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Abstract.  There are continuous efforts to mitigate structural losses from earthquakes and manage risk 
through seismic risk assessment; seismic fragility curves are widely accepted as an essential tool of such 
efforts. Seismic fragility curves can be classified into four groups based on how they are derived: empirical, 
judgmental, analytical, and hybrid. Analytical fragility curves are the most widely used and can be further 
categorized into two subgroups, depending on whether an analytical function or simulation method is used. 
Although both methods have shown decent performances for many seismic fragility problems, they often 
oversimplify the given problems in reliability or structural analyses owing to their built-in assumptions. In 
this paper, a new method is proposed for the development of seismic fragility curves. Integration with 
sophisticated software packages for reliability analysis (FERUM) and structural analysis (ZEUS-NL) allows 
the new method to obtain more accurate seismic fragility curves for less computational cost. Because the 
proposed method performs reliability analysis using the first-order reliability method, it provides component 
probabilities as well as useful byproducts and allows further fragility analysis at the system level. The new 
method was applied to a numerical example of a 2D frame structure, and the results were compared with 
those by Monte Carlo simulation. The method was found to generate seismic fragility curves more 
accurately and efficiently. Also, the effect of system reliability analysis on the development of seismic 
fragility curves was investigated using the given numerical example and its necessity was discussed. 
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1. Introduction 
 

The losses caused by earthquakes in the past few decades have been dramatically increasing 

worldwide (Calvi et al. 2006, DesRoches et al. 2011). Accordingly, there have been continuous 

efforts to estimate earthquake losses and manage the risk through seismic risk assessment in 

various ways, such as structural maintenance, structural management, disaster mitigation, and 

emergency response. Seismic fragility curves are widely accepted as an indispensable tool to these 
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efforts. For example, software packages for seismic risk assessment such as HAZUS (NIBS 1999) 

and MAEviz (Elnashai et al. 2008) employ seismic fragility curves and evaluate a variety of 

post-earthquake losses under certain earthquake scenarios based on these curves. Such estimates 

provide the user with a basis for decision-making concerning structural inspection, repair, and 

management and for strategizing to reduce losses (Kircher et al. 2006). Thus, the development of 

accurate seismic fragility curves is a key to effective seismic risk assessment and management. 

A seismic fragility curve is defined as the relationship between the ground-shaking intensity 

(e.g., peak ground acceleration (PGA) or spectral acceleration) and the probability that a structure 

reaches or exceeds a certain response level (Jeong and Elnashai 2007). There are several ways to 

derive seismic fragility curves. Existing fragility curves can be categorized into four groups 

(Rossetto and Elnashai 2003) depending on how the damage data are obtained: empirical (from 

post-earthquake surveys), judgmental (from expert opinion), analytical (from analytical 

approaches), and hybrid (from combinations of the prior three). Although empirical and 

judgmental fragility curves may be more realistic because they are derived from actual structures, 

they are limited in general applications (Kwon 2007). 

Thus, analytical methods are widely used for the development of seismic fragility curves; they 

can be further categorized depending on whether an analytical function or simulation is used 

(Rossetto and Elnashai 2003). In analytical-function–based methods, the seismic fragility of a 

structure is explicitly expressed as an analytical function of related parameters such as the PGA or 

PGV (peak ground velocity), natural period of the structure, and response threshold of interest. 

However, the estimates from the structural analysis are commonly oversimplified for the sake of 

the derivation. In most cases, only single-degree-of-freedom analysis or static analysis is allowed 

rather than inelastic dynamic response-history analysis owing to the assumptions of this approach 

(Kwon 2007). Considering that reliability and structural analyses are the two cores of seismic 

fragility analysis, analytical-function–based methods allow rigorous performance of the former but 

not the latter. 

In simulation-based methods, seismic fragility curves can be obtained through more rigorous 

structural analysis. These methods generally require generating a certain number of random 

variable sets, performing structural analysis for each one, and checking if the corresponding 

structural response exceeds a threshold or not. With the simulation-based approach, structural 

analysis is done rigorously because sophisticated structural analysis (e.g., inelastic pushover 

analysis or inelastic dynamic response-history analysis) can be introduced. Also, simulation 

methods (e.g., Monte Carlo simulation (MCS)) have obtained a good reputation for accuracy with 

regard to reliability analysis. However, simulation-based methods often require a huge number of 

structural analyses for reliable outcomes, and the efficiency of the fragility analysis may suffer 

when sophisticated and expensive structural analysis needs to be introduced. 

To overcome the disadvantages of existing analytical methods for seismic fragility curve 

development, this paper introduces a new analytical method. In the proposed method, the fragility 

estimate is neither explicitly expressed by a function of related parameters or evaluated using 

simulation techniques. Instead, two sophisticated reliability analysis and structural analysis 

packages are coupled in order to get more accurate seismic fragility curves. The reliability analysis 

package utilizes the non-simulation-based technique (FORM) for better computational efficiency. 

To the best of the author’s knowledge, there is no method employing such a coupling technique for 

the development of seismic fragility curves. The proposed method can be categorized as a new 

analytical method. 
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2. Reliability analysis methods 

 

A number of reliability analysis methods have been developed and adopted in various 

engineering disciplines (Haldar 2006). They can be classified into two groups: simulation-based 

and analytical (or non-simulation-based) methods. Representative types include MCS and the 

first-order reliability method (FORM), respectively. Melchers (1999) and Der Kiureghian (2005) 

provide detailed reviews of the two methods. In this study, FORM was used to overcome the 

disadvantages of using MCS to derive seismic fragility curves. The methods are briefly introduced 

here for comparison purposes. 

 

2.1 First-order reliability method (FORM) 
 

Consider a limit-state function that expresses an event of interest. In a structural reliability 

problem, the limit-state function is termed g(x), and the event of interest (often called “failure”) is 

expressed by g(x) ≤ 0, where x is a column vector of n random variables (i.e., x = [x1, x2,…, xn]
T
) 

representing the uncertainties in the given problem. Then, the probability of the event Pf is 

    
 




0

0
x

x xxx
g

f dfgPP
                         (1) 

where fx(x) is the joint probability density function (PDF) of x. By transforming the space of 

random variables into the standard normal space, the probability Pf can be expressed as 

 
 

 
 




00 ux

x uuxx
G

n

g

f ddfP 
                        (2) 

where G(u) = g(T
–1

(u)) is the transformed limit-state function in the standard normal space, φn() 

denotes the n-th order standard normal PDF, u is the column vector of n standard normal variables, 

and T is the one-to-one mapping transformation matrix that satisfies u = T(x). 

In FORM, the probability (i.e., Pf in Eq. (2)) can be approximated by linearizing the function 

G(u) at the point u* that is defined by the following constrained optimization problem 

  0minarg*  uuu G                          (3) 

where “arg min” denotes the argument of the minimum of a function and |||| is the L
2
-norm. In Eq. 

(3), u* is located on the limit-state surface satisfying G(u) = 0 and has the minimum distance from 

the origin in the standard normal space. As an example of the first-order approximation concept of 

the FORM, Fig. 1 shows the approximated limit-state function in the two-dimensional space. 

In the standard normal space shown in the figure, because equal probability density contours 

are concentric circles centered at the origin, u* has the highest probability among all of the nodes 

in the failure domain G(u) ≤ 0. In this sense, u* is an optimal point and is commonly called the 

design point or most probable point (MPP). 

Noting that G(u*) = 0, the limit-state function approximated at MPP is written as 

        uuuuuu   *** GGG                 (4) 
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Fig. 1 Linear approximation in FORM 

 

 

where ∇G(u) = [∂G/∂u1,…, ∂G/∂un] denotes the gradient vector, α = –∇G(u*)/||∇G(u*)|| is the 

normalized negative gradient vector at MPP (i.e., a unit vector normal to the limit-state surface at 

MPP), and β = –αu* is the reliability index. 

 

 

 

Fig. 2 FORM by HL-RF algorithm (Song 2007) 
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A representative method for solving the constrained optimization problem in Eq. (3) is the 

HL-RF algorithm, which is summarized in Fig. 2. Rackwitz and Fiessler (1978) and Der 

Kiureghian (2005) provide details on the algorithm and FORM. In the following numerical 

example, ε1, ε2, and imax were assumed to be 0.05, 0.05, and 20, respectively. 

 

 

2.2 Monte Carlo simulation (MCS) 
 

Compared with FORM, MCS is conceptually straightforward. To estimate the failure 

probability in a structural reliability problem, ns sample sets of random variables need to be 

generated. Each random variable set is used to run a structural analysis and check whether the 

given structure fails or not. The failure probability Pf is 

sff nnP /                                (5) 

where nf is the number of sample sets that satisfy g(x) ≤ 0. Unlike FORM, the result from MCS is 

not a closed-form solution and always has a sampling error. The MCS result converges to a 

closed-form solution as the number of samples increases, but the error cannot be completely 

eliminated unless the number of samples is infinite. 

Furthermore, MCS can be very expensive computationally, and the convergence of the failure 

probability result may be slow depending on the structural analysis cost. According to Haldar and 

Mahadevan (2000), the minimum number of samples (Nδ) to achieve a target coefficient of 

variation (δ) is calculated by 

f

f

P

P
N

2

1





                              (6) 

where Pf is the failure probability from MCS. 

 

 

 

Fig. 3 Minimum number of samples with varying failure probability and coefficient of variation 
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Fig. 3 shows the relationship between the minimum number of samples (Nδ) and failure 

probability (Pf) for several coefficients of variation (δ) in semi-log scale. To achieve a 5% 

coefficient of variation, which is often accepted by researchers as reasonable, for expected failure 

probabilities of 0.1, 0.05, and 0.01, then 3.6 × 10
3
, 7.6 × 10

3
, and 3.96 × 10

4
 samples need to be 

used along with the same numbers of structural analyses. Furthermore, the computational cost 

significantly increases if a lower level of probability or high level of convergence (i.e., low 

coefficient of variation value) is expected for the failure probability calculation. However, 

performing such a huge number of structural analyses is impractical, even if each analysis takes 

only a few minutes. When each structural analysis is expensive (such as nonlinear inelastic 

response history analysis), achieving a reliable level of failure probability using MCS is almost 

impossible. 

 

 

3. Seismic fragility analysis platform integrated with FERUM and ZEUS-NL 
 

To overcome the shortcomings of MCS and introduce FORM into fragility curve development, 

two software packages for reliability and structural analyses were coupled. According to Haukaas 

(2003), Der Kiureghian and Taylor (1983) were the first to attempt to couple reliability analysis 

algorithms and structural analysis methods. Since then, many studies have developed various 

software packages for structural reliability analysis. These developed software packages can be 

categorized into two groups depending on how the structural analysis module is integrated with the 

reliability analysis module. Programs of the first group such as CalREL (Liu et al. 1989) and 

FERUM (Haukaas et al. 2003) express the probabilistic model by algebraic functions or 

user-defined algorithms involving basic random variables. These software packages have their 

own structural analysis modules or require users to analytically express the limit state of their 

interests in terms of random variables. However, most of programs in this group are limited to 

linear structural models. 

Programs of the second group such as NESSUS (SwRI 2009) and STRUREL (Gollwitzer et al. 

2006) allows their users to introduce sophisticated structural analysis methods to represent the 

structural behavior accurately. An interface code between FERUM and ABAQUS®  (i.e., 

FERUM-ABAQUS) was developed as an extension of this trend. By coupling two software 

packages with different specializations, their individual advantages can be fully utilized to solve 

challenging structural reliability problems such as the aircraft wing torque box (Lee et al. 2008) 

and cable-stayed bridge pylon (Kang et al. 2012). 

However, such coupling techniques have not been applied to the development of seismic 

fragility curves. In order to perform seismic fragility analysis based on the proposed method, two 

external software packages that execute reliability and structural analyses need to be coupled. In 

this study, FERUM and ZEUS-NL were selected; an interface code was developed so that these 

two software packages can communicate with each other during fragility analysis. The 

computational platform integrating FERUM and ZEUS-NL was termed FERUM-ZEUS. By 

coupling reliability analysis software (FERUM) and structural analysis software (ZEUS-NL), the 

new method allows more accurate seismic fragility curves to be obtained for less computational 

cost. 
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3.1 Component reliability analysis using FERUM-ZEUS 
 

Finite Element Reliability Using Matlab (FERUM) is a reliability analysis package developed 

by researchers at the University of California at Berkeley and can perform various reliability 

analyses (Haukaas et al. 2003). FERUM offers functions from various reliability analysis methods 

including FORM, second-order reliability method, MCS, and importance sampling simulation; 

most of the common probability distribution types are available in the program. In addition, the 

programmers have made the source codes open to the public (www.ce.berkeley.edu/FERUM). 

Because of these attractive features, FERUM has been widely applied to various engineering 

problems. 

ZEUS-NL (Elnashai et al. 2010) is a fiber-element-based nonlinear analysis program developed 

by the Mid-America Earthquake (MAE) Center. It is an advanced structure analysis package 

specifically for earthquake engineering applications. ZEUS-NL can represent the spread of 

inelasticity within the member cross-section as well as along the member length by utilizing the 

fiber analysis approach. Its source code is also open to the public 

(http://code.google.com/p/zeus-nl/). 

Fig. 4 shows the data flow in FERUM-ZEUS. As a numerical example, we used the FORM 

available from the open-source FERUM. In order to solve the nonlinear constrained optimization 

problem in Eq. (3) using FORM, as shown in Fig. 2, G(ui) and ∇G(ui) (i.e., values and gradients 

of the limit-state function in the standard normal space) are required at each step of the iteration. If 

the limit-state function is expressed by random variables x, the gradient values can also be 

obtained analytically (i.e., by ∇G(ui) = ∇g(ui)Jx,u). However, if the limit-state function is not an 

analytical function of a random variable, calculating the gradients during the FORM is a 

challenging task. The interface module between FERUM and ZEUS-NL was developed so that 

FERUM can obtain the limit-state function values from the output responses—e.g., force or 

displacement results evaluated from structural analysis using ZEUS-NL—and the gradients are 

obtained numerically by the finite difference method. The number of limit-state function 

evaluations nfe during FORM is 

  iRVfe nnn  1                           (7) 

where nRV and ni denote the number of random variables (RVs) and number of iterations, 

respectively. 

 

 

 

Fig. 4 Data flow in FERUM-ZEUS 
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In the proposed platform, the reliability analysis package FERUM repeatedly calls ZEUS-NL 

to obtain structural responses during the component reliability analysis with FORM. By employing 

ZEUS-NL, which specializes in nonlinear response history analysis, FERUM can accurately 

perform reliability analysis based on sophisticated structural analysis. 

 

3.2 System reliability analysis using FERUM-ZEUS 
 

For a complex structural system, failure may be described as a system event, which requires 

system reliability analysis (Song and Der Kiureghian 2003, Song and Kang 2009, Lee et al. 2008). 

In the numerical example, system reliability analysis was conducted to investigate its effect on 

fragility curve development. 

The main goal of system reliability analysis (SRA) is to evaluate the probability of a system 

event that describes the failure of a structural system: that is 

 















0xi

Cik

sys gPP
k

                         (8) 

where Ck denotes the index set of components in the k-th cut-set. This general “cut-set” 

formulation can also represent “series” systems (i.e., all of the cut-sets have only one component) 

and “parallel” systems (i.e., there is only one cut-set). In particular, when FORM is used for the 

component reliability analyses, Psys can be approximated as 

     
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zRzΩ dZPPP nii

Cik

sys

k

;0                   (9) 

where Ω denotes the failure domain approximated as a polyhedron as determined by linear half 

spaces, βi = αiui
*
 is the reliability index of the i-th component event, z = {Zi}, i = 1,…, n is the 

vector of standard normal random variables approximately describing the component events by βi 

– Zi ≤ 0, φn(z;R) is the joint PDF of z, and R is the correlation coefficient matrix of z where the 

correlation coefficient between Zi and Zj is computed as ρij = –αiαj
T
 (Hohenbichler and Rackwitz 

1983). In other words, the system probability Psys is computed by using the component reliability 

analysis results, the probabilities of component events, and their correlations 

Various SRA algorithms have been developed to compute the probability of this logical 

function of component events from the results of individual component reliability analyses, such 

as theoretical bounding formulas (Ditlevsen 1979), sequentially conditioned importance sampling 

(Ambartzumian et al. 1998), the product of conditional marginals method (Pandey 1998), the 

multivariate normal integral method by Genz (1992) (applicable to series and parallel systems), 

and the first-order system reliability methods (Hohenbichler and Rackwitz 1983) (applicable to 

series and parallel systems directly, and to cut-set and link-set systems indirectly in conjunction 

with bounding formulas). However, these existing methods for system reliability analysis are 

applicable to “series” and “parallel” systems but not to “general” system events. In addition, they 

are not flexible in incorporating various types and amounts of available information on 

components and their statistical dependence. 

Thus, SRA methods such as the linear programming bounds method (Song and Der Kiureghian 

2003), matrix-based system reliability method (Song and Kang 2009), and sequential 

compounding method (Kang and Song 2010) have recently been developed. These methods can 

solve general system events and have various merits. Kang (2011) provides a more comprehensive 

review on SRA methods. 
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In the numerical example, the structural failure of interest was expressed as a series event, and 

the multivariate normal integral method by Genz (1992) was employed to calculate the system 

probability. This method specializes in series and parallel system probability calculations and has 

been successfully tested on various structural and non-structural reliability problems (Genz 1992, 

Lee and Song 2011, Lee and Song 2012). 

 

 

4. Numerical example: 2D frame structure 
 

In order to verify the proposed method and highlight its advantages, a benchmark problem was 

chosen and solved. Kwon and Elnashai (2006) performed fragility analyses with 2D frame 

structures to develop their fragility curves and investigate the effect of material and ground motion 

uncertainty on them. They utilized a three-story reinforced concrete frame and derived its seismic 

fragility curves through MCS using nine sets of input ground motions. The same structure was 

investigated in this study as a benchmark model. The proposed non-simulation-based method 

employing FERUM-ZEUS was applied to derive the fragility curves, which were compared with 

the MCS-derived curves of Kwon and Elnashai (2006). 

 

4.1 Problem description 
 
4.1.1 Analytical model 
The three-story reinforced concrete moment frame used by Kwon and Elnashai (2006) was 

utilized as the prototype structure. As shown in Fig. 5, it had three bays in the longitudinal 

direction, and the length of one bay was 5.49 m (18 ft). Each story had a height of 3.66 m (12 ft), 

and the total height was 10.98 m (36 ft). The analytical model was created in the nonlinear finite 

element analysis program ZEUS-NL, as depicted in Fig. 6. Columns and beams were divided into 

six and seven elements, respectively. The twelve columns were labeled as C01–C04 (first story), 

C11–C14 (second story), and C21–C24 (third story). Lumped masses were placed at the 

beam–column connections. In the model, only hysteretic damping was considered with nonlinear 

material modeling. For detailed information, refer to Bracci et al. (1992) and Kwon and Elnashai 

(2006). 

 

 

Fig. 5 Elevation view of prototype structure 

 

549 cm (18 ft) each span

3
6

6
 c

m
 (

1
2

 f
t)

 e
ac

h
 s

to
ry

855



 

 

 

 

 

 

Young-Joo Lee and Do-Soo Moon 

 

Fig. 6 Structural model constructed for FERUM-ZEUS 

 

 

4.1.2 Input ground motions 
Kwon and Elnashai (2006) used nine ground motion sets to derive their fragility curves. The 

first three sets were based on the ratio of the PGA to the PGV (a/v), and the other six were 

artificial ground motions generated with different soil profiles from the Memphis area. Of those 

nine sets, the first three ground motions sets based on the a/v ratio were employed in this study. 

These sets had low, intermediate, and high a/v, and each set had five input ground motions that 

were selected based on the following categorization. 
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               (10) 

Table 1 summarizes the properties of the selected ground motions, and Figs. 7-9 show their 

acceleration time-history records. 

 

 

 

Fig. 7 Input ground motions with low a/v ratio 
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Fig. 8 Input ground motions with intermediate a/v ratio 

 

 

 
Table 1 Properties of selected input ground motions, after: (Kwon and Elnashai 1980) 

a/v ratio Name Earthquake event/Location Magnitude Date Soil type 

Distance 

(km) 

Maximum 

acceleration 

(m/s2) 

a/v ratio 

(g/ms−1) 

Low 

Set01-01 Bucharest/Romania 6.40 3/4/1977 Rock 4 −1.906 0.275 

Set01-02 Erzincan/Turkey Unknown 3/13/1992 Stiff soil 13 −3.816 0.382 

Set01-03 
Aftershock of 

Montenegro/Yugoslavia 
6.20 5/24/1979 Alluvium 8 −1.173 0.634 

Set01-04 Kalamata/Greece 5.50 9/13/1986 Stiff soil 9 −2.109 0.657 

Set01-05 Kocaeli/Turkey Unknown 8/17/1999 Unknown 101 −3.039 0.750 

Inter-mediate 

Set02-01 Aftershock of Friuli/Italy 6.10 9/15/1976 Soft soil 12 −0.811 1.040 

Set02-02 Athens/Greece Unknown 9/7/1999 Unknown 24 −1.088 1.090 

Set02-03 Umbro-Marchigiano/Italy 5.80 9/26/1997 Stiff soil 27 −0.992 1.108 

Set02-04 Lazio Abruzzo/Italy 5.70 5/7/1984 Rock 31 −0.628 1.136 

Set02-05 Basso Tirreno/Italy 5.60 4/15/1978 Soft soil 18 0.719 1.183 

High 

Set03-01 Gulf of Corinth/Greece 4.70 11/4/1993 Stiff soil 10 −0.673 1.432 

Set03-02 
Aftershock of 

Montenegro/Yugoslavia 
6.20 5/24/1979 Rock 32 −0.667 1.526 

Set03-03 
Aftershock of 

Montenegro/Yugoslavia 
6.20 5/24/1979 Alluvium 16 −1.709 1.564 

Set03-04 
Aftershock of 

Umbro-Marchigiana/Italy 
5.00 11/9/1997 Rock 2 0.412 1.902 

Set03-05 Friuli/Italy 6.30 5/6/1976 Rock 27 3.500 1.730 
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Fig. 9 Input ground motions with high a/v ratio 

 

 
Table 2 Statistical properties of random variables 

Random variables (RVs) Mean (MPa) 
Coefficient 

of variation 
Distribution type Number of RVs 

Concrete strength (fc)  33.6 0.186 Normal 1 

Steel strength (fy) 336.5 0.107 Normal 1 

 

 

4.1.3 Statistical parameters 
Three kinds of uncertainties were considered, similar to Kwon and Elnashai (2006): input 

ground motion, concrete strength, and steel strength. The first characterized the uncertainty in 

loads or demand, and the other two represented the uncertainties in the material properties or 

supply. Uncertainty in demand was accounted for by using sets of ground motions, whereas 

uncertainties in the supply were represented by two random variables: concrete and steel strength. 

Table 2 summarizes the mean, coefficient of variation, and type of distribution used for those 

random variables. The statistical properties are the same as those used by Kwon and Elnashai 

(2006). 

 

4.1.4 Limit states 
As defined by Kwon and Elnashai (2006), three limit states of serviceability, damage control, 

and collapse prevention were employed. The corresponding inter-story drifts are 0.57%, 1.2%, and 

2.3%, respectively; they were defined from the adaptive pushover analysis of the prototype 

structure based on the first yielding of the steel reinforcement, maximum element strength and 

maximum confined concrete strain in the column members. The prototype structure had a total of 

twelve columns (i.e., four columns on each of three stories), and a limit state was assumed to be 

achieved if any column met the inter-story drift criterion. With this assumption, the limit-state 

functions were defined as follows 
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Serviceability:          0,...,,max0057.0 240201  xxxx CCC ISDISDISDg     (11a) 

Damage control:          0,...,,max012.0 240201  xxxx CCC ISDISDISDg     (11b) 

Collapse prevention:          0,...,,max023.0 240201  xxxx CCC ISDISDISDg     (11c) 

where ISDC01, ISDC02,…, ISDC24 denote the inter-story drift (ISD) ratios of the twelve columns 

(C01–C04, C11–C14, and C21–C24) in Fig. 6. 

 

4.2 Analysis results 
 

4.2.1 Seismic fragility curves 
Fig. 10 shows fragility curves from the proposed method for the three limit states. Different 

ground motion sets produced significant differences in the fragility curves, and the overall trend 

was that the exceedance probability increased with the decreasing IDS threshold and increasing 

PGA. 

The fragility curve results from the proposed non-simulation-based method were fairly similar 

to those of Kwon and Elnashai (2006) using the MCS, especially at high exceedance probabilities. 

Some degree of discrepancy between them is clearly related to the basic difference between the 

two approaches. Kwon and Elnashai stated that they performed a total of 23,000 dynamic 

response-history analyses; that is 100 simulations (i.e., 100 structural analyses) for each input 

ground motion at each PGA. In order to confirm the sources of the differences and compare the 

computational efficiency, MCS was conducted for three selected cases, shown in Table 3, using up 

to 1000 samples. The proposed method calculated the failure probabilities of the three cases to be 

2.32 × 10
–2

, 1.00 × 10
–1

, and 6.22 × 10
–1

 using only 21, 18, and 12 structural analyses, respectively. 

Fig. 11 shows how the probabilities from MCS for the three cases converged as the number of 

samples increased. The probability converged very quickly in Case 3 because the expected 

probability level (i.e., 6.22 × 10
–1

, shown by the blue dotted line) was relatively high. On the other 

hand, probability convergence was not achieved even with 1000 samples in Case 1 because the 

expected probability level (i.e., 2.32 × 10
–2

, shown by the blue dotted line) was very small. Unlike 

the proposed method, the level of the accuracy of the estimated failure probability in the 

MCS-based method depends significantly on the number of samples (i.e. simulations). 

 
Table 3 Three selected cases 

Case 

name 

Input 

ground motion 
PGA (g) Limit State 

Failure probability 

with propose method  

Number of  

structural 

analyses 

Case 1 Set02-01 0.08 Serviceability 2.32×10
–2

 21 

Case 2 Set03-04 0.35 Damage control 1.00×10
–1

 18 

Case 3 Set01-05 0.25 Collapse prevention 6.22×10
–1

 12 
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(a) Serviceability limit state 

 
(b) Damage control limit state 

 

(c) Collapse prevention limit state 

Fig. 10 Fragility curves from component reliability analysis for three limit states 
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(a) Case 1 

 

(b) Case 2 

 

(c) Case 3 

Fig. 11 Probabilities from MCS with increasing number of samples for the three cases 

 

 

Overall, the proposed FORM-based method required a small number of limit-state function 

evaluations (or structural analyses). The required number of limit-state function evaluations nfe can 

be calculated by using Eq. (7). In the selected numerical example, the maximum cost of the 

structural analyses by the proposed method was 60 because there were two random variables and a 
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maximum of 20 iterations. The computational cost can be reduced further when convergence is 

achieved early during FORM, as shown in Table 3. 

In some cases, the computational efficiency of the proposed method may suffer, especially 

when there are many random variables in a problem. As shown in Eq. (7), the required number of 

limit-state function evaluations nfe is proportional to (nRV + 1). Thus, depending on the number of 

random variables, using one of the advanced simulation-based methods may be more preferable. In 

many cases, however, several random variables are enough to represent the uncertainties in the 

structure, and the proposed method can be useful for such cases. 

In the proposed method, convergence may not be achieved during FORM depending on the 

shape of the limit-state surface. If the failure domain of interest is very complex the proposed 

method may not work properly. In such a case, another method introducing more advanced 

simulation-based/non-simulation-based techniques may be needed. 

 

4.2.2 Seismic fragility curves from system reliability analysis 
As discussed in Sec. 3.2, FORM enables system reliability analysis through the use of 

component reliability analysis results (i.e., the probabilities of component events and their 

correlations). In Eqs. 11(a)–(c), the three limit states are expressed by “component” events where 

the maximum inter-story drift ratio among the twelve columns exceeds certain thresholds. 

However, they can also be described by “system” events as follows 

Serviceability:      




















00057.00
24C,...,01C

,1

24C,...,01C

,1 xx i

i

i

i

sys ISDPgPP   (12a) 

Damage control:      
















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
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24C,...,01C
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24C,...,01C

,2 xx i

i

i

i

sys ISDPgPP  (12b) 

Collapse prevention:      




















0023.00
24C,...,01C

,3

24C,...,01C

,3 xx i

i

i

i

sys ISDPgPP  (12c) 

where ISDi() denotes the inter-story drift ratios of the twelve columns. In the equations, each limit 

state is defined by a series system event consisting of twelve component events representing the 

failure of the twelve columns based on the limit state. In many structural reliability problems, such 

system event description is effective and can provide better accuracy in probability calculations, 

especially for large or highly complex structures. 

Fig. 12 shows the fragility curves from the system reliability analysis using Eqs. (12(a)-12(c)). 

Compared with the curves from the component reliability analysis in Fig. 10, these curves show 

very little difference that may not be seen in the figures clearly. This is because the target structure 

of this numerical example is assumed to be a low-rise structure which is a relatively small and 

simple structure. To investigate this issue further, we considered Cases 1–3 in Table 3: when 

performing component reliability analysis using Eqs. (11(a)-11(c)), the failure probabilities for 

Cases 1, 2, and 3 were estimated to be 2.32 × 10
–2

, 1.00 × 10
–1

, and 6.22 × 10
–1

, respectively. 

In order to compute the system failure probabilities from Eqs. (12(a)-12(c)), component 

reliability analysis must be performed for each of the twelve columns. The component failure 

probabilities for the three cases are shown in Table 4. Each case had several dominant component 

events (e.g., C11–C14 for Case 3) and zero-probability events (e.g., C01–C04 and C21–C24 for 

Case 3). Case 2 had only one non-zero component probability with C11. For the system reliability 
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analysis, the component events with zero probability were ignored. The correlation coefficient 

matrix was then constructed using ρij = –αiαj
T
, as shown in Table 5. A correlation coefficient 

matrix was not constructed for Case 2 because there was only one non-zero component event. The 

table shows that the correlation values between dominant component events were very high. Based 

on the component failure probabilities and correlation matrix, the system failure probabilities for 

the three cases were calculated to be 2.46 × 10
–2

, 1.00 × 10
–1

, and 6.23 × 10
–1

, respectively. 

Compared with the results from component reliability analysis (shown in Table 3), it is observed 

that the differences are very small. Because the target structure is relatively small and simple, the 

twelve columns assumed to share the same random variables representing their concrete and steel 

strengths and there was the high correlation between the dominant component events. This made 

the system probability very close to the maximum of the component probabilities. 

 

 

 
Table 4 Component failure probabilities for Cases 1–3 

Case 

name 

Failure Probability (×10
-1

) 

C01 C02 C03 C04 C11 C12 C13 C14 C21 C22 C23 C24 

Case 1 0 0 0 0 0 0.24 0.25 0.22 0 0 0 0 

Case 2 0 0 0 0 1.00 0 0 0 0 0 0 0 

Case 3 0 0 0 0 6.16 6.18 6.12 6.13 0 0 0 0 

 

 

 
Table 5 Correlation coefficient matrices for Cases 1 and 3 

Correlation 

(Case 1) 
C12 C13 C14 

C12 1 0.9999 0.9995 

C13  1 0.9991 

C14 Symmetric 1 

 

Correlation 

(Case 3) 
C11 C12 C13 C14 

C11 1 0.9995 0.9999 0.9996 

C12  1 0.9992 0.9999 

C13   1 0.9992 

C14 Symmetric  1 
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Although system reliability turned out to be unnecessary in this numerical example, it may 

make a significant difference to structural fragility when a structure is relatively large so that 

spatial variability of material properties needs to be assumed. In such cases, fragility curves should 

be developed at the system level with the proposed method, but the computational cost will 

increase. As the selected numerical example, system reliability analysis may not be essential 

especially for low-rise structures which would be constructed in a relatively short time because 

there would be no significant variability of material properties. 

 

 

 
(a) Serviceability limit state 

 
(b) Damage control limit state 

 
(c) Collapse prevention limit state 

Fig. 12 Fragility curves from system reliability analysis for three limit states 
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5. Conclusions 

 

This paper introduces a new method for the development of seismic fragility curves. The new 

method proposes the integration of sophisticated software packages for reliability and structural 

analyses to generate more accurate seismic fragility curves for less computational cost than 

simulation-based methods. FERUM-ZEUS was developed as a computational platform for the 

proposed method: on this platform, the reliability analysis package FERUM repeatedly calls 

ZEUS-NL to obtain structural responses of interest during component reliability analysis. Because 

the proposed method performs reliability analysis using the first-order reliability method, it 

provides component probabilities as well as useful byproducts and allows the development of 

fragility curves of a structure at the system level. The new method was applied to the numerical 

example of a 2D frame structure. The results were compared with those from Monte Carlo 

simulation, and the proposed method was found to generate seismic fragility curves more 

accurately and efficiently. The effect of system reliability analysis was also investigated to 

evaluate its necessity. Although system reliability analysis was not strictly necessary for the 

numerical example explored in this study, it may make a significant difference in structural 

fragility estimates particularly for large-scale structures or when spatial variability of material 

properties needs to be considered. The results with the numerical example proved that the 

proposed method can obtain accurate seismic fragility curves at a moderate computational cost. 
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