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Abstract.   With the sub-stepping technique, the numerical analysis in real-time dynamic hybrid testing is 
split into the response analysis and signal generation tasks. Two target computers that operate in real-time 
may be assigned to implement these two tasks, respectively, for fully extending the simulation scale of the 
numerical substructure. In this case, the integration time-step of solving the dynamic response of the 
numerical substructure can be dozens of times bigger than the sampling time-step of the controller. The time 
delay between the real and desired feedback forces becomes more striking, which challenges the 
well-developed delay compensation methods in real-time dynamic hybrid testing. This paper focuses on 
displacement prediction and force correction for delay compensation in the real-time dynamic hybrid testing 
with a large integration time-step. A new displacement prediction scheme is proposed based on 
recently-developed explicit integration algorithms and compared with several commonly-used prediction 
procedures. The evaluation of its prediction accuracy is carried out theoretically, numerically and 
experimentally. Results indicate that the accuracy and effectiveness of the proposed prediction method are of 
significance. 
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1. Introduction 
 

Real-time dynamic hybrid testing (RTDHT) is an effective method to analyze dynamic 
responses of complex structures that are excited by earthquake loads. It divides the entire structure 
system into numerical and physical substructures, which are simulated in computers and 
experimented by loading equipments, respectively. The term “real-time” is a double-edged sword 
for the RTDHT. On one hand, it ensures the realistic loading rate of the physical substructure to 
enable the simulation of rate-dependent behavior of structures; on the other hand, it imposes quite 
high performance requirements for loading equipments, numerical integration algorithms, and data 
transmission, which limits the simulation scale of structures and restricts the rapid promotion of 
the RTDHT to engineering application. 

To simulate complex and large-scale numerical substructures in real-time, the enlargement of 
the integration time-step is an effective strategy. However, the sampling time-step of the controller 
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is always quite small. For example, the sampling time-step is only 1/2048 sec for a controller with 
a sampling frequency of 2048 Hz. To solve this contradiction, the sub-stepping technique (Bonnet 
2006) was proposed and developed. The sub-stepping technique involves splitting tasks which are 
related to the solution of a numerical substructure into different parts and using different time-steps 
to execute. The integration time-step of solving the numerical substructure is referred to as the 
main time-step, which is always larger than the sampling time-step of the controller. The signal 
generation time-step is referred to as the sub time-step, which is always identical to the sampling 
time-step of the controller. The sub-stepping technique was first proposed by Nakashima and 
Masaoka (1999) to conduct multi-degree-of-freedom (MDOF) RTDHT by dividing numerical 
substructure analysis into the response analysis task (RAT) and the signal generation task (SGT). 
Since then, many other researchers emulated it to expand the simulation scale of numerical 
substructures. Shing et al. (2004) proposed a fast hybrid testing system to achieve the real-time 
response with a high loading rate. A quadratic interpolation method was developed to generate 
command displacements to ensure the smooth motion of an actuator during iteration of a nonlinear 
solution. Bonnet et al. (2008) used a similar strategy in complex numerical models. The last 
extrapolated result, used in the new interpolation, was introduced to solve the continuity problem 
between sub time-steps. Jung et al. (2007) presented RTDHT with an implicit time integration 
scheme, where the sub-stepping technique with a quadratic interpolation was applied to update 
command displacements during iteration. Chen and Ricles (2008, 2012) applied the sub-stepping 
technique to MDOF real-time hybrid tests by using a linear ramp generator to smoothly interpolate 
command displacements in a small time-step.  

Only one target computer was used in the aforementioned studies. Reinhorn et al. (2004) 
proposed a RTDHT system with dual target computers. One target computer was used to conduct 
numerical simulation, and the other was mainly used to perform the cascade control loop to 
achieve force control as well as compensate time delay. This kind of system was widely applied 
for the force-based substructuring (Reinhorn et al. 2006, Shao et al. 2011). Inspired by this unique 
thought and the sub-stepping technique, Zhu et al. (2014) developed another RTDHT system with 
dual target computers to further improve computation capability of the numerical analysis. As 
shown in Fig. 1, the RAT was executed in the Target Computer 1 at each main time-step Δt, while 
the SGT was executed in the Target Computer 2 at each sub time-step δt. A 1240-DOF finite 
element (FE) numerical substructure was successfully implemented when the main time-step was 
40/2048 sec (about 0.02 sec). Comparing with the RTDHT with single target computer, the 
RTDHT with dual target computers may enhance computing capability of the RAT by executing 
the SGT independently. Moreover, it also provides a potential for further improving the computing 
efficiency and accuracy of the RTDHT by assigning more tasks on the second target computer. 

 
 

Fig. 1 RAT and SGT processes in the RTDHT system with dual target computers 
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In addition, the sub-stepping technique results in the incoordination between the real and 
desired feedback forces. This incoordination is equivalent to introducing an additional time delay 
of a main time-step Δt into the RTDHT system, which is different from the inherent time delay 
resulted from the hydraulic serve system. With the main time-step Δt enlarging, the effect of the 
additional time delay on the RTDHT system becomes remarkable. 

To overcome the incoordination between the real and desired feedback forces, an extrapolation 
procedure is required to predict displacements at the next main time-step in advance. So far, many 
displacement prediction methods have been proposed to compensate for the time delay. The 
Nth-order polynomial fitting, a simple and efficient method, has been extensively used in the 
RTDHT (Nakashima and Masaoka 1999, Horiuchi et al.1999). Nakashima and Masaoka (1999) 
analyzed the accuracy of 1st to 4th-order polynomial extrapolation and proved that the 3rd and 
4th-order polynomials had better accuracy than the other two polynomials when the main 
time-step is 0.01 sec. Based on the kinematical equations, Horiuchi and Konno (2001) proposed 
the linear acceleration prediction method which the formulation of Newmark-β method was used 
to predict displacements at the next time-step. Ahmadizadeh et al. (2008) proposed a similar 
prediction method based on the Newmark’s explicit method for delay compensation. This 
Newmark explicit prediction method shows a significant advantage in force measurements during 
earthquake simulations. Wu et al. (2013) analyzed the relationship between the aforementioned 
prediction methods and the stability of the RTDHT. In addition, Ahmadizadeh et al. (2008) also 
proposed a kind of force correction method to implement delay compensation. The last few 
displacements and the feedback forces are fitted by two 2nd-order polynomials, respectively. The 
desired feedback forces are corrected by seeking the time at which the desired displacement 
occurs. 

Above-mentioned displacement prediction methods show good prediction abilities when the 
main time-step is less than 0.01 sec. However, the main time-step of the numerical substructure 
may be as much as 0.01 sec to 0.02 sec for some large-scale numerical substructures. This paper 
focuses on the displacement prediction for delay compensation in the RTDHT with large main 
time-step. Solutions of existing displacement prediction methods and the force correction method 
are investigated, and a new prediction scheme based on the explicit integration algorithm is 
proposed to predict displacement with main time-steps. Numerical simulations indicate that the 
proposed method has better accuracy in the high frequency range of interest than other prediction 
methods when the main time-step becomes relatively large. Finally, a series of RTDHTs are 
conducted to verify the accuracy and effectiveness of the proposed explicit prediction method. 

 
 

2. Incoordination between the real and desired feedback forces 
 
2.1 Integration algorithm 
 
2.1.1 Ideal timeline of the integration algorithm 
For linear structures, the equations of motion of numerical substructures can be expressed as 

 

1 1 1 1 1i i i i i       Mu Cu Ku F f 

    

(1) 

where the subscript i+1 denotes the (i+1)th main time-step, u , u , and u  are the displacement, 
velocity, and acceleration vectors, respectively; M , C , and K are the mass, damping, and 

1271



 
 
 
 
 
 

Fei Zhu, Jin-Ting Wang, Feng Jin, Yao Gui and Meng-Xia Zhou 

 

stiffness matrices, respectively; F  is the known external force vector; and ( , , )f f u u u   is the 
feedback force vector from the physical substructure.  

The form of the equation of motion in Eq. (1) is similar to that of the conventional equation in 
the structure dynamics. The only difference is the existence of the feedback force vector 1if , 
which depends on 1iu , 1iu , and 1iu .  

Assuming that no time delay exists, the ideal timeline at each integration main time-step is 
schematically illustrated in Fig. 2. At the beginning of (i+1)th main time-step, the feedback force 

if  is transmitted from the physical substructure to the target computer for numerical analyzing. 
Meanwhile, the command displacement 1iu  is transmitted to the controller for physical loading. 
During the (i+1)th main time-step interval, the analysis of the numerical substructure and the 
loading of the physical substructure are carried out in parallel. At the (i+2)th main time-step, the 
same process is implemented. 

In the following discussion, we assume that iu , iu , iu , and if  are known, but 1iu , 1iu , 1iu  
are unknown at the beginning of the (i+1)th main time-step. 1if  can be fed back only after 1iu  is 
imposed onto the physical substructure. In addition, 1iu  and 1iu  should be calculated at the 
beginning of (i+1)th main time-step, to ensure the desired condition for accurately controlling the 
loading of the physical substructures. However, for general integration algorithms, only 1iu  can 
be calculated at the beginning of (i+1)th main time-step. If both 1iu  and 1iu  can be calculated 
explicitly, this integration algorithm is called the dual explicit algorithm in this paper. 

 
2.1.2 Dual explicit algorithm 
Based on the discrete control theory, Chen and Ricles (2008) proposed the CR algorithm, which 

is an unconditionally stable, explicit algorithm. RTDHTs conducted by using this algorithm were 
highly effective (Chen et al. 2009). Gui et al. (2014) proposed a family of explicit algorithms that 
contains the CR algorithm as a special case. The general formulation is defined as 

 

2
1i i i it t     u u u α u 

 

(2)

 

 

1i i it   u u α u  

 

(3)

 

in which 

 

2 1
0 02 (2 2 )t t       α M C K M

    

(4)

 

 

Fig. 2 Ideal timeline at each integration main time-step
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Aforementioned analysis is based on the assumption that there is no inherent time delay of the 
hydraulic servo system. In fact, the inherent time delay of the hydraulic servo system is an 
objective existing phenomenon in the RTDHT. Hence, the total time delay discussed in this paper 
contains two parts: one is the inherent time delay τ which occurs in the hydraulic servo system; the 
other is the additional time delay resulted from the incoordination between the real and desired 
feedback forces when integrating the numerical substructure. The additional time delay is identical 
to the integration time-step Δt. For simplicity, the inherent time delay τ is assumed as constant and 
compensated by a commonly-used method proposed by Wallace et al. (2005). This paper focuses 
on the compensation of the additional time delay by predicting the displacement at the next 
integration time-step. 

 
2.3 Time-step switch strategy for the sub-stepping technique  
 
Due to the incoordination discussed in Section 2.2, the sub-stepping technique in the RTDHT 

system involves the switch from the RAT to the SGT. A simple and common time-step switch 
strategy is shown in Fig. 4. During testing, displacement signals are generated by using a 
prediction procedure when the target displacement at the next main time-step is still under 
calculation. Once the target displacement is calculated out, an interpolation procedure will be 
performed to generate signals. A sudden jump occurs when the displacement signal generation 
switches from extrapolation to interpolation. The sudden jump affects the continuity of 
displacement signals and may cause ill-controlled actuator oscillations (Schellenberg et al. 2009).  

For the RTDHT system with single target computer, Bonnet et al. (2007) introduced a switch 
operation to overcome the sudden jump by using the displacement of the last extrapolated sub 
time-step in the new interpolation to produce displacement signals. The specific process contains 
two steps: (1) when the displacement at the next main time-step is still under calculation, an 
extrapolation procedure is used to extrapolate displacement signals; and (2) when the calculation 
of displacement at the next main time-step is finished, an interpolation procedure is used to 
interpolate displacement signals by using the displacement of the last extrapolated sub time-step. 
This method ensures that the newly computed interpolation polynomial crosses the last 
extrapolated point. 

 
 

Fig. 4 Time-step switch strategy in the RTDHT system with single target computer 
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Fig. 5 Time-step switch strategy in the RTDHT system with dual target computers 
 
 
For the RTDHT system with dual target computers, another strategy is used in this paper to 

solve the aforementioned sudden jump problem. As shown in Fig. 5, at time t, the displacement 
after the time interval of Δt is predicted in the Target Computer 1 in advance, and then the Target 
Computer 2 generates displacement signals by using the linear interpolation synchronously. 
Because all displacement signals are generated by interpolation, the switch from extrapolation to 
interpolation during one main time-step is unnecessary. It guarantees the smooth movement of 
loading equipments. 

 
 

3. Delay compensation solutions for large time-step  
 
As stated in the Section 1, some prediction methods which contain force and displacement 

predictions have been widely used for delay compensation. Those well-developed prediction 
methods exhibit good prediction abilities when the main time-step is less than 0.01 sec. This 
section firstly proposes a new displacement prediction method based on the dual explicit 
algorithmm. Then the accuracy comparison between the proposed and the known prediction 
methods applied for large main time-step is analyzed theoretically and numerically in detail. 

 
3.1 Dual explicit prediction method 
 
This section proposes a new displacement prediction method (called the dual explicit prediction 

method in this paper) based on the dual explicit algorithm by using the displacement 1iu  and the 

velocity 1iu  explicitly calculated at the (i+1)th main time-step. The displacement prediction is 
shown conceptually in Fig. 6. The following 4th-order polynomial is employed to predict the 
acceleration 

 

1 1
4

i
p
i k k

k i

a 
 

 u u 

 

(5)

 

where 1
p
iu  is the predicted acceleration, and 1ka   is the polynomial coefficient. Thus, the nth 

predicted displacement can be calculated by using the displacement formulation in the dual 
explicit algorithm and is given by 

t

t t t  2t t t t 

1275



 
 
 
 
 
 

Fei Zhu, Jin-Ting Wang, Feng Jin, Yao Gui and Meng-Xia Zhou 

 

 

Fig. 6 Displacement prediction
 
 
 

 

2
1 1 1 1( )p p

n i i in t n t      u u u u 

 

(6)

 

where p
nu  is the predicted displacement. Compared with Eq. (2), the prediction error is caused 

solely by the predicted 1
p
iu . Compared with the Newmark’s explicit prediction method, this 

method reduces the predicted time interval from t n t   to n t . 
 
3.2 Accuracy analysis  
 
The accuracy of displacement prediction methods can be evaluated by considering the vibrating 

response of the structures under a sinusoidal excitation (Nakashima and Masaoka 1999). Given 
that a SDOF structure vibrates sinusoidally with the amplitude A and the circle frequency  , 

 

sinu A t

 

(7)

 

where u is the exact displacement, and 2 f   with f as the excited frequency. The 
displacement, velocity, and acceleration of previous main time-steps are given by the following 
equation and its derivatives: 

 

1 sin ( )i mu A t m t n t        (8)

 

where m is the number of previous main time-steps. Then, the predicted displacement p
nu  can be 

obtained by inserting Eq. (8) and its derivatives into the corresponding formulations of 
displacement prediction methods. The unified equation of the predicted displacement with the 
predicted time interval n t  can be expressed as follows 

 

sin( )p
n nu A t     (9) 

with 
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(10)
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(11)

 where   is the amplitude change; and n  is the phase shift. nC  and nS  are only related to   

when both n t  and t  are constant. Eqs. (9)-(11) indicate that the amplitude change and the 
phase shift can be regarded as indexes of the error between the target and predicted displacements. 
The precise solution, i.e., without any error, is defined as the amplitude magnification of 1 and the 
phase shift of 0. 

The prediction methods in this study aim to predict the displacement 2
p

iu  , e.g., 2
p p
n iu u  . The 

amplitude change and phase shift with ωΔt are plotted in Fig. 7 for different prediction methods 
(2nd to 4th-order polynomial method, the linear acceleration prediction method, the Newmark’s 
explicit prediction method and the proposed dual explicit prediction method). For the dual explicit 
prediction method, the value of λ depends on that used in dual explicit algorithm for numerical 
substructure analysis. For comparing the effect of the parameter λ on the accuracy of the scheme, 
three cases are conducted with λ = 11.5, 4 and 3, respectively. According to Gui et al. (2013), the 
algorithm has the best computing accuracy when λ = 11.5, and is unconditionally stable when λ = 4 
and 3. 

When ωΔt < 0.3, both amplitude change and phase shift display negligible dispersion for all 
prediction methods; however, their changing trends are different with the increase of ωΔt. In Fig. 
7(a), it is evident that the dual explicit prediction methods with λ = 11.5, 4 and 3 have a small 
dispersion in the range of 0.3 < ωΔt < 1.4, especially in 1.0 < ωΔt < 1.4 (corresponding to the 
frequency range of 8-11.4 Hz when Δt = 40/2048 sec), compared with other prediction methods. It 
demonstrates that the dual explicit prediction method has better accuracy than other considered 
methods. 

 
 

(a) Amplitude magnification (b) Phase shift 

Fig. 7 Errors generated by various displacement prediction methods 
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For the phase shift in Fig. 7(b), it is clear that the phase shift of the dual explicit prediction 
method approaches to zero in a wide range of 0 < ωΔt < 0.9. However, a sudden change occurs for 
the dual explicit prediction methods with λ = 11.5, 4 and 3 when ωΔt approaches to 1.1 and the 
corresponding phase shift is equal to ±π/2. This sudden change, called the jump discontinuity 
(belonging to the discontinuity point of the first kind) in mathematics, is a common phenomenon 
since the formulation of the phase shift n  is the arctangent function as shown in Eq. (10). Other 
prediction methods in Fig. 7 will lead to similar sudden change when the phase shift approaches to 
±π/2 with the increase of ωΔt. 

In conclusion, the proposed dual explicit prediction method shows good prediction accuracy 
when the main time-step Δt enlarges to 40/2048 sec, especially in high-range of frequency 
(8.1-11.4 Hz). Since the concerned earthquake wave frequency is about 0-10 Hz in structural 
dynamics, this proposed scheme is suitable for RTDHT to obtain accurate high frequency 
displacement response when a relative large predicted time interval appears.  

 
3.3 Numerical validation test 
 
A numerical example of a 2-DOF structure is performed to verify the accuracy levels achieved 

by using the Newmark’s explicit prediction method, the 3rd-order polynomial, and the proposed 
dual explicit prediction method. The properties of the structure are listed in Table 1. The damping 
matrix for the structure is based on the Rayleigh proportional damping with 5% damping ratio for 
both modes. The external acceleration input is a sinusoidal sweep wave with the constant 
amplitude of 0.15 g and varying frequency from 0 Hz to 10 Hz. The target displacements of DOF1 
are calculated by the dual explicit algorithm with λ = 3. Meanwhile, the predicted displacements of 
the DOF1 are determined by using the three prediction methods on the basis of the target 
displacements, respectively. The predicted time interval is equal to the main time-step Δt. Figs. 8 
and 9 present the time history and Fourier spectrum of the target and predicted displacements with 
Δt = 20/2048 sec and Δt = 40/2048 sec, respectively. 

When Δt = 20/2048 sec, the results of the 3rd-order polynomial and the dual explicit prediction 
method agree quite well with the target displacement in the time domain, as shown in Fig. 8(a). 
But the results of the Newmark’s explicit prediction method are slightly larger than the target 
displacement. In the frequency domain as shown in Fig. 8(b), the displacements predicted by the 
3rd-order polynomial and the dual explicit prediction method match well with the target 
displacements; however, the Newmark’s explicit prediction method slightly overestimates the 
displacements response at the resonant frequencies, which indicates the same scenario as observed 
in time domain. 

 
 
 

Table 1 Structural properties of the numerical model 

Model Mass (kg) Stiffness (N/m) Damping(N·sec/m) Natural Frequency (Hz)

 

1000 0

0 1000

 
 
 

 
6 6

6 6

2 10 10

10 10

  
  

4251.954 1422

1422 2829.954

 
  

3.1

8.1

 
 
 
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When Δt = 40/2048 sec, the discrepancy of the Newmark’s explicit prediction method becomes 
more striking in both the time and frequency domains (Fig. 9). The amplitude amplification occurs 
in a large range of frequency. The 3rd-order polynomial also obtains the amplified amplitude in the 
frequency range of 8-10 Hz. In contrast, the prediction displacement achieved by the dual explicit 
prediction method still agrees well with the target displacement. 
 

 
(a) Time history 

 
(b) Fourier spectrum 

Fig. 8 Target and predicted displacement responses of DOF1 for a 2-DOF structure (Δt = 20/2048 sec) 
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(a) Time history 

 
(b) Fourier spectrum 

Fig. 9 Target and predicted displacement responses of DOF1 for a 2-DOF structure (Δt = 40/2048 sec) 
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Table 2 Normalized root mean square errors (%) of different prediction methods 

Prediction method Δt = 20/2048 sec Δt = 40/2048 sec 

Newmark’s explicit prediction method 6.74 29.05 

3rd-order polynomial 1.03 16.33 

dual explicit prediction method 1.43 9.44 

 
To quantitatively evaluate the performance of the prediction methods, the normalized root 

mean square (NRMS) error (Chae et al. 2013) between the target and predicted displacements is 
further calculated as follows 

 

2

1

2

1

( )

( )

N
t p
i i

i
N

t
i

i

u u
NRMS error

u











 

(12)

 where t
iu  and p

iu  are the target and predicted displacement at ith main time-step, respectively. 
The NRMS errors for those three prediction methods are summarized in Table 2. 

It can be seen from Table 2 that the NRMS errors of the 3rd-order polynomial and the dual 
explicit prediction method are smaller than those of the Newmark’s explicit prediction method 
when Δt = 20/2048 sec; and the NRMS error of the dual explicit prediction method is smaller than 
those of the 3rd-order polynomial and the Newmark’s explicit prediction method when Δt = 
40/2048 sec. 

 
 

4. Experimental analysis 
 
4.1 The RTDHT system with dual target computers 
 
The RTDHT system with dual target computers for simulating large-scale numerical 

substructures is shown in Fig. 10. The system comprises three components: the distributed 
real-time calculation system, the shaking table loading system, and the data acquisition and 
transmission system (Wang et al. 2011, Zhu et al. 2014). The xPC-Target toolbox (MATLAB, 
2006) is employed as the solution in the distributed real-time calculation system. The shaking table 
loading system consists of the MTS 469D digital controller, two shaking tables, and oil source. 
The data acquisition and transmission system uses PXI and LabVIEW to construct the data 
acquisition platform. SCRAMNet cards are also used to ensure real-time data transmission. 

There are two identical uni-axial shaking tables, manufactured by MTS Company. Each table 
has a 1.5 m × 1.5 m working area and a bearing capacity of 2 ton. The maximum acceleration can 
reach up to 3.6 g when the table is bare and 1.2 g when the table loads to its full capacity. The 
excited frequency range is 0–50 Hz. The Three Variable (displacement, velocity and acceleration) 
Control is used for the tables. MATLAB/Simulink is integrated into the 469D digital controller 
platform to achieve real-time hybrid control capabilities. Consequently, all controller feedback 
outputs are made available in Simulink, while commands or controller correction signals generated 
by Simulink can drive the controller command inputs.  
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(a) Time history (b) Fourier spectrum 

Fig. 13 Time history and the Fourier spectrum of the artificial seismic wave 
 
 
 

(a) Displacement 

(b) Acceleration 

Fig. 14 Displacement and acceleration histories at the bottom of the three-storey shear frame 
 
 

The artificial seismic wave is applied as the free-field input to excite the structure. The 
interface between the numerical and physical substructures is the input point, as shown in Fig. 
11(b). The peak acceleration is 0.15 g. Fig. 13 depicts the time history and Fourier spectrum of the 
artificial wave.  
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(a) Displacement (b) Acceleration 

Fig. 15 Fourier spectrum of displacement and acceleration at the bottom of the three-storey shear frame 
 
 
 

 
(a) Dual explicit prediction method (b) 3rd-order polynomial (c) Newmark’s explicit prediction 

method 

 
(d) Force correction method (e) “exact” 

Fig. 16 Synchronization subspace plots of the target and measured displacement at the bottom of the 
three-storey shear frame 
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Fig. 14 presents the dynamic displacement and the acceleration responses at the bottom of the 
three-storey shear frame (the interface of the numerical and physical substructures). As shown in 
Fig. 14(a), the peak displacement of the “exact” result is 2.73 mm, and those obtained by using the 
dual explicit prediction method, the 3rd-order polynomial method, Newmark’s explicit prediction 
method, and the force correction method are determined as 3.10, 3.47, 3.76, and 3.36 mm, with 
errors of 13.55%, 27.11%, 37.73%, and 23.08%, respectively. In Fig. 14(b), the acceleration 
obtained by using the dual explicit prediction method is the closest to the “exact” result. A similar 
trend is demonstrated by the Fourier spectrum shown in Fig. 15. Fig. 16 shows the synchronization 
subspace plots for these five RTDHTs. The deviations from the diagonal straight line in all plots 
are very small, which indicates the good performance of the compensation methods used during 
testing.  

 
 

 
(a) First story 

 
(b) Second story 

 
(c) Third story 

Fig. 17 Acceleration histories of the three-storey shear frame 
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(a) First storey (b) Second storey 

(c) Third storey 

Fig. 18 Fourier spectrum of the accelerations of the three-storey shear frame 
 
 
Figs. 17 and 18 present the acceleration responses of the three stories of the frame. Similar 

conclusions can be drawn from the results in the time and frequency domains. The dual explicit 
prediction method yields the highest prediction efficiency. The Newmark’s explicit prediction 
method shows the most significant error because of the predicted time interval which is as large as 
two times of the main time-step. 

In summary, compared with other displacement prediction methods and the force correction 
method, the proposed dual explicit prediction method exhibits the highest prediction accuracy, 
especially in the high frequency range. 

 
 

5. Conclusions 
 

This study focuses on the RTDHT system with dual target computers to simulate large-scale 
numerical substructures by using the sub-stepping technique. Given that a large main time-step is 
used to fully extend the simulation scale of the numerical substructure, the incoordination between 
the real and desired feedback force which is equivalent to introducing an additional time delay in 
systems must be considered. Hence, displacement prediction or feedback force correction is 
important for delay compensation. To address this problem, a new dual explicit displacement 
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prediction method based on the explicit integration algorithm is proposed.  
The proposed method is compared with the other three existing displacement prediction 

methods, namely, the Nth-order polynomial prediction method, the linear acceleration prediction 
method, and the Newmark’s explicit prediction method. Theoretical and numerical analysis show 
that the proposed dual explicit prediction method exhibits higher accuracy than other methods in 
the high frequency range. This finding is indicated by a relatively large predicted time interval. 
Finally, RTDHTs of a three-storey shear frame mounted on a semi-infinite foundation are 
successfully implemented with the force correction method, the 3rd-order polynomial method, the 
Newmark’s explicit prediction method, and the proposed method. The proposed dual explicit 
prediction method demonstrates the highest reduction in high-frequency response error which 
demonstrates its good ability for displacement prediction with large time-step. 

Considering that the performance of a delay compensation method should be assessed by 
accuracy as well as stability, the stability analysis of the proposed method for compensating 
relatively large time delay is also crucial. This application will be discussed in future studies. 
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