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Abstract.   One of the issues in extending the range of applicable problems of real-time hybrid simulation is 
the computation speed of the simulator when large-scale computational models with a large number of DOF 
are used. In this study, functionality of real-time dynamic simulation of MDOF systems is achieved by 
creating a logic circuit that performs the step-by-step numerical time integration of the equations of motion 
of the system. The designed logic circuit can be implemented to an FPGA-based system; FPGA (Field 
Programmable Gate Array) allows large-scale parallel computing by implementing a number of arithmetic 
operators within the device. The operator splitting method is used as the numerical time integration scheme. 
The logic circuit consists of blocks of circuits that perform numerical arithmetic operations that appear in the 
integration scheme, including addition and multiplication of floating-point numbers, registers to store the 
intermediate data, and data busses connecting these elements to transmit various information including the 
floating-point numerical data among them. Case study on several types of linear and nonlinear MDOF 
system models shows that use of resource sharing in logic synthesis is crucial for effective application of 
FPGA to real-time dynamic simulation of structural response with time step interval of 1 ms. 
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1. Introduction 
 

As a testing method to experimentally evaluate the dynamic response of structures and 
structural components, in which nonlinearity and experimental measurement of force-displacement 
response are of main concern, the hybrid simulation has been widely accepted as an efficient 
approach for the dynamic testing; in the hybrid simulation, response of the original structural 
system is simulated by loading test performed only for the part for which numerical modeling is 
difficult, and numerical analysis of the rest of the structural system using the computer, and the 
two process are synchronously executed exchanging the information each other. The test method 
to perform the hybrid simulation in a real-time basis in order to evaluate the response considering 
the dynamic effect and loading rate dependence is referred to as the real-time hybrid simulation 
(Shao 2011). In a test of this type, a shake table and/or a dynamic actuator that allow high-rate 
loading are assumed to be used as the test equipments. An example of real-time hybrid simulation 
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concept using a shake table is shown in Fig. 1. 
One of the issues in extending the range of applicable problems of real-time hybrid simulation 

is the computation speed of the simulator when a large-scale computational model is used. If the 
number of DOF of the structural model is large, one of the most important problems is the duration 
of the time required for a single-step test control, starting from the timing of the computer’s 
acquiring the measurement data from the test structure response, time integration to evaluate the 
structural response after a unit step, up to the computation of input control signal to loading 
equipment such as a shake table. Response analyses of a model with a large number of DOF or a 
model including complicated nonlinear behavior require longer computation time, and when such 
factors dominate the computation process on a computer with limited computational capacity, the 
computation eventually results in failure to complete a single step calculation, thus losing the 
real-time computational process. In real-time tests, high-speed computation is expected to ensure 
the real-time processing and control of the test, including another important aspect of dynamic 
characteristics compensation of the experimental loading equipments. Saouma et al. (2012) 
pointed out the importance of the performance of computational engine for real-time hybrid 
simulation, and developed a specialized structural analysis software applicable to real-time hybrid 
simulation running on a computer with real-time Linux, and conducted a real-time hybrid 
simulation of a three-story three-bay reinforced concrete frame, numerically modeled with 
nonlinear elements and more than 400 DOF with the integration interval of 0.01s (Saouma 2013). 

 
 

 
 

 

Fig. 1 Example of real-time hybrid simulation concept 
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The potential performance of FPGA application to numerical computation is shown in past 
research. Schäfer et al. (2002) applied FPGA to DEM (discrete element method) computation 
showing FPGA’s advantage in the exploitation of the intrinsic parallelism of DEM, and achieved a 
faster computation speed. Hamada et al. (2006) constructed an FPGA-based computer system 
dedicated to SPH method (Smoothed Particle Hydrodynamics method) fluid dynamic simulation 
in astrophysics, achieving computing performance and a cost performance ratio far superior to 
mainframe parallel computer systems at the time and feasibility of the floating point number 
operation by FPGA is demonstrated. Cui et al. (2003) proposed a logic circuit exclusively for 
matrix operations using FPGA, and showed that the matrix operation processing time can be 
shortened compared with mainframe computers. Onouchi et al. (2003) constructed a quantum 
computer emulator capable of large-scale parallel processing taking advantage of the parallel 
computing capability of FGPA, in which numerical arithmetic operators can be configured as 
many units as required, and showed that for an NP problem (Non-deterministic Polynomial 
problem) that requires exponentially growing processing time with respect to the size of the 
problem, computational time to solve the satisfiability problem (SAT problem) can be shortened in 
the order of 1/100 compared with the conventional computer architecture. Application of FPGA is 
a promising in achieving an improvement of computation speed and expansion of applicable 
problems and fields, compared with the use of DSP (digital signal processor) which has been used 
in the conventional hybrid simulation. The performance and capacity of FPGA device products 
available in the commercial market are remarkably growing, owing to the increasing need in the 
electronic device product industry, and expected to effectively take advantage of their capabilities. 
In this study, design, verification and implementation of logic circuits are investigated in order to 
achieve high-speed execution to be used in real-time hybrid simulation of MDOF structural system 
models using FPGA. 
 
 
2. General feature of FPGA 
 

The FPGA is classified as a kind of PLD (Programmable Logic Device) that is regarded as an 
intermediate IC (Integrated Circuit) category placed between the general-purpose LSI (Large Scale 
Integrated circuit) and ASIC (Application Specific Integrated Circuit). The FPGA consists of logic 
circuit blocks (which is referred to as Logic Elements, or LE), and a logic circuit designated by the 
user can be constructed by changing the combination of the logic elements and wiring among them 
at the time of set-up. Thus FPGA allows a high level of flexibility for the users to design the logic 
circuit in the device. Concept of the internal structure of FPGA is shown in Fig. 2. As shown in the 
figure, a large number of logic elements that are arranged to form a grid, and the logic circuit 
functionality is obtained by the assignment of the connection pattern at the grid nodes. 
Furthermore, several peripheral elements are added, including the I/O elements, which are the 
assemblies of input/output pins to be used as the interface with external devices, the DSP blocks to 
provide number multiplication functionality often used in digital data processing, and the 
configuration memories to store the program file (bit stream data) which works as the logic circuit 
information implemented in FPGA. 

In general, a Hardware Description Language (HDL) is used for the purpose of expressing the 
logic circuit implemented on the FPGA device. Based on the description, the logic synthesis is 
performed to convert the HDL code into the logic circuit wiring information, arrangement of 
geometric circuit element layout and signal line routing on the target device. The resulting 
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information expressed as bit stream data is downloaded into a FPGA device to implement the logic 
circuit and I/O pin assignment. After completing these preparation processes, FPGA can be 
utilized for the specific purpose at the time of design. 

 
 

3. Design of logic circuit for real-time dynamic response simulator 
 

3.1 General 
 
Real-time dynamic response simulation is executed on a FPGA device by implementing a logic 

circuit that performs binary numerical computation. In this study, the logic circuit is designed 
using Verilog-HDL as one of the commonly used hardware description languages. 

Owing to the needs of rapid development of embedded systems by electrical and device 
engineers, software and hardware vendors provide various coding tools and environments 
nowadays. For example, there exists even a commercial product with which HDL codes can be 
automatically generated from MATLAB Simulink block diagrams, called MATLAB HDL Coder 
(2012). However, the MATLAB HDL Coder deals with computation with only fixed-point 
arithmetic, that requires adjustments to obtain appropriate performance of the system in terms of 
accuracy and efficiency in using the device resources. Although existing computational simulation 
software codes used for a large computational simulation in real-time hybrid simulation may be 
implemented to FPGA if a tool to convert those codes written in software programming languages 
into HDL code is developed, such conversion tools have not appeared yet up to the present. In this 
study, in order to use the floating-point computation in the dynamic simulation of the numerical 
structural model to eliminate the problems and errors associated with the fixed-point arithmetic, 
the logic circuit for the numerical system is explicitly designed, and elementary components of the 
numerical floating-point arithmetic operation are developed. The data bus to send and receive 
numerical values in logic circuits is based on the single precision 32-bit floating point number 
representation (8-bit exponent and 23-bit mantissa) designated by IEEE 754 standard; for 
comparison, design cases using 16-bit representation (5-bit exponent and 10-bit mantissa) are also 
investigated. 

 
 
 
 

Fig. 2 Internal structure of FPGA 
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Functionality of real-time dynamic simulation of MDOF systems is achieved by creating a 
logic circuit that performs the step-by-step numerical time integration of the equations of motion 
of the system. The operator splitting method is used as the numerical time integration scheme. In 
order to execute the computational steps of the numerical time integration, the outline of the logic 
circuit consists of blocks of logic circuits that perform numerical arithmetic operations that appear 
in the integration scheme, such as addition and multiplication of floating-point numbers (that are 
referred to as adders and multipliers, respectively), registers to store the intermediate data, and data 
busses connecting these elements to transmit various information including the floating-point 
numerical data among them. 

 
3.2 Numerical arithmetic operators 
 
The logic circuit blocks that perform the basic arithmetic operations are the most essential and 

indispensable components in dealing with numerical computation by FPGA. The dynamic 
response simulation is performed by associating these arithmetic operators, including adders and 
multipliers, in the top-level module in the HDL script. 

The amount of logic element consumption for the logic circuit implemented in the FPGA 
changes depending on the data bus bit width for the floating point number representation. In order 
to investigate the difference in the floating point number precision, generalized basic arithmetic 
operators that allow arbitrary bit numbers of the exponent and mantissa are designed. The 
flowcharts of the adder and the multiplier are shown in Fig. 3. The procedure consists of checking 
the input arguments (ex. zero exponent), arithmetic operation, correction and exception handling 
(ex. overflow/underflow) and output. The adder is relatively complicated due to additional 
operations of comparison of the two input arguments, rearrangement of the input arguments in the 
order of the absolute value, and digit shift operation to the smaller argument for digit matching. 
The Verilog-HLD codes for the adder and the multiplier are shown in Appendix A and Appendix 
B, respectively.  

 
3.3 Implementation of numerical time integration scheme 
 
In order to implement the computation of the numerical time integration of the equations of 

motion - an essential function to perform real-time hybrid simulation - with logic circuits, the logic 
system is designed so that adders, multipliers etc. that perform basic arithmetic operations 
appearing in the integration scheme, and interim data registers are mutually connected with 
wirings that transmit information including numerical values. 

At each time step i (i=1,2,…), the equation of motion for a linear MDOF system is assumed to 
be generally expressed by the following expression. 

}{}1]{[}]{[}]{[}]{[ 1
1111


  i

eiiii FzMxKxCxM           (1) 

where [M], [C] and [K] are the mass, damping and stiffness matrices, respectively, {xi} is the 
displacement vector at time step i, {Fe

i} is the measured force acting on the experimental 
substructure. In this expression, the external force acting on the structural system is assumed to be 
the dynamic excitation due to the ground acceleration z at the support of the structure. For 

nonlinear structures, the term [K]{xi}is replaced with the nonlinear restoring force vector {Qi}. For 
illustrative purpose, application of the operator splitting scheme to a linear MDOF system and 
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resulting implementation is described. The set of formula in this case is as follows. 
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where { ix~ } is the displacement predictor, which is a vector with the identical dimensions as{xi}.  
In order to reduce the amount of computation in real-time computation in FPGA, all the values 
that can be prepared are separately computed and stored to registers in FPGA before the beginning 
of the step-by-step time integration process. The procedure steps consisting of Step 1 through Step 
4 that have been obtained to implement to a logic circuit is shown Table 1.  

 
 

        (a) Adder                                    (b) Multiplier 

Fig. 3 Flowcharts of adder and multiplier 
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The symbols {r1}～{r10} appearing in the table are the variables that express the interim 
computation results stored in registers, and N is the number of DOF of the numerical model. The 
operations described in the same clock are performed simultaneously in parallel. The required 
numbers of clocks and operations for each step are for the case such that [M] is a diagonal matrix, 
and [C]，[K] are banded matrices with a width of 3. 

The most time-consuming and memory-consuming phase in the time integration is the 
product-and-sum operation appearing in Step 3 in Table 1. For the case of an N-DOF system 
model, N sets of product-and-sum numerical operations for N terms take place. If the number of 
adders that can be used in parallel are not limited, the required number of clocks of those 
product-and-sum operations is equal to j that satisfy the following expression. 

jj N 22 1                (6) 

In the sum operation of 100 terms, for example, the number of the terms to be added changes as 
100→50→25→13→7→4→2→1 as the clock proceeds (in j=7 clocks), and the number of required 
operations is 50+25+12+6+3+2+1=99. 

 
 

Table 1 Procedure of Operator Splitting scheme in parallel computing 
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Fig. 4 State transition diagram 
 

 
This procedure is iteratively repeated for each time step i using the result of the previous time 

step. For implementation of this iterative algorithm in a logic circuit, a finite automaton structure 
is employed as a synchronous circuit with a single phase clock with synchronous reset. The state 
transition diagram of the circuit is shown in Fig. 4. The action of the circuit is determined by the 
step clock signal and “states” modified in accordance with the progress of the calculation and 
timing. There are three states in the circuit, RESET, CAL and OV/WR. The initial state is RESET, 
at which the resisters are reset, and holds until a rising edge of the time step clock signal at the 
start of each time step. A time integration per step is performed at the state CAL, which is 
followed by the overwrite operation of the response variables at the state OV/WR. The timing of 
the real-time execution speed of the time steps can be adjusted by changing the frequency of the 
time step clock signal (ex. 1 kHz). 

 
 

4. Verification of FPGA implementation 
 
Logic circuits are designed for the following four dynamic models in accordance with the 

methodology described in the previous section. 
(1) Linear SDOF model: As shown in Fig. 5(a), the structural model is assumed to be a linear 

2-DOF system, in which the numerical substructure in the response simulator is a linear SDOF 
system, and the hypothetical experimental substructure also is assumed to be a linear SDOF 
system for the convenience of simulation and is included in the FPGA simulation.  

(2) Shear-type Linear MDOF model: Structural model is assumed to be a shear-type multi-story 
MDOF system, in which the top story is the experimental substructure and the rest of the system is 
the numerical substructure, as shown in Fig. 5(b). The number of DOF of the numerical 
substructure, denoted by N, can be changed to investigate the influence of N to the implementation 
capacity of FPGA, as described later. 

(3) General Linear MDOF model: The assumed numerical substructure is a linear MDOF 
system expressed with a general representation by the characteristic matrices (mass, damping and 
stiffness matrices), while the response of the hypothetical experimental substructure is simulated 
by implementing a linear SDOF system. 

(4) Shear-type Nonlinear MDOF model: As shown in Fig. 5(d), the assumed numerical 
substructure is a shear-type multi-story structural model, and each shear spring is modelled as the 
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bilinear hysteretic model. The response of the hypothetical experimental substructure is simulated 
by implementing a linear SDOF system as in the previous models. 

An example of the logic circuit output is shown by the most fundamental Linear SDOF model. 
The logic circuit of response simulator is configured to calculate the dynamic response of a SDOF 
system with a mass of 3450 kg, natural frequency of 1.0 Hz, and damping ratio of 0.05. In order to 
simulate the situation of real-time hybrid simulation, response of a hypothetical experimental 
substructure of a mass of 34.5 kg, natural frequency of 2.0 Hz and damping ratio 0.05 is 
synchronously simulated. The integration time interval is 0.001sec, and the El Centro record NS 
component is used as the ground excitation input. The logic circuit for the dynamic simulation is 
verified by using the logic circuit simulator ModelSim. 

 
 

Fig. 5 Assumed structural models 
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The result is shown in Fig. 6. The numerical simulation of the dynamic response of the same 
MDOF structural system by MATLAB software is also shown in the figure for comparison. The 
result of the output of the logic circuit is confirmed to be identical to the result of the software 
numerical simulation. Relevance and accuracy of the output of the logic circuit for Shear-type 
Linear MDOF model, General Linear MDOF model, and Shear-type Nonlinear MDOF model are 
also verified in the same manner. 

As the next step, implementation of the designed logic circuit to an actual FPGA and 
verification are performed. The FPGA board used for implementation and verification is DE2-70, 
shown in Fig. 7, accommodating Cyclone II EP2C70 as the FPGA device (Altera Co. 2007). The 
output of the dynamic response simulator implemented to the FPGA device and usual numerical 
calculation result show perfect agreement within the accuracy of numerical computation, 
confirming that the designed logic circuit functions as designed on the actual FPGA device. 

 
 
 

 

Fig. 6 Logic circuit output for Linear SDOF case 
 
 
 

 

Fig. 7 Altera DE2-70 board accommodating Cyclone II FPGA 
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Table 2 Specification of Cyclone II EP2C70 

Logic Elements DSP blocks I/O pin RAM 

68416 150 622 1152000 bits 

 
 

Table 3 Specification of DE2-70 board 

7-segment LED Red/green LED Toggle switches Oscillators 

9 18/9 18 50MHz, 28.63MHz 

 
 

5. Evaluation of computational performance limit 
 
5.1 Conditions and assumptions 
 
Limitation of computational performance of a single FPGA unit in terms of the speed of the 

processing and the number of DOF of the applied structural model is investigated. The two 
precision cases (32bit and 16bit accuracies) are considered. 

The Shear-type Linear MDOF model, General Linear MDOF model and Shear-type Nonlinear 
MDOF model are used for the evaluation. For the Shear-type Linear MDOF model, the 
characteristic matrices are narrowly banded as in Eq. (7). 
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where the symbol * indicates the non-zero components. It should be noted that all the 
characteristic matrices [M], [C], [K] become fully specified dense matrices in the General Linear 
MDOF models. In the General Linear MDOF model in which the characteristic matrices are 
assumed to be dense, the number of required computation steps more rapidly increases compared 
with the shear-type counterpart. The Shear-type Nonlinear MDOF model is specified as a 
shear-type model using shear springs with bilinear hysteretic restoring force characteristics, as 
previously described. 

For simplicity of the evaluation, only the use of a single FPGA is assumed, and Altera Stratix 
IV (Altera 2009) is employed as the target FPGA device in the case study, since this product is a 
commercially available FPGA device with a reasonably high capacity. Since the number of logic 
elements of Stratix IV is 681000, and it is recommended to design the implemented logic circuit to 
use up to 80% of the number of logic elements, the limit of the number of logic elements used for 
implementation is assumed to be 544880. 

Estimation of the number of consumed logic elements nLE is given by the following equation 

bitregiopLEiopLE nmnmn               (8) 

where mop i is the number of arithmetic operators type i (adder, multiplier, divider), nLE op i is the 
number of required logic elements for the type of arithmetic operator i, mreg is the number of 
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required registers, and nbit is the data bit width. The values of nLE op i determined by logic synthesis 
with the design tool software Quartus II Web Ed. ver 9.2 from the Verilog-HDL codes are 
presented in Table 4. 

The number of required register is estimated by Eq. (9). 

Nnm operationreg 3            (9) 

where noperation is the number of arithmetic operations and N is the number of DOF of the structural 
model. Accuracy of the estimated number of logic elements computed by the above equations has 
been checked by comparison with the corresponding result of logic synthesis using Quartus II 
software. 

  Evaluation of the required number of clocks is performed by summing all the clock numbers 
appearing in the step timing tabulation for the assumed procedure, in the form as illustrated in 
Table 1. Processing time per time step can also be derived by the number of required clocks 
divided by the maximum clock frequency, which depends on logic synthesis result and signal 
delay due to routing length and layout within FPGA. In this study, the maximum clock frequency 
is assumed to be 23.4MHz for 32 bit data case, and 30.5 MHz for 16 bit data case, based on the 
result from the logic synthesis result from Quartus II software. 

 
5.2 Design case for fastest processing 
 
Required numbers of consumed logic elements and of clocks are examined, for the design of 

logic circuits aiming at the maximum response simulation speed, implying the shortest completion 
time for computation of each time step. 

For the Shear-type Linear MDOF model, the required numbers of operations are obtained as 

3122  NNn tionmultiplica                (10) 

)(111 22 NONNnaddition            (11) 

For the Shear-type Nonlinear MDOF model, the required numbers of operations are obtained as 
in the following equations. 

1132  NNn tionmultiplica           (12) 

 
)(14 22 NONNnaddition                   (13) 

 
 

Table 4 The number of required logic elements for arithmetic operators 

nLE op i Adder Subtracter Multiplier Divider 

16 bit  298 322 251 391 

32 bit 672 714 951 1451 
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Fig. 8 Growth of requirements for Shear-type Linear and Nonlinear MDOF models 
 
 
Plots of growth of required numbers of consumed logic elements, and number of clocks per 

time step for increasing number of DOF computed by Eqs. (10) through (13) are shown in Fig. 8. 
It is indicated that the difference between the Shear-type Linear MDOF model and Shear-type 
Nonlinear MDOF model is relatively small, partly due to the simplicity of the bilinear rule 
introduced as the nonlinear restoring force modelling. 

For the General Linear MDOF model, in which the characteristic matrices are dense, evaluation 
of the required numbers of operations are 

154 2  NNn tionmultiplica              (14) 

)(252 222 NONNNnaddition           (15) 

Plots of growth of consumed logic elements and clocks for the General Linear MDOF model is 
shown in Fig. 9. 
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Fig. 9 Growth of requirements for General Linear MDOF model 
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Table 5 Maximum limit performance for assumed FPGA 

Case bits Maximum No. of DOF Processing time per step (sec) 

Shear-type Linear 

MDOF 

32 18 0.680 

16 32 0.510 

Shear-type 

Nonlinear MDOF 

32 17 0.720 

16 30 0.545 

General Linear 

MDOF  

32 11 0.760 

16 17 0.693 

 
 
The maximum limit performance of the simulator considering the limit number of logic 

elements and associated limit clock frequency for the assumed FPGA is summarized in Table 5. 
For all cases, while fast-speed computation with the step rate that well exceeds 1MHz is 

possible, it is indicated that the limit of the number of logic elements becomes the restriction in 
increasing the number of DOF. For this reason, the range of applicable numbers of DOF of the 
structural model is strictly limited. 

 
5.3 Design case using Resource Sharing 
 
In the investigation of the previous case, the required computation time per step is found to be 

considerably smaller than 1ms (a typical time integration time interval for MDOF systems) when 
the number of DOF increases up to the performance limit. However, the fact that the required 
number of logic elements rapidly grows poses the limit of the applicable number of DOF. To 
circumvent this problem, a method called Resource Sharing (RS) is introduced. Resource sharing 
(Hadjis 2012) implies that the logic circuit is designed so that a resource (arithmetic operator) is 
reused for plural operations if there exit arithmetic operators that are not simultaneously executed 
in the HDL description. Application of RS is expected to reduce the required number of logic 
elements and to improve the performance limit of the logic circuit implemented in the FPGA. The 
result of the requirement growth for the case the number of adders and that of multipliers are 
designed to be limited to 100 is shown in Figs. 10 and 11. The maximum limit performance for the 
assumed FPGA with RS application is summarized in Table 6. 

It is shown that although the required processing time increases with the introduction of RS, it 
does not reach the processing time limitation of 1ms for most of the cases, with the exception of 
the Shear-Type Linear and Nonlinear MDOF models with 16 bit precision. In exchange of the 
increase of processing time, the remarkable improvement of the limit number of DOF is achieved 
by the reduction of required logic elements. For the Nonlinear MDOF case with 16 bit precision, it 
is shown that 1725-DOF simulation is possible with the assumed FPGA, implying that real-time 
hybrid simulation with wider range of application than the conventional devices becomes possible 
with the use of FPGA implementation. 
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Fig. 10 Growth of requirements for Shear-type Linear and Nonlinear MDOF models including Resource 
Sharing 

 
 

 

Fig. 11 Growth of requirements for General Linear MDOF model including Resource Sharing 
 
 

Table 6 Maximum limit performance for assumed FPGA (Resource Sharing) 

Case bits Maximum No. of DOF Processing time per step (　sec) 

Shear-type Linear 

MDOF 

32 816 298.9 

16 1726 999.6 

Shear-type 

Nonlinear MDOF 

32 815 298.5 

16 1725 996.9 

General Linear 

MDOF 

32 68 18.61 

16 101 31.38 
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6. Conclusions 
 

In this study, application of FPGA (Field Programmable Gate Array) to a numerical simulator 
for the purpose of achieving fast computation of MDOF structural model in the real-time 
experimental hybrid simulation system is investigated. Design and performance analysis of logic 
circuits required for high-speed dynamic simulation of MDOF structural system models are 
performed, and the implementation of the designed logic circuit to an actual FPGA device is 
verified. Furthermore, limitation of computational performance of a single FPGA unit in terms of 
the speed of processing and the number of DOF of the applied structural model is investigated. 
The findings obtained in this investigation are summarized as follows. 

 A logic circuit is designed to perform real-time dynamic response simulation executed on 
FPGA device, and implementation of the designed logic circuit to an actual FPGA and 
verification are performed. The output of the dynamic response simulator implemented to the 
FPGA device and usual numerical calculation result show perfect agreement within the 
accuracy of numerical computation, confirming that the designed logic circuit functions as 
designed on the actual FPGA device. 
 Comparison among the shear-type linear MDOF model, general linear MDOF model (not 
necessarily the shear-type) and shear-type nonlinear MDOF models is made for the 
performance evaluation in various models with different computational efficiency. In all cases, 
the limit can be evaluated by the number of required logic elements to form the circuit for the 
designated model. 
 It is shown that for the fastest processing design, required number of logic elements rapidly 
grows as the number of DOF increases. To mitigate this problem, the resource sharing method 
is used to reduce the number of required logic elements, and this methodology is shown to be 
effective in expanding the range of applicable structural models and computing conditions. 

Development of a real-time hybrid simulation system using a test facility with the FPGA 
implementation presented in this paper is currently underway. The system development involving 
additional issues including external I/O, communication and loading system delay compensation 
schemes will be reported in future publication. 
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Appendix A. Verilog-HDL code for adder 
 
 

In the following code, e and s are the constants for exponent bit width and mantissa bit width, 
respectively. 
 
module  adder(a,b,ans);  

input [e+s:00] a,b ; 
output [e+s:00] ans ; 
parameter  zero = {e'h00,s'h00} ; 
parameter  error = {e'hff,s'hff} ; 

// step0 Absolute value comparison and input re-assignment 
    wire         comp = ( a[e+s-1:00] > b[e+s-1:00] ) ; 
    wire [e+s:00]  fa   = (comp)? a:b ; 
    wire [e+s:00]  fb   = (comp)? b:a ; 
// step1 Exception handling signal 
    wire sign_xor = fa[e+s] ^ fb[e+s] ; 
    wire sign_1 = fa[e+s] ;  
    wire equal = ( fa[e+s-1:00] == fb[e+s-1:00] ) ; 
    wire expo_a00  = ( fa[e+s-1:s] == e'h00 ) ; 
    wire expo_b00  = ( fb[e+s-1:s] == e'h00 ) ; 
// step2 Shift 
    wire [e-1:00]   expo_fa = fa[ e+s-1 : s ] ; 
    wire [e-1:00]   expo_dif   = fa[e+s-1:s] - fb[e+s-1:s] ; 
    wire         expo_u_sp3  = ( expo_dif >= e'd(s+3) ) ;   
    wire [2s+3:00] fb_shift = (expo_u_sp3)? { s+3'h00 , !exp_b00 , fb[s-1:00] } :  
 ( { !expo_b00 , fb[s-1:00] , s+3'h00 } >> 
expo_dif ) ; 
    wire         fb_low_or  = |fb_shift[s:00] ; 
    wire [s+4:00]  sgnf_fb_t  = { 1'b0 , fb_shift[2s+3:s+1] , fb_low_or } ; 
    wire [s+4:00]  sgnf_fa  = { 1'b0 , !expo_a00 , fa[s-1:00] , 3'h0 } ; 
// step3 Addition 
    wire [s+4:00]  sgnf_fb  = (sign_xor)? ~sgnf_fbt + 1'b1 : sgnf_fb_t ; 
    wire [s+4:00]  sgnf_3   = sgnf_fa + sgnf_fb ; 
// step4 Normalization 
    wire [04:00]  expo_shift_t ; 
    assign        expo_shift_t[04] = ~|sgnf_3[s+4:s-11] ; 
    wire [s+4:00]  sgnf_shift0    = ( !expo_shift_t[04] )? sgnf_3[s+4:00] : 
                                  { sgnf_3[s-12:00] , 16'h0000 } ; 
    assign        expo_shift_t[03] = ~|sgnf_shift0[s+4:s-3] ; 
    wire [s+4:00]  sgnf_shift1    = ( !expo_shift_t[03] )? sgnf_shift0[s+4:00] : 
                                  { sgnf_shift0[s-4:00] , 8'h00 } ;    
    assign        expo_shift_t[02] = ~|sgnf_shift1[s+4:s+1] ; 
    wire [s+4:00]  sgnf_shift2    = ( !expo_shift_t[02] )? sgnf_shift1[s+4:00] : 
                                  { sgnf_shift1[s:00] , 4'h0 } ;    
    assign        expo_shift_t[01] = ~|sgnf_shift2[s+4:s+3] ; 
    wire [s+4:00]  sgnf_shift3    = ( !expo_shift_t[01] )? sgnf_shift2[s+4:00] : 
                                   { snf_shift2[s+2:00] , 2'h0 } ; 
    assign        expo_shift_t[00] = ~|sgnf_shift3[s+4] ; 
    wire [s+4:00]  sgnf_shift4    = ( !expo_shift_t[00] )? sgnf_shift3[s+4:00] : 
                                   { sgnf_shift3[s+3:00] , 1'h0 } ;    
     
    wire [e+1:00]  expo_4      = expo_fa - expo_shift_t + 1'b1 ; 
// step5 Carry-over bit 
    wire   up0 = sgnf_shift4[04] ; 
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    wire   up1 = sgnf_shift4[03] ; 
    wire   up2 = sgnf_shift4[02] ; 
    wire   up3 = sgnf_shift4[01] ; 
    wire   up4 = sgnf_shift4[00] ; 
    wire   all_1   = &sgnf_shift4[s+4:04] ; 
    wire   carry_b  = up1 & ( up0 | up2 | up3 | up4 ) ;  
    wire [e+1:00] expo_5  = expo_4 + ( carry_b & all_1) ; 
    wire [s:00]  sgnf_5  = sgnf_shift4[s+4:04] + carry_b ; 
// step6 Overflow/underflow adjustment 
    wire [e-1:00]  expo_6  = (exp_5[e+1])? e'h00 : 
                          (exp_5[e])? e'hff : expo_5[e-1:00] ; 
    wire [s-1:00]  sgnf_6  = (exp_5[e+1])? s'h00 : 
                          (exp_5[e])? s'h00 : sgnf_5[s-1:00]; 
// step7 Exception handling 
    function [e+s:00] fin ; 
        input  sign_xor , equal ; 
        input  expo_a00,expo_b00; 
        input  sign_1; 
        input [e+s:00] fa,fb; 
        input [e-1:00] expo_6 ; 
        input [s-1:00] sgnf_6 ; 
        casex ( { sign_xor , equal , expo_a00 , expo_b00 } ) 

4'bxx_01   : fin = fa; 
4'bxx_10   : fin = fb; 
4'bxx_11   : fin = {1'b0,zero}; 
4'b00_00   : fin = {sign_1,expo_6,sgnf_6}; 
4'b01_00   : fin = {sign_1,expo_6,sgnf_6}; 
4'b10_00   : fin = {sign_1,expo_6,sgnf_6}; 
4'b11_00   : fin = {1'b0,zero}; 

            default :  fin = {1'b1,error} ; 
        endcase 
    endfunction 
    wire        sign_7 ; 
    wire [e-1:00]  expo_7 ; 
    wire [s-1:00]  sgnf_7 ; 
    assign { sign_7,expo_7,sgnf_7 } = fin (sign_xor , equal , expo_a00,expo_b00 

sign_1,fa,fb,expo_6,sgnf_6  ) ; 
// Output 
    wire       sign_fin = sign_7 ; 
    wire [e-1:00] expo_fin = expo_7 ; 
    wire [s-1:00] sgnf_fin = sgnf_7 ; 
    assign     ans = { sign_fin , expo_fin , sgnf_fin } ; 
endmodule 
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Appendix B. Verilog-HDL code for multiplier 
 
 
module multiplier(a,b,ans); 

input [e+s:00] a,b ; 
output [e+s:00] ans ; 
parameter geta = 2e-1 -1; 
parameter zero = {e'h00,s'h00}; 
parameter error = {e'hff,s'hff}; 

// step0 Exception handling signal 
wire expo_a00 = (a[s+e-1:s] == e'h00); 
wire expo_b00 = (b[s+e-1:s] == e'h00); 

// step1 multiplication 
wire sign_fin = a[s+e] ^ b[s+e]; 
wire [e+1:00] expo_1 = a[s+e-1:s] + b[s+e-1:s] - geta; 
wire [2s+1:00] sgnf_1 = {1'b1,a[s-1:00]} * {1'b1,b[s-1:00]}; 

// step2 normalization 
wire [e+1:00] expo_2 = expo_1 + sgnf_1[2s+1] ; 
wire [2s+1:s-2] sgnf_2_t = {sgnf_1[2s+1:s-1],(|sgnf_1[s-2:00])}; 
wire [2s:s-3] sgnf_2 = 

 ( sgnf_1[2s+1] )?sgnf_2_t[2s+1:s-2] :{ sgnf_2_t[2s:s-2],1'b0 } ; 
// step3 bit shift 

wire ulp_bit = sgnf_2[s] ; 
wire guard_b = sgnf_2[s-1] ; 
wire round_b = sgnf_2[s-2] ; 
wire stiky_b = sgnf_2[s-3] ; 
wire all_1 = &sgnf_2t[2s:s+1] ; 
wire carry_b = guard_b & ( ulp_bit | round_b | stiky_b ) ; 
wire [e+1:00] expo_3 = expo_2 + ( carry_b & all_1) ; 
wire [s:00] sgnf_3 = sgnf_2[2s:s] + carry_b ; 

// step4 correction for overflow/underflow 
wire [e-1:00] expo_4 = ( expo_3[e+1] )? e'h00 : 

( expo_3[e] )? e'hff : expo_3[e-1:00] ; 
wire [s-1:00] sgnf_4 = ( expo_3[e+1] )? s'h00 : 

( expo_3[e] )? s'h00 : sgnf_3[s-1:00]; 
// step5 exception handling 

function [e+s-1:00] fin ; 
input expo_a00 , expo_b00 ; 
input [e-1:00] expo_4 ; 
input [s-1:00] sgnf_4 ; 
case ( { expo_a00 , expo_b00 } ) 

2'b11 : fin = zero ; 
2'b10 : fin = zero ; 
2'b01 : fin = zero ; 
2'b00 : fin = { expo_4,sgnf_4 } ; 
default : fin = error ; 

endcase 
endfunction 
wire [e-1:00] expo_5 ; 
wire [s-1:00] sgnf_5 ; 
assign { expo_5,sgnf_5 } = fin ( expo_a00,expo_b00,expo_4,sgnf_4 ) ; 

// Output 
wire [e-1:00] expo_fin = expo_5 ; 
wire [s-1:00] sgnf_fin = sgnf_5 ; 
assign ans = { sign_fin , expo_fin , sgnf_fin } ; 

endmodule 
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