix is defined as 

the objective function, i.e. 

1min     ( )f x                                (4) 

where,  1( )=max MACij
i j

f x


 and x  means the current position of the monkey (i.e., the scheme of 

the sensor placement). 
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4. Numerical case study 
 

To demonstrate the effectiveness of the proposed method, a numerical case study to determine 

the senor configuration on a high-rise building is considered. 

 

4.1 Description of building 
 
The Dalian International Trade Mansion (DITM), currently being constructed in the centre of 

Dalian city, when completed in the near future, will be the tallest building in the northeast of China. 

It has 5 stories under the ground level and 79 stories above. The main structure is about 330.25 m 

high from ground level. The plan of a standard floor is 77.70 m long in the east-west direction and 

44.00 m wide in south-north direction, and the floor-to-floor height is 3.8 m. The 10
th
, 23

rd
, 37

th
, 

50
th
, 62

nd
 and 79

th
 floors are the refuge floors, with the height of 5.10 m. Fig. 2(a) shows the bird 

view of the DITM. (Li et al. 2011). 

 

4.2 Analytical model 
 
In order to provide input data for the OSP method, a three-dimensional FE model of the 

mansion is built using the ETABS software (CSI, Berkeley, CA, USA), as shown in Fig. 3(b). The 

FE model is built considering the bending and shearing deformation of the beam and column, and 

also the axial deformation of the column. The rigid floor assumption is used. For the strengthened 

story, the axial deformation of the column needs to be considered, and so the corresponding floors 

are computed as flexible floors. The overall model has 34,308 nodes, 34,791 frame elements and 

29,071 shell elements, considering 36 section types and 11 materials’ properties. The vibration 

properties were calculated by performing a modal analysis using the FE analytical code and 

pre/post-processor system ETABS. 

For the problem at hand, the size of the searching space is the number of nodes on the FE 

model excluding the constrained nodes and the vibration nodes of the selected modes. Although 

the structure has a large number of DOFs, only translational DOFs are considered for possible 

sensor installation in this case study, as rotational DOFs are usually difficult to measure. Since the 

structural stiffness of the DITM in two translational directions is obviously different, it should 

mainly take into account the structural vibration monitoring in the direction of weaker stiffness. 

Consequently, a total of 79 DOFs are available for sensor installation (i.e., 79fnum  ), as shown in 

Fig. 3(c), and the first 8 modes of the DITM are selected for calculation. 

 

4.3 Optimization process, results and discussion 
 
Stephan (2012) suggested that the number of sensors should be 2~3 times the number of modes. 

Here, it’s assumed that the number of sensors needing to be placed on the building is 20 (i.e.,

20sp  ) which have been made and thus optimal locations for the given number of sensors is the 

target of this paper. 
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(a) Bird view (b) FE model (c) Simplified model 

Fig. 3 Dalian international trade mansion 

 

 
Table 1 Experiment results for different values of parameters 

Scenario 

Number of monkeys in 

each subpopulation 

( N ) 

Number of iterations 

in climb process 

( Ns ) 

Somersault interval 

( cs ) 

Objective 

values 

1 2 500 2 0.0058 

2 2 1000 3 0.0037 

3 2 2000 4 0.0095 

4 4 500 2 0.0125 

5 4 1000 3 0.0076 

6 4 2000 4 0.0116 

7 8 500 2 0.0064 

8 8 1000 3 0.0089 

9 8 2000 4 0.0054 

 

 

(1) Comparison study 

In order to demonstrate the superiority and also the computational performance of the proposed 

DMA, three cases are carried out and their performances are compared: 

Case (1): The conventional SMA using a single large monkey population; 
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Case (2): The modified HSA using random generated HM; 

Case (3): The proposed DMA using multiple monkey populations. 

(2) Parametric analysis 

The DMA has several parameters that need to be explored and tuned so that the best algorithm 

performance can be achieved. The aim of this section is to study the evolution of the algorithm 

solution over generations under different settings of three important parameters: the number of 

monkeys in each subpopulation ( N ), the number of iterations in climb process ( Ns ), and the 

somersault interval ( cs ). Here, the number of monkey subpopulations M  is set to 5 and the 

somersault interval is defined as [ , ]cs cs . Each scenario is tested for 10 times, and the best results 

are selected. Particularly, the following nine different scenarios are selected and shown in Table 1. 

From the empirical study on the impact of different DMA parameters, it is remarked that: 1) the 

number of monkeys in each subpopulation is larger, much more time (or iterations) is needed for 

algorithm to find the optimal solution, but usually the higher quality is achieved. Note that when 

the time or number of iterations is finite, increasing N  may deteriorate the quality of the solution. 

Thus, the population size should be decided according to the specific problems and hardware 

configuration of computers used. 2) large number of iterations in climb process could cause the 

improvement of local optimum. However, the local optimum could be obtained without too much 

iteration. In order to increase the algorithm efficiency, a rational number of iterations Ns  in the 

climb process should be determined. 3) the somersault interval cs  in the somersault process 

governs the maximum distance that monkeys can somersault. However, the disadvantages of this 

process are that the larger interval of the somersault may skip the global optimal solution while the 

smaller will lead to a decrease in the solution quality. 

Based on this study, it seems that the typical values N , Ns  and cs  for the DMA can here be 

set as 4, 2000 and 3, respectively. Considering the characteristics of the OSP problem and the 

dual-structure coding method, the as  and bs  are defined as 1 and 2, respectively. According to 

the reference (Yong et al. 2011), the basic parameters of HSA are selected as follows:

HMCR 0.9 , PAR 0.3 , 1v  , and 20000Nh  . 

(3) Optimization results and analysis 

The MAC values obtained by different methods are shown and compared in Fig. 4. Among 

them, Fig. 4(a) demonstrates the MAC values of all of the 79 DOFs and Fig. 4(b) indicates the 

MAC values from the initial optimal solution obtained by the DMA in the SMA stage (here, we 

call it BSMA). It can be seen intuitively that the trend and the values of the MAC values of the 

different method are very close, while the off-diagonal values in the MAC are very small. The 

reason for such increasing phenomenon is that the selected first 8 mode shapes in the weak axis 

may be distinguishable easily. 

Since the MAC values obtained by different methods are almost similar from the intuitive, 

therefore, in order to highlight the effectiveness of the proposed algorithm, another figure is 

plotted in each of the modes (Fig. 5). A close look at the results presented in Fig. 5 indicates that 

the proposed DMA is far superior to other algorithm implementations in finding the optimal sensor 

locations. Most of the maximum MAC off-diagonal values obtained by the DMA in each of the 

modes are much smaller than other algorithms. Further to demonstrate the effectiveness of the 

proposed algorithm, the maximum MAC off-diagonal values in all of the modes obtained by 

different method are compared each other in Fig. 6 and Table 2. While compared with each other, 

the performance of the DMA is found to be of the best cost performance among all of the 

algorithms as expected. Also, it is evident from Fig.6 that all DOFs yield the worst performance 
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due to the fact that some sensors will conflict with other sensors. Mathematically speaking, the 

row vectors determined by this way have strong linear relationships with each other. It is shown 

that the BSMA can improve the performance by 30.6% when compared with the Case 1, which 

verified the effectiveness of the distribution mode of multiple monkey populations given in this 

paper.  

 

 

  
(a) MAC values of all of 79 DOFs (b) MAC values obtained by BSMA method 

  
(c) MAC values obtained in Case 1 (d) MAC values obtained in Case 2 

 
(e) MAC values obtained in Case 3 

Fig. 4 MAC values obtained by different methods 
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This kind of distribution mode increases the search space which grants high search efficiency to 

the DMA and consequently the convergence rate of algorithm is improved. It is also remarked 

from Table 2 that the largest off-diagonal MAC term is 0.0086 for the BSMA, whereas 0.0033 for 

Case 3, that means the search capabilities of the SMA have been significantly improved by 

employing the HSA and 61.6% reduction is gained to reach a satisfactory solution. This study 

clearly indicates that it is desirable to employ a sophisticated search technique like the proposed 

DMA in order to optimally locate a small number of sensor locations from a large possible 

candidate sensor set. In addition, the running time of DMA also decreases quickly as the 

population is partitioned into subsets and each subpopulation search the space in different 

directions in parallel. Although this kind of comparisons may be imperfect since implementation 

details will impact execution time, it is reasonable in theory. The final sensor placement result of 

the DITM obtained by the proposed DMA is given in Table 3. 

 

 
Table 2 Maximum off-diagonal element of MAC of each kind of sensor placement 

Scheme selection of the 

sensor placement 

All of the 79 

DOFs 
BSMA Case 1 Case 2 Case 3 

Maximum MAC 

off-diagonal value 
0.0239 0.0086 0.0124 0.0143 0.0033 

 
Table 3 Sensor placements of the DITM 

Sensor number 1 2 3 4 5 6 7 8 9 10 

Story 3 4 6 9 10 14 20 21 29 31 

Sensor number 11 12 13 14 15 16 17 18 19 20 

Story 35 39 44 48 54 57 62 67 72 78 

 

 

 

Fig. 5 Maximum MAC off-diagonal value in each of the modes 
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Fig. 6 Maximum MAC off-diagonal value in all of the modes 

 

 

 

5. Conclusions 
 

Considering the characteristics of the OSP techniques in the large-scale civil structure, this 

paper outlines a novel and efficient methodology called the DMA for the optimal design of SHM 

system sensor arrays. With the case analysis, some conclusions and recommendations are 

summarized as follows: 

(1) The OSP is a discrete combinatory integer problem that means the original MA cannot be 

implemented directly. In order to overcome this difficulty, the dual-structure coding method, 

which uses a ordered pair to stand for the possible solutions of each monkey, is designed and 

adopted skillfully in the DMA, and the corresponding implementation steps for coding method is 

also presented in details. 

(2) In the proposed DMA, the single large population is partitioned into subsets and each 

subpopulation searches the space in different directions in parallel. The proposed method is easy in 

understanding as it is based on simple and logical principles. Advantages of the method include its 

computationally non-intensive nature compared with exhaustive search techniques found in the 

literature and the benefit of physical insight into the ranking and ultimate selection of sensor 

locations. This kind of distribution mode effectively solves the combinatorial optimization 

problem such as the OSP problem when the performance tradeoffs are not unbearable and when 

the number of combinations is too large to preclude enumeration. 

(3) Although the SMA has proven its ability of finding near global regions within a reasonable 

time, it is comparatively poor at finding the precise optimum solution in the region which the 

algorithm converges to. To obtain a more robust optimization result, it is common to combine 

different search strategies trying to compensate deficiencies of the individual algorithms. In this 

study the efficiency of the SMA is improved by incorporation of another intelligent method, i.e., 

the HSA. This can be considered as an innovative type of hybridization of the MA that has not yet 

been explored in the literature. 

(4) The proposed DMA is simple in concept, few in parameters, easy in implementation, good 

global search capability, imposes fewer mathematical requirements, and does not require initial 

value settings of the decision variables. Since there are not any precise recommendations for 
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tuning the DMA parameters in the literature, an empirical study to determine the impact of three 

important parameters of the algorithm on the solution quality and convergence behavior is 

performed. The parameter analysis indicates that the number of monkeys in each subpopulation is 

larger, much more time is needed for algorithm to find the optimal solution, but usually the higher 

quality is achieved; the large number of iterations in the climb process could cause the 

improvement of local optimum although the local optimum could be obtained without too much 

iteration; the larger interval of the somersault may skip the global optimal solution while the 

smaller will lead to a decrease in the solution quality.  

(5) Numerical investigations presented herein clearly suggest that the proposed DMA 

outperforms the other conventional algorithms both in terms of generating optimal solutions as 

well as faster convergence, which is expected to be even more pronounced should it be used for 

other high dimensional optimization problems. This study clearly indicates that it is desirable to 

employ a sophisticated search technique like the proposed DMA in order to optimally locate a 

small number of sensor locations from a large possible candidate sensor set. 
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