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Abstract. With the sub-stepping technique, the numerical analysis in real-time dynamic hybrid testing is
split into the response analysis and signal generation tasks. Two target computers that operate in real-time
may be assigned to implement these two tasks, respectively, for fully extending the simulation scale of the
numerical substructure. In this case, the integration time-step of solving the dynamic response of the
numerical substructure can be dozens of times bigger than the sampling time-step of the controller. The time
delay between the real and desired feedback forces becomes more striking, which challenges the
well-developed delay compensation methods in real-time dynamic hybrid testing. This paper focuses on
displacement prediction and force correction for delay compensation in the real-time dynamic hybrid testing
with a large integration time-step. A new displacement prediction scheme is proposed based on
recently-developed explicit integration algorithms and compared with several commonly-used prediction
procedures. The evaluation of its prediction accuracy is carried out theoretically, numerically and
experimentally. Results indicate that the accuracy and effectiveness of the proposed prediction method are of
significance.

Keywords: real-time dynamic hybrid testing; delay compensation; sub-stepping technique; large
integration time-step; displacement prediction; explicit integration algorithm

1. Introduction

Real-time dynamic hybrid testing (RTDHT) is an effective method to analyze dynamic
responses of complex structures that are excited by earthquake loads. It divides the entire structure
system into numerical and physical substructures, which are simulated in computers and
experimented by loading equipments, respectively. The term “real-time” is a double-edged sword
for the RTDHT. On one hand, it ensures the realistic loading rate of the physical substructure to
enable the simulation of rate-dependent behavior of structures; on the other hand, it imposes quite
high performance requirements for loading equipments, numerical integration algorithms, and data
transmission, which limits the simulation scale of structures and restricts the rapid promotion of
the RTDHT to engineering application.

To simulate complex and large-scale numerical substructures in real-time, the enlargement of
the integration time-step is an effective strategy. However, the sampling time-step of the controller
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is always quite small. For example, the sampling time-step is only 1/2048 sec for a controller with
a sampling frequency of 2048 Hz. To solve this contradiction, the sub-stepping technique (Bonnet
2006) was proposed and developed. The sub-stepping technique involves splitting tasks which are
related to the solution of a numerical substructure into different parts and using different time-steps
to execute. The integration time-step of solving the numerical substructure is referred to as the
main time-step, which is always larger than the sampling time-step of the controller. The signal
generation time-step is referred to as the sub time-step, which is always identical to the sampling
time-step of the controller. The sub-stepping technique was first proposed by Nakashima and
Masaoka (1999) to conduct multi-degree-of-freedom (MDOF) RTDHT by dividing numerical
substructure analysis into the response analysis task (RAT) and the signal generation task (SGT).
Since then, many other researchers emulated it to expand the simulation scale of numerical
substructures. Shing et al. (2004) proposed a fast hybrid testing system to achieve the real-time
response with a high loading rate. A quadratic interpolation method was developed to generate
command displacements to ensure the smooth motion of an actuator during iteration of a nonlinear
solution. Bonnet et al. (2008) used a similar strategy in complex numerical models. The last
extrapolated result, used in the new interpolation, was introduced to solve the continuity problem
between sub time-steps. Jung ef al. (2007) presented RTDHT with an implicit time integration
scheme, where the sub-stepping technique with a quadratic interpolation was applied to update
command displacements during iteration. Chen and Ricles (2008, 2012) applied the sub-stepping
technique to MDOF real-time hybrid tests by using a linear ramp generator to smoothly interpolate
command displacements in a small time-step.

Only one target computer was used in the aforementioned studies. Reinhorn et al. (2004)
proposed a RTDHT system with dual target computers. One target computer was used to conduct
numerical simulation, and the other was mainly used to perform the cascade control loop to
achieve force control as well as compensate time delay. This kind of system was widely applied
for the force-based substructuring (Reinhorn et al. 2006, Shao ef al. 2011). Inspired by this unique
thought and the sub-stepping technique, Zhu et al. (2014) developed another RTDHT system with
dual target computers to further improve computation capability of the numerical analysis. As
shown in Fig. 1, the RAT was executed in the Target Computer 1 at each main time-step A¢, while
the SGT was executed in the Target Computer 2 at each sub time-step d¢z. A 1240-DOF finite
element (FE) numerical substructure was successfully implemented when the main time-step was
40/2048 sec (about 0.02 sec). Comparing with the RTDHT with single target computer, the
RTDHT with dual target computers may enhance computing capability of the RAT by executing
the SGT independently. Moreover, it also provides a potential for further improving the computing
efficiency and accuracy of the RTDHT by assigning more tasks on the second target computer.
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Fig. 1 RAT and SGT processes in the RTDHT system with dual target computers
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In addition, the sub-stepping technique results in the incoordination between the real and
desired feedback forces. This incoordination is equivalent to introducing an additional time delay
of a main time-step At into the RTDHT system, which is different from the inherent time delay
resulted from the hydraulic serve system. With the main time-step At enlarging, the effect of the
additional time delay on the RTDHT system becomes remarkable.

To overcome the incoordination between the real and desired feedback forces, an extrapolation
procedure is required to predict displacements at the next main time-step in advance. So far, many
displacement prediction methods have been proposed to compensate for the time delay. The
Nth-order polynomial fitting, a simple and efficient method, has been extensively used in the
RTDHT (Nakashima and Masaoka 1999, Horiuchi et al.1999). Nakashima and Masaoka (1999)
analyzed the accuracy of 1st to 4th-order polynomial extrapolation and proved that the 3rd and
4th-order polynomials had better accuracy than the other two polynomials when the main
time-step is 0.01 sec. Based on the kinematical equations, Horiuchi and Konno (2001) proposed
the linear acceleration prediction method which the formulation of Newmark-f method was used
to predict displacements at the next time-step. Ahmadizadeh et al. (2008) proposed a similar
prediction method based on the Newmark’s explicit method for delay compensation. This
Newmark explicit prediction method shows a significant advantage in force measurements during
earthquake simulations. Wu et al. (2013) analyzed the relationship between the aforementioned
prediction methods and the stability of the RTDHT. In addition, Ahmadizadeh ef al. (2008) also
proposed a kind of force correction method to implement delay compensation. The last few
displacements and the feedback forces are fitted by two 2nd-order polynomials, respectively. The
desired feedback forces are corrected by seeking the time at which the desired displacement
occurs.

Above-mentioned displacement prediction methods show good prediction abilities when the
main time-step is less than 0.01 sec. However, the main time-step of the numerical substructure
may be as much as 0.01 sec to 0.02 sec for some large-scale numerical substructures. This paper
focuses on the displacement prediction for delay compensation in the RTDHT with large main
time-step. Solutions of existing displacement prediction methods and the force correction method
are investigated, and a new prediction scheme based on the explicit integration algorithm is
proposed to predict displacement with main time-steps. Numerical simulations indicate that the
proposed method has better accuracy in the high frequency range of interest than other prediction
methods when the main time-step becomes relatively large. Finally, a series of RTDHTs are
conducted to verify the accuracy and effectiveness of the proposed explicit prediction method.

2. Incoordination between the real and desired feedback forces
2.1 Integration algorithm

2.1.1 Ideal timeline of the integration algorithm
For linear structures, the equations of motion of numerical substructures can be expressed as

Mi,, +Cu,, +Ku,, =F,, +f_, (1)

where the subscript i+1 denotes the (i+1)th main time-step, u, u, and ii are the displacement,
velocity, and acceleration vectors, respectively; M, C, and K are the mass, damping, and
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stiffness matrices, respectively; F is the known external force vector; and f=f(uui) is the

feedback force vector from the physical substructure.

The form of the equation of motion in Eq. (1) is similar to that of the conventional equation in
the structure dynamics. The only difference is the existence of the feedback force vector f,,,
which depends on w,,, u,,,and u,,.

Assuming that no time delay exists, the ideal timeline at each integration main time-step is
schematically illustrated in Fig. 2. At the beginning of (i+1)th main time-step, the feedback force
f. is transmitted from the physical substructure to the target computer for numerical analyzing.
Meanwhile, the command displacement u,,, is transmitted to the controller for physical loading.
During the (i+1)th main time-step interval, the analysis of the numerical substructure and the
loading of the physical substructure are carried out in parallel. At the (i+2)th main time-step, the
same process is implemented.

In the following discussion, we assume that w,, u,, u,,and f are known, but w_, w,, W,
are unknown at the beginning of the (i+1)th main time-step. f,,, can be fed back only after w,, is
imposed onto the physical substructure. In addition, u,, and u,, should be calculated at the
beginning of (i+1)th main time-step, to ensure the desired condition for accurately controlling the
loading of the physical substructures. However, for general integration algorithms, only w,,, can
be calculated at the beginning of (i+1)th main time-step. If both w_, and wu, can be calculated
explicitly, this integration algorithm is called the dual explicit algorithm in this paper.

i

2.1.2 Dual explicit algorithm

Based on the discrete control theory, Chen and Ricles (2008) proposed the CR algorithm, which
is an unconditionally stable, explicit algorithm. RTDHTs conducted by using this algorithm were
highly effective (Chen et al. 2009). Gui et al. (2014) proposed a family of explicit algorithms that
contains the CR algorithm as a special case. The general formulation is defined as

u,,, =u, + A, +aAri, 2)
W, = +aAd, (3)
in which
a=212AM + AALC, +2A’K,))'M @
Beglinning Numerical Analysis Endld ing
1 A A A |
Command Feedback
W W A/ fi
Physical Loading
i i |
| |
| |
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iAt (i+DAt

(i+1)th time-step

Fig. 2 Ideal timeline at each integration main time-step
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where a is the integration parameter matrix; A is a parameter that governs the numerical
properties; and C, and K, are the initial damping and stiffness matrices of structure if a

nonlinear structure is considered, respectively. Thus @ can be computed before the start of testing
and is invariant in the entire integration procedure. For 1 =4, the proposed algorithm is exactly the
same as the CR algorithm.

In Egs. (2) and (3), the displacement and velocity are computed explicitly at each main
time-step. Therefore, this family of explicit algorithms belongs to the dual explicit algorithm as
defined in Section 2.1.1. This characteristic is potentially attractive in the RTDHT because the
loading of the physical substructure can be accurately controlled by both displacement and
velocity.

2.2 Analysis of the incoordination

This section mainly investigates the incoordination between the real and desired feedback
forces when the sub-stepping technique is applied to the RTDHT system.

For the sake of brevity, the ideal timeline presented in Fig. 2 is considered. As schematically
shown in Fig. 3, u,,, and w,, can be calculated using the dual explicit algorithm in Egs. (2) and
(3) at the beginning of the (i+1)th main time-step with the known w,, w,, W, and f.. This
process uses little time. Therefore, w, and u,, can be used to generate displacement signals
within the time interval of J¢ (the sub time-step). When these signals are applied to the controller,
the feedback forces at the whole (i+1)th main time-step are measured in sequence with the time
interval of ot and f,,, will be sent to the Target Computer 1 at the end of the (7+1)th main
time-step. In this case, ii,,, cannot be calculated at the beginning of the (i+1)th main time-step
because it depends on f,,,. This condition means that f,, 1is the desired feedback force at the
beginning of the (i+1)th main time-step. However, only f, is the available feedback force.

Therefore, the incoordination between the real and desired feedback forces is inevitable. This
incoordination is equivalent to introducing an additional time delay of one main time-step into the
RTDHT system, which may cause instability. Hence, the extrapolation procedure or other similar
methods should be considered to predict displacement after obtaining the u,,.

i+1

Beginning of the (i+1)th Endding of the (i+1)th main
main time-step time-step

main time-step

[LFPN | P actual T,
y Y Yy
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Fig. 3 Explanation of incoordination between the desired and real feedback forces
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Aforementioned analysis is based on the assumption that there is no inherent time delay of the
hydraulic servo system. In fact, the inherent time delay of the hydraulic servo system is an
objective existing phenomenon in the RTDHT. Hence, the total time delay discussed in this paper
contains two parts: one is the inherent time delay r which occurs in the hydraulic servo system; the
other is the additional time delay resulted from the incoordination between the real and desired
feedback forces when integrating the numerical substructure. The additional time delay is identical
to the integration time-step Atz. For simplicity, the inherent time delay z is assumed as constant and
compensated by a commonly-used method proposed by Wallace et al. (2005). This paper focuses
on the compensation of the additional time delay by predicting the displacement at the next
integration time-step.

2.3 Time-step switch strategy for the sub-stepping technique

Due to the incoordination discussed in Section 2.2, the sub-stepping technique in the RTDHT
system involves the switch from the RAT to the SGT. A simple and common time-step switch
strategy is shown in Fig. 4. During testing, displacement signals are generated by using a
prediction procedure when the target displacement at the next main time-step is still under
calculation. Once the target displacement is calculated out, an interpolation procedure will be
performed to generate signals. A sudden jump occurs when the displacement signal generation
switches from extrapolation to interpolation. The sudden jump affects the continuity of
displacement signals and may cause ill-controlled actuator oscillations (Schellenberg et al. 2009).

For the RTDHT system with single target computer, Bonnet et al. (2007) introduced a switch
operation to overcome the sudden jump by using the displacement of the last extrapolated sub
time-step in the new interpolation to produce displacement signals. The specific process contains
two steps: (1) when the displacement at the next main time-step is still under calculation, an
extrapolation procedure is used to extrapolate displacement signals; and (2) when the calculation
of displacement at the next main time-step is finished, an interpolation procedure is used to
interpolate displacement signals by using the displacement of the last extrapolated sub time-step.
This method ensures that the newly computed interpolation polynomial crosses the last
extrapolated point.

A — — Integration procedure
Prediction procedure
— -~ Interpolation procedure
—> Sudden jump
® Integration results
O Predicted results

A Interpolated results ’ﬁd{

nt

Displaceme

t+ At t+2At Tin!

Fig. 4 Time-step switch strategy in the RTDHT system with single target computer
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Fig. 5 Time-step switch strategy in the RTDHT system with dual target computers

For the RTDHT system with dual target computers, another strategy is used in this paper to
solve the aforementioned sudden jump problem. As shown in Fig. 5, at time ¢, the displacement
after the time interval of At is predicted in the Target Computer 1 in advance, and then the Target
Computer 2 generates displacement signals by using the linear interpolation synchronously.
Because all displacement signals are generated by interpolation, the switch from extrapolation to
interpolation during one main time-step is unnecessary. It guarantees the smooth movement of
loading equipments.

3. Delay compensation solutions for large time-step

As stated in the Section 1, some prediction methods which contain force and displacement
predictions have been widely used for delay compensation. Those well-developed prediction
methods exhibit good prediction abilities when the main time-step is less than 0.01 sec. This
section firstly proposes a new displacement prediction method based on the dual explicit
algorithmm. Then the accuracy comparison between the proposed and the known prediction
methods applied for large main time-step is analyzed theoretically and numerically in detail.

3.1 Dual explicit prediction method

This section proposes a new displacement prediction method (called the dual explicit prediction
method in this paper) based on the dual explicit algorithm by using the displacement wu,,, and the
velocity w,,, explicitly calculated at the (i+1)th main time-step. The displacement prediction is

shown conceptually in Fig. 6. The following 4th-order polynomial is employed to predict the
acceleration

iy, = z Ul )
k=i—4
where i, is the predicted acceleration, and «,,, is the polynomial coefficient. Thus, the nth

predicted displacement can be calculated by using the displacement formulation in the dual
explicit algorithm and is given by
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Fig. 6 Displacement prediction
llf: = ui+1 + nﬁtﬁiﬂ + al (n5t)z il.ip+1 (6)

where o’ is the predicted displacement. Compared with Eq. (2), the prediction error is caused
solely by the predicted ii”,. Compared with the Newmark’s explicit prediction method, this

i+l

method reduces the predicted time interval from At +ndt to not.
3.2 Accuracy analysis

The accuracy of displacement prediction methods can be evaluated by considering the vibrating
response of the structures under a sinusoidal excitation (Nakashima and Masaoka 1999). Given
that a SDOF structure vibrates sinusoidally with the amplitude 4 and the circle frequency o,

u = Asin ot (7

where u is the exact displacement, and w=2zf with f as the excited frequency. The
displacement, velocity, and acceleration of previous main time-steps are given by the following
equation and its derivatives:

u = Asin o(t — mAt —not) (8)

i+1-m

where m is the number of previous main time-steps. Then, the predicted displacement »” can be

obtained by inserting Eq. (8) and its derivatives into the corresponding formulations of
displacement prediction methods. The unified equation of the predicted displacement with the
predicted time interval nd¢ can be expressed as follows

ul = Afsin(ot+¢,) 9)
with

B=C:+S}

S
= arctan —-
4, C

n

(10)

and
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C = Zam_ . cos w(kAt +ndt)
k=0

y (11)
S, ==Y, sino(kAt +nét)
k=0

where [ is the amplitude change; and ¢, is the phase shift. C, and S, are only related to @

when both ns¢r and Ar are constant. Eqs. (9)-(11) indicate that the amplitude change and the
phase shift can be regarded as indexes of the error between the target and predicted displacements.
The precise solution, i.e., without any error, is defined as the amplitude magnification of 1 and the
phase shift of 0.

The prediction methods in this study aim to predict the displacement u”,,e.g., u” =u’,. The

n i+2°
amplitude change and phase shift with wAt¢ are plotted in Fig. 7 for different prediction methods
(2nd to 4th-order polynomial method, the linear acceleration prediction method, the Newmark’s
explicit prediction method and the proposed dual explicit prediction method). For the dual explicit
prediction method, the value of 1 depends on that used in dual explicit algorithm for numerical
substructure analysis. For comparing the effect of the parameter 4 on the accuracy of the scheme,
three cases are conducted with 4 = 11.5, 4 and 3, respectively. According to Gui et al. (2013), the
algorithm has the best computing accuracy when 4 = 11.5, and is unconditionally stable when 1 =4
and 3.

When wAt < 0.3, both amplitude change and phase shift display negligible dispersion for all
prediction methods; however, their changing trends are different with the increase of wAt. In Fig.
7(a), it is evident that the dual explicit prediction methods with 4 = 11.5, 4 and 3 have a small
dispersion in the range of 0.3 < wA¢ < 1.4, especially in 1.0 < wAt < 1.4 (corresponding to the
frequency range of 8-11.4 Hz when Az = 40/2048 sec), compared with other prediction methods. It
demonstrates that the dual explicit prediction method has better accuracy than other considered
methods.

14+ 2nd-order polynomial 2nd-order polynomial
g me=—- 3rd-order polynomial Y 3rd-order polynomial
S Rp=e=. «= 4th-order polynomial [ = |ecemcem 4th-order polynomial
S == = « == [inear acceleration prediction method — = = = == Linear acceleration prediction method
fé 10+ Newmark's explicit prediction method 8 4+ Newmark's explicit prediction method
‘B gl Dual explicit prediction method (A = 11.5) ;;,’ -------- Dual explicit prediction method (A = 11.5)
§ [ —em-- - Dual explicit prediction method (A =4) = ———— - Dual explicit prediction method (A = 4)
o Gf = Dual explicit prediction method (A =3) 4 %
e 7]
=
= 4 £
o, =
g
< 2
0
0.
WAt
(a) Amplitude magnification (b) Phase shift

Fig. 7 Errors generated by various displacement prediction methods
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For the phase shift in Fig. 7(b), it is clear that the phase shift of the dual explicit prediction
method approaches to zero in a wide range of 0 < wA¢ < 0.9. However, a sudden change occurs for
the dual explicit prediction methods with 4 = 11.5, 4 and 3 when wAf? approaches to 1.1 and the
corresponding phase shift is equal to +n/2. This sudden change, called the jump discontinuity
(belonging to the discontinuity point of the first kind) in mathematics, is a common phenomenon
since the formulation of the phase shift ¢, is the arctangent function as shown in Eq. (10). Other

prediction methods in Fig. 7 will lead to similar sudden change when the phase shift approaches to
+m/2 with the increase of wA¢.

In conclusion, the proposed dual explicit prediction method shows good prediction accuracy
when the main time-step Ar enlarges to 40/2048 sec, especially in high-range of frequency
(8.1-11.4 Hz). Since the concerned earthquake wave frequency is about 0-10 Hz in structural
dynamics, this proposed scheme is suitable for RTDHT to obtain accurate high frequency
displacement response when a relative large predicted time interval appears.

3.3 Numerical validation test

A numerical example of a 2-DOF structure is performed to verify the accuracy levels achieved
by using the Newmark’s explicit prediction method, the 3rd-order polynomial, and the proposed
dual explicit prediction method. The properties of the structure are listed in Table 1. The damping
matrix for the structure is based on the Rayleigh proportional damping with 5% damping ratio for
both modes. The external acceleration input is a sinusoidal sweep wave with the constant
amplitude of 0.15 g and varying frequency from 0 Hz to 10 Hz. The target displacements of DOF1
are calculated by the dual explicit algorithm with 1 = 3. Meanwhile, the predicted displacements of
the DOF1 are determined by using the three prediction methods on the basis of the target
displacements, respectively. The predicted time interval is equal to the main time-step Az. Figs. 8
and 9 present the time history and Fourier spectrum of the target and predicted displacements with
At =20/2048 sec and At = 40/2048 sec, respectively.

When Az =20/2048 sec, the results of the 3rd-order polynomial and the dual explicit prediction
method agree quite well with the target displacement in the time domain, as shown in Fig. 8(a).
But the results of the Newmark’s explicit prediction method are slightly larger than the target
displacement. In the frequency domain as shown in Fig. 8(b), the displacements predicted by the
3rd-order polynomial and the dual explicit prediction method match well with the target
displacements; however, the Newmark’s explicit prediction method slightly overestimates the
displacements response at the resonant frequencies, which indicates the same scenario as observed
in time domain.

Table 1 Structural properties of the numerical model

Model Mass (kg) Stiffness (N/m) Damping(N-sec/m) Natural Frequency (Hz)

P T1000 0 2%10° —10° 4251.954 1422 3.1
DOF1
0 1000 ~10°  10° ~1422  2829.954 8.1
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When Af = 40/2048 sec, the discrepancy of the Newmark’s explicit prediction method becomes
more striking in both the time and frequency domains (Fig. 9). The amplitude amplification occurs
in a large range of frequency. The 3rd-order polynomial also obtains the amplified amplitude in the
frequency range of 8-10 Hz. In contrast, the prediction displacement achieved by the dual explicit
prediction method still agrees well with the target displacement.
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Fig. 8 Target and predicted displacement responses of DOF1 for a 2-DOF structure (At = 20/2048 sec)
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Table 2 Normalized root mean square errors (%) of different prediction methods

Prediction method At =20/2048 sec At =40/2048 sec
Newmark’s explicit prediction method 6.74 29.05
3rd-order polynomial 1.03 16.33
dual explicit prediction method 1.43 9.44

To quantitatively evaluate the performance of the prediction methods, the normalized root
mean square (NRMS) error (Chae et al. 2013) between the target and predicted displacements is
further calculated as follows

NRMS error = (12)

where u; and u/ are the target and predicted displacement at ith main time-step, respectively.

The NRMS errors for those three prediction methods are summarized in Table 2.

It can be seen from Table 2 that the NRMS errors of the 3rd-order polynomial and the dual
explicit prediction method are smaller than those of the Newmark’s explicit prediction method
when At = 20/2048 sec; and the NRMS error of the dual explicit prediction method is smaller than
those of the 3rd-order polynomial and the Newmark’s explicit prediction method when Af =
40/2048 sec.

4. Experimental analysis
4.1 The RTDHT system with dual target computers

The RTDHT system with dual target computers for simulating large-scale numerical
substructures is shown in Fig. 10. The system comprises three components: the distributed
real-time calculation system, the shaking table loading system, and the data acquisition and
transmission system (Wang et al. 2011, Zhu et al. 2014). The xPC-Target toolbox (MATLAB,
2006) is employed as the solution in the distributed real-time calculation system. The shaking table
loading system consists of the MTS 469D digital controller, two shaking tables, and oil source.
The data acquisition and transmission system uses PXI and LabVIEW to construct the data
acquisition platform. SCRAMNet cards are also used to ensure real-time data transmission.

There are two identical uni-axial shaking tables, manufactured by MTS Company. Each table
has a 1.5 m x 1.5 m working area and a bearing capacity of 2 ton. The maximum acceleration can
reach up to 3.6 g when the table is bare and 1.2 g when the table loads to its full capacity. The
excited frequency range is 0—50 Hz. The Three Variable (displacement, velocity and acceleration)
Control is used for the tables. MATLAB/Simulink is integrated into the 469D digital controller
platform to achieve real-time hybrid control capabilities. Consequently, all controller feedback
outputs are made available in Simulink, while commands or controller correction signals generated
by Simulink can drive the controller command inputs.
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4.2 Experimental setup

The tested structure is a three-storey shear frame mounted on a semi-infinite elastic foundation.
The entire structure and its substructure splitting are shown in Fig. 11. The superstructure is
physically tested by the shaking table and the elastic foundation is numerically simulated by the
finite element method.

The semi-infinite elastic foundation is idealized as a finite-sized region with fixed boundaries
and simulated with an FE model as shown in Fig. 11(b). The model measures 60 m x 40 m and
consists of 96 four-node quadrilateral elements with 117 nodes. A total of 234 DOFs are included
in the model. The material properties of the foundation are as follows: mass density of 2000 kg/m”;
Poisson’s ratio of 0.2; and elastic modulus of 4000 MPa. The selected mass and the acceleration
similitude ratios for the superstructure are ¢, = 2x10° and ¢,= 1, respectively. Other similitude
ratios can be deduced based on the similitude relation (Wang et al. 2011).

__________ The—e e —— = = —
MDistributed Real-Time | - i !_Shal\ing Table Loading .‘iyslcm‘;
I Calculation System | Host Computer - .
L Physical
TePap huhslrut‘;ﬁun‘

Controller

Reference Shaking Table #1

I
I
I
I
I
I
I
I
I

N
I Shaking Table #2
Target Computer 1 Target Computer 2 I
SCRAMNet SCRAMNet SCRAMNet
Card 1 Card 2 Card 3 Ferdback
Optical Fiber Optical Fiber
Fo=—== ————m e —————— \ Data Acquisition System
Data Acquisition and Transmission System

b e e e o o e e e e e 4

Fig. 10 Outline of the RTDHT system with dual target computers
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(a) Entire structure (b) Substructure splitting

Fig. 11 Substructure splitting of the three-storey shear frame mounted on the semi-infinite foundation
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Fig. 12 Photograph of the three-storey shear frame

Fig. 12 shows the physical substructure of the three-storey shear frame. Each storey is 0.69 m
high, and has four welded thin supporting legs and a steel plate on its top. Each steel plate has a
0.61 m x 0.3 m area and a mass of 14.274 kg. Since the shaking table only can load unidirectional,
two “X” braces are welded in each storey perpendicular to the direction of excitation to increase
the lateral stiffness. Two plastic foam plates are added in each storey paralleled to the direction of
excitation to introduce damping for the entire shear frame. The first three-order natural frequencies
of the frame measured by white noise sweeping are 2.6, 8.1, and 12.6 Hz, respectively. The shear
force between the numerical and physical substructures is measured by strain gauges based on the
principle of Wheatstone bridges (Wang et al. 2011).

4.3 Experimental results

The dual explicit algorithm with A = 3 is applied to analyze the numerical substructure, thereby
ensuring unconditionally stable solutions. Five RTDHTs are considered. Among them, four
RTDHTSs are conducted using the four prediction methods (the proposed dual explicit prediction
method, the 3rd-order polynomial, the Newmark’s explicit prediction method and the force
correction method, respectively) with the same time parameters: the main time-step A¢ = 40/2048
sec in the Target Computer 1, and the sub time-step ot = 1/2048 sec in the Target Computer 2
(identical to the sampling time-step of the MTS controller). So the additional time delay
compensated by these four prediction methods is equal to Az. The remaining one is conducted as a
reference RTDHT to obtain the “exact” results, where both the main time-step A¢ and the sub
time-step ot are all selected as 1/2048 sec. In the reference RTDHT, the incoordination problem
disappears and in turn the compensation for the additional time delay is unnecessary.

In all the above-mentioned five RTDHTS, the inherent time delay of the hydraulic servo system
is calibrated to around 0.01 sec. It is compensated by using the commonly-used compensation
method developed by Wallace ef al. (2005).
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Fig. 14 Displacement and acceleration histories at the bottom of the three-storey shear frame

The artificial seismic wave is applied as the free-field input to excite the structure. The
interface between the numerical and physical substructures is the input point, as shown in Fig.
11(b). The peak acceleration is 0.15 g. Fig. 13 depicts the time history and Fourier spectrum of the

artificial wave.
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Fig. 14 presents the dynamic displacement and the acceleration responses at the bottom of the
three-storey shear frame (the interface of the numerical and physical substructures). As shown in
Fig. 14(a), the peak displacement of the “exact” result is 2.73 mm, and those obtained by using the
dual explicit prediction method, the 3rd-order polynomial method, Newmark’s explicit prediction
method, and the force correction method are determined as 3.10, 3.47, 3.76, and 3.36 mm, with
errors of 13.55%, 27.11%, 37.73%, and 23.08%, respectively. In Fig. 14(b), the acceleration
obtained by using the dual explicit prediction method is the closest to the “exact” result. A similar
trend is demonstrated by the Fourier spectrum shown in Fig. 15. Fig. 16 shows the synchronization
subspace plots for these five RTDHTs. The deviations from the diagonal straight line in all plots
are very small, which indicates the good performance of the compensation methods used during

testing.
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Fig. 18 Fourier spectrum of the accelerations of the three-storey shear frame

Figs. 17 and 18 present the acceleration responses of the three stories of the frame. Similar
conclusions can be drawn from the results in the time and frequency domains. The dual explicit
prediction method yields the highest prediction efficiency. The Newmark’s explicit prediction
method shows the most significant error because of the predicted time interval which is as large as
two times of the main time-step.

In summary, compared with other displacement prediction methods and the force correction
method, the proposed dual explicit prediction method exhibits the highest prediction accuracy,
especially in the high frequency range.

5. Conclusions

This study focuses on the RTDHT system with dual target computers to simulate large-scale
numerical substructures by using the sub-stepping technique. Given that a large main time-step is
used to fully extend the simulation scale of the numerical substructure, the incoordination between
the real and desired feedback force which is equivalent to introducing an additional time delay in
systems must be considered. Hence, displacement prediction or feedback force correction is
important for delay compensation. To address this problem, a new dual explicit displacement
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prediction method based on the explicit integration algorithm is proposed.

The proposed method is compared with the other three existing displacement prediction
methods, namely, the Nth-order polynomial prediction method, the linear acceleration prediction
method, and the Newmark’s explicit prediction method. Theoretical and numerical analysis show
that the proposed dual explicit prediction method exhibits higher accuracy than other methods in
the high frequency range. This finding is indicated by a relatively large predicted time interval.
Finally, RTDHTs of a three-storey shear frame mounted on a semi-infinite foundation are
successfully implemented with the force correction method, the 3rd-order polynomial method, the
Newmark’s explicit prediction method, and the proposed method. The proposed dual explicit
prediction method demonstrates the highest reduction in high-frequency response error which
demonstrates its good ability for displacement prediction with large time-step.

Considering that the performance of a delay compensation method should be assessed by
accuracy as well as stability, the stability analysis of the proposed method for compensating
relatively large time delay is also crucial. This application will be discussed in future studies.
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