
 
 
 
 
 
 
 

Smart Structures and Systems, Vol. 14, No. 4 (2014) 699-718 
DOI: http://dx.doi.org/10.12989/sss.2014.14.4.699                                                 699 

Copyright © 2014 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=sss&subpage=8         ISSN: 1738-1584 (Print), 1738-1991 (Online) 
 
 

 

 
 
 
 

Extension of indirect displacement estimation method using 
acceleration and strain to various types of beam structures 

 

Soojin Cho1, Sung-Han Sim1, Jong-Woong Park2 and Junhwa Lee1 
 

1School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 
689-798, South Korea 

2Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana 
61801, IL, USA 

 
(Received May 30, 2014, Revised August 20, 2014, Accepted August 30, 2014) 

 
Abstract.    The indirect displacement estimation using acceleration and strain (IDEAS) method is extended 
to various types of beam structures beyond the previous validation on the prismatic or near-prismatic beams. 
By fusing different types of responses, the IDEAS method is able to estimate displacements containing 
pseudo-static components with high frequency noise to be significantly reduced. However, the concerns to 
the IDEAS method come from possible disagreement of the assumed sinusoidal mode shapes to the actual 
mode shapes, which allows the IDEAS method to be valid only for simply-supported prismatic beams and 
limits its applicability to real world problems. In this paper, the extension of the IDEAS method to the 
general types of beams is investigated by the mathematical formulation of the modal mapping matrix only 
for the monitored substructure, so-called monitoring span. The formulation particularly considers 
continuous and wide beams to extend the IDEAS method to general beam structures that reflect many real 
bridges. Numerical simulations using four types of beams with various irregularities are presented to show 
the effectiveness and accuracy of the IDEAS method in estimating displacements. 
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1. Introduction 
 

Civil infrastructure is the national asset that supports diverse activities of the public. Since their 
obsolete function brings considerable economic loss in the society, structural health of the 
infrastructure needs to be continuously monitored. Various efforts have been placed to monitor the 
structural health in efficient and inexpensive way: majority of them used acceleration as the 
measurement, since acceleration can be processed to the modal information (e.g., natural 
frequencies, modal damping ratios, and mode shapes) that helps to assess the health 
comprehensively (Doebling et al. 1998, Yi et al. 2007, Bani-Hani et al. 2008, Altunisik et al. 2012, 
Kim et al. 2013). 

Displacement is an intuitive response that results from the forces applied to a structural system. 
For a linear structure, its displacement satisfies Hooke’s law and can reveal the stiffness of the 
structure with the given force. Even in the case of a nonlinear structure, the displacement can be 
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represented by nonlinear relationship between the applied force and the structure. Thus, based on 
the relationship, a displacement is regarded as a useful indicator for not only the integrity but also 
the serviceability of a structure (Zhou et al. 2013).  

Many devices have been developed to measure the displacement in the direct manner, and the 
most famous one would be the linear variable differential transformers (LVDT). The big challenge 
of direct displacement measurement is a fixed reference point where the devices should stand still 
regardless of the deformation of the host structure. The need of the reference point critically limits 
the usage of the direct measurement devices at civil structures, such as bridges, skyscrapers, and 
dams, which are very hard to find the reference points around them. Recently, non-contact type 
devices, such as global positioning systems (GPS), laser Doppler vibrometers (Nassif et al. 2005), 
and vision-based systems (Lee and Shinozuka 2006, Ye et al. 2013) have emerged to clear the 
hurdle at the civil structures. Though the non-contact property helps to dodge the difficulty in 
finding good reference point, the high equipment cost significantly limits the number of 
measurement points, preventing their wider adoption in practice.  

Beyond the use of the non-contact type devices, there have been many efforts to indirectly 
estimate the displacement from the other responses that can be easily captured: such as 
acceleration and strain. The acceleration is an absolute measure and which does not require the 
reference point, and its double integration is considered to be the displacement. Though the 
literatures (Ribeiro et al. 1997, Park et al. 2005, Jung et al. 2006, Gindy et al. 2008, Lee et al. 
2010, Kandula et al. 2012, Ma et al. 2014) show successful results, the acceleration-based 
approaches have the inherent limitation; they cannot estimate pseudo-static components of the 
dynamic displacement that accelerometers cannot capture. The strain is another effective response 
that can be converted into the dynamic displacement including the pseudo-static component. Foss 
and Hauge (1995) proposed a strain-displacement modal mapping method to transform a number 
of discrete strain measurements into dynamic displacement using modal properties of a structure, 
and the modal mapping method is used widely to convert the strain to displacement (Kang et al. 
2007, Shin et al. 2012). The strain does not cause the drift; however, the estimated displacement is 
vulnerable to measurement noise especially in the high frequency range, and it requires 
preliminary tests for calibration of neutral axis of the beam structure (Shin et al. 2012). 

The respective weaknesses of the indirect estimation methods using either acceleration or strain 
can be strengthened by the fused use of them. Park et al. (2013) proposed an indirect displacement 
estimation using acceleration and strain (IDEAS) method by combining an acceleration-based 
method (Lee et al. 2010) with strain-based modal mapping method using assumed mode shapes 
(Shin et al. 2012). The IDEAS method was shown to successfully estimate displacement responses 
of single-span simply-supported structures that contain both dynamic and pseudo-static 
components. Though a three-span suspension bridge is used in the experimental test, the mode 
shapes of the bridge are assumed to be similar to the sinusoidal mode shapes as in a single-span 
simply-supported beam.  

This paper aims to investigate the extendibility of the IDEAS method to various types of beam 
structures which are expected to have non-sinusoidal mode shapes. In practice, the bridge, which is 
the representative beam-type civil structure, does not have a prismatic section and/or a single span, 
and it does not have the mode shapes that are exactly sinusoidal. The IDEAS method constructs 
the modal mapping matrix using the assumed sinusoidal mode shapes, and thus, the disagreement 
between the assumed and real mode shapes can be a significant error-causing factor in the 
estimation of the displacement. In this paper, the IDEAS method is extended to the general types 
of beams based on the mathematical formulation of modal mapping matrix using the sinusoidal 
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mode shapes. The extendibility of the IDEAS method is accomplished by constructing the modal 
mapping matrix only for the monitored substructure, so-called monitoring span in this paper. To 
validate the extension, the IDEAS method is implemented to four numerical beam models: (1) a 
single-span beam with non-prismatic section, (2) a single-span beam with asymmetric section, (3) 
a two-span beam with prismatic section, and (4) a two-span beam with asymmetric sections. The 
displacement estimated by the IDEAS method is compared with the exact displacement as well as 
the estimated displacements by the acceleration-based and strain-based methods (Lee et al. 2010, 
Shin et al. 2012), and the robustness of the IDEAS method to the general types of beams is 
investigated. 

 
 

2. Indirect displacement estimation using acceleration and strain (IDEAS) 
 

This section describes the principles of the acceleration-based displacement estimation method 
(Lee et al. 2010), strain-based displacement estimation method (Shin et al. 2012), and the IDEAS 
method. Then the motivation of the study arisen from the principles will be stated. 

 
2.1 Acceleration-based displacement estimation method 
 
The displacement estimation method using the acceleration proposed by Lee et al. (2010) is the 

starting point of the IDEAS method. This method estimates the displacement by solving the 
optimization problem as 

2
2 22

22

1
Min ( ( ) )

2 2a c
u

L L u t a u


          (1) 

where u  and a are the estimated displacement and the measured acceleration vectors in discrete 
time domain, respectively; aL  is a diagonal weighting matrix having the first and last entries as 

1/ 2  and the other entries as 1; cL  is the second-order differential operator matrix of the 

discretized trapezoidal rule (Atkinson 2008); 2 is 2-norm of a vector; t is the time step;  is a 

regularization factor. The first term in the right-hand-side of Eq. (1) represents the error between 
the measured acceleration and the second-order derivative of the estimated displacement. The 
second term (i.e., regularization term) is introduced to remove out the possible signal drift. The 
solution of Eq. (1) is 

2 1 2 2( ) ( ) ( )T T
a au L L I L L a t C a t           (2) 

where L = La Lc and 2 1( )T T
a aC L L I L L   . 

The above minimization problem in Eq. (1) is Tikhonov regularization scheme and the in Eq.  
(2) is the regularization factor that adjusts the degree of the regularization in the minimization 
problem. As the regularization factor becomes larger, the solution bound approaches zero, and zero 
displacements are reconstructed.   is optimally defined by Lee et al. (2010) as  

1.9546.81 dN          (3) 

where dN  is the size of the time-window, in which the acceleration data to be processed into 
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displacement at a time. Short time-window can reduce computational effort for data processing 
while sacrificing the accuracy. The optimal size of the time-window can be determined based on 
the natural frequencies of a structure; more practical way in the rule of thumb is to use three times 
of the number of data points in the first natural period for a time-window, which exhibits 
reasonable accuracy in the estimation. More details can be found in Lee et al. (2010). 

The estimated displacement causes significant error near both ends of the finite data, since the 
axiom that acceleration equals to the second-order derivative of displacement is valid only when 
the boundary conditions on velocity and displacement are provided. To resolve this issue, an 
overlapping moving window strategy is taken as shown in Fig. 1. For a given finite acceleration 
data, only the data with a moving time-window by t  is processed by Eq. (2) sequentially, and 
the estimated displacements at the center of the moving time-windows are connected in series to 
construct the whole estimated displacement. 

 
2.2 Strain-based displacement estimation method 
 
The dynamic displacement can also be estimated from the measured dynamic strain using the 

strain-displacement modal mapping method (Foss and Hauge 1995). The displacement and strain 
measurements can be expressed using the modal superposition as 

1 1m m r ru q          (4) 

1 1n n r rq            (5) 
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Fig. 1 Displacement estimation using moving time-window (modified from Lee et al. (2010)) 
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where   is the measured strain vector;   and   are the displacement and strain mode shape 
matrices, respectively; q  is the modal coordinate vector; m  and n  is the number of 
measurements for the displacement and the strain, respectively; and r  is the number of used 
modes. When n r , the displacement can be expressed using the strain as  

m nu D          (6) 

†
m nD            (7) 

where the superscript †  denotes the Moore-Penrose pseudo inverse; and D  is the mapping 
matrix from strain to displacement obtained as a least-squared solution.  

Shin et al. (2012) have used the assumed mode shapes, appeared as sinusoidal form, for 
single-span simply-supported beam structures as 

1 1sin sin
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x r x
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      (8) 
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          (9) 

By combining Eqs. (8) and (9), the mapping matrix can be constructed as 

†
21 1 1 1
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   

=

 

     

 

         (10) 

where L  is length of the beam structure; ( 1,  ,  )ix i n   is the measurement location of strain; 
y  is neutral axis of the beam; and r  is the number of used modes.  

 
2.3 Indirect Displacement Estimation Using Acceleration and Strain (IDEAS) 
 
Park et al. (2013) have proposed the IDEAS method by fusing the aforementioned two methods. 

Using the modal mapping matrix in Eq. (10), the optimization problem in Eq. (1) is modified for 
displacement iu  at the location of ix  as 
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2
2 22

22

1
Min ( ( ) )

2 2i
a c i i i i

u
L L u t a u D

           (11) 

where iD  is the i th row of D  in Eq. (10);   is the measured strain; iu  and ia  are the 

estimated displacement and measured acceleration at the location ix . Eq. (11) uses the measured 
strain to remove out the drift instead of using regularization term of Eq. (1).  

The solution of Eq. (11) can be expressed as 

 

2 1 2 2

2

( λ ) ( λ )T T
i a i i

i
a

u L L I L L a t D

a
C t C





   

 
   

 

     (12) 

where 2 1 2( )T
iC L L I D    .   

In Eq. (7), r  should be smaller than n  to avoid under-determined modal mapping matrix, 
while taking smaller n  (i.e., using small number of strain gauges) is preferable. In the rule of 
thumb, the first three modes are utilized to estimate the displacement with reasonable accuracy 
considering the facilitation of obtaining the lower modes in the field (Koo et al. 2010, Park et al. 
2013), which specifies the minimum number of strain measurements as three. 

The strain measurement involves an inherent problem, which is the determination of neutral 
axis. Generally, the neutral axis is calculated from the drawing or the finite element model. 
However, complexity of a structure due to composite materials (e.g., reinforced concrete) or 
irregular cross section makes the calculation difficult. A simple calibration procedure using 
acceleration and strain signals is proposed by Park et al. (2013) as 

,

,

( )

( )
d acc c

d str c

S f

S f
         (13) 

where  is the scaling factor which converts the measured strain into the strain measured at the 
neutral axis, ,d accS  and ,d strS  are the power spectral densities (PSD) of the displacements 

estimated from acceleration and strain using Eqs. (1) and (6), and cf  is a selected natural 
frequency that is clearly apparent from the both displacements estimated from acceleration and 
strain. Since both acceleration and strain can capture the first mode with high accuracy, the first 
mode is a good candidate for cf . If the other mode, such as the second or third mode, has high 

amplitude in the frequency domain, it also can be used as cf . 
 
 

3. Extension of IDEAS method 
 
Rooted in the strain-based approach described previously, the current IDEAS method is 

seemingly limited to simply-supported beam structures that have the sinusoidal mode shapes. The 
IDEAS method constructs the modal mapping matrix using the assumed sinusoidal mode shapes, 
and thus possible disagreement of the assumed sinusoidal mode shapes, used in Eqs. (8) and (9), to 
the real mode shapes of the structure can cause a significant error in the estimation of displacement. 
In the paper by Park et al. (2013), the validation was carried out on a simply-supported beam in 
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the numerical simulation and a suspension bridge in the experiment. Both structures have 
prismatic or nearly-prismatic sections and large span-to-depth ratios, and thus have the mode 
shapes quite close to the assumed mode shapes. However, in practice, such assumed mode shapes 
are suspected to be invalid particularly for non-prismatic beams, wide beams, and continuous 
beams. In such cases, the sinusoidal mode shapes can be a primary source of errors in the 
displacement estimation. The errors can be removed out by performing the modal testing using a 
dense array of accelerometers and strain gauges, but it is too costly and time-consuming. Therefore, 
if the error caused from the assumption of sinusoidal functions is reasonably acceptable even for 
the general beams, the replacement of expensive modal testing would still be very attractive.  

This section describes the extension of the IDEAS method to the general beams based on the 
mathematical formulation of modal mapping matrix using the sinusoidal mode shapes. The 
extension is based on the fact that the modal mapping matrix can be composed using both 
deflection and strain mode shapes of a substructure at which displacement is estimated. In this 
paper, a single span between two supports is considered as the substructure, which will be called as 
a monitoring span throughout this paper.  

Consider the case of estimating displacement from a general beam structure with varying 
sections, overhanging members, and/or multiple spans. The actual mode shapes of a monitoring 
span would be discrepant from the sinusoidal functions, unlikely to the prismatic simply-supported 
beams. The actual mode shapes can be obtained from the modal testing using a dense array of 
sensors. However, the sinusoidal functions of a few largest wave lengths still constitute an 
acceptable modal mapping matrix for the monitoring span without costly modal testing. Though 
the sinusoidal functions bring the error in converting strain to displacement, the use of acceleration 
in the IDEAS method, shown in Eq. (12), counterbalances the total error in the estimated 
displacement, which will be demonstrated in the numerical simulations. 

The IDEAS method using a few sinusoidal functions is still valid for the beams whose mode 
shapes are appeared to be similarly repeated at the monitoring span, such as continuous beams 
with multiple spans and wide beams. To visually show the idea, the first two mode shapes of a 
2-span continuous beam are depicted in Fig. 2. For the whole length of 2l , these two mode shapes 
are orthogonal to each other. Limited to a monitoring span with the length of l, however, the mode 
shapes are similar to each other as well as to the sinusoidal function of the largest wave length (i.e.,

 sin  (0 )x l x l   ). If the number of span is increasing, the similar mode shapes at a 

monitoring span will increasingly appear. Therefore, a set of repeated sinusoidal functions of a few 
largest wave lengths can constitute an acceptable modal mapping matrix of the monitoring span.  
 

 
(a) First mode shape 

 
(b) Second mode shape 

Fig. 2 First two mode shapes of a two-span continuous beam 
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(a) First bending mode shape (b) First torsional mode shape 

Fig. 3 First bending and torsional mode shapes of a wide beam 
 
 
The modal mapping matrix using a set of repeated sinusoidal functions can be simplified to the 

modal mapping using the sinusoidal functions without repetition. This simplification provides 
mathematical background in applying the IDEA method to various types of beam structures whose 
mode shapes in a monitored span are similarly repeated. If a set of r  sinusoidal functions 
{ 1, , , ,k r    } are assumed for the mode shapes, the modal mapping matrix D can be defined 

as the Eq. (10). Assume that a repeated sinusoidal function k  is included in the set, making the 

set of assumed mode shapes as{ 1, , , , ,k k r     } and the set of assumed strain mode shapes 

as{ 1, , , , ,k k r     }.Since k  can be substituted to kD  only when 1,...,k r , the new 

modal mapping matrix D can be simplified to the original modal mapping matrix D  as 
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1 1
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1 1
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





=    

   

   

      (14) 

Therefore, by using a sufficient number of assumed modes, the modal mapping matrix of a 
beam with repeated mode shapes at a monitoring span can be easily constructed.  

This proposition can be applied to wide beams that have torsional mode shapes, which can be 
approximated as sinusoidal mode shapes at a strip-like monitoring span as shown in Fig. 3. More 
detailed strategy for the extension of IDEAS method using sinusoidal functions will be discussed 
in the following section with numerical examples.  

 
 

4. Numerical validation 
 

The numerical validation of the extension of the IDEAS method will be carried out on four 

706



 
 
 
 
 
 

Extension of indirect displacement estimation method using acceleration and strain to… 

examples that have varying sections and/or multiple spans. Two examples – non-prismatic and 
asymmetric single-span beams – are developed with expectation of non-sinusoidal mode shapes. 
Another example is a two-span prismatic beam that will have repeated mode shapes when only a 
single span is measured. The last example is a two-span beam with asymmetric sections which is 
expected to have the non-sinusoidal and the repeated mode shapes at an observed single span. 

 
4.1 Common simulation setup 
 
All models used in this study are the variations of the single-span prismatic beam model shown 

in Fig. 4. The beam model is composed of Euler-Bernoulli beam elements with rectangular 
sections. N# and A# in Fig. 4 denote nodes and supports, respectively. The variations are made on 
the depth of the rectangular section and the number of spans. The length, width, Young’s modulus, 
and mass density of the beam elements are kept same as the Park et al. (2013). Table 1 tabulates 
the details of the beam model. 

The responses – displacement, acceleration, and strain – of the model are simulated using 
MATLAB Simulink. A vertical moving load used in the Park et al. (2013) is again employed to 
excite the beam model for this study: it moves from the left to the right with a constant velocity ( v
=0.1 m/s) to generate non-zero mean displacements as shown in Fig. 5. The moving load is the 
combination of static load of 10N and zero-mean Gaussian random load with the standard 
deviation of 3N. Given N5 of Fig. 4 as the test point, the acceleration is measured at the node N5, 
while the strains are obtained at three nodes of N4, N8, and N12. The exact displacement of N5 is 
also obtained to be used as reference data. The acceleration and strain are contaminated by adding 
5% and 10% noise in RMS (root mean square), respectively, to simulate the practical 
measurement. 

 
 

 

Fig. 4 Single-span prismatic beam model 
 
 

Table 1 Details of the prismatic beam model (Park et al. 2013) 

Element length 0.1 m 

Element width 0.015 m 

Young’s modulus  206 GPa 

Mass density 7850 kg/m3 

Element depth 0.004 m for the prismatic beam (variations made in this study) 
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Fig. 5 Simulated vertical moving load (Park et al. 2013) 
 
 
4.2 Single-span beams with varying sections 
 
4.2.1 Example 1: non-prismatic beam 
The first example is a single-span beam whose section is non-prismatic. The depth of each 

element is randomly generated to have the Gaussian distribution whose mean is 0.004 m (i.e., the 
original depth) and standard deviation is 0.0008 m. Fig. 6 shows the graphical representation of the 
generated non-prismatic beam. Dashed line represents the original depth for visual comparison. 

Fig. 7 shows the first three mode shapes of the model compared with the assumed sinusoidal 
mode shapes. The assumed mode shapes are almost identical to the actual mode shapes, as 
quantified by the MAC (modal assurance criterion) values close to unity, despite of the sectional 
variation. Therefore, the modal mapping matrix D  using the assumed mode shapes is expected 
to be slightly different with the exact matrix.  

 
 

Fig. 6 Example 1 – Non-prismatic single-span beam model 

...

...

0 2 4 6 8 10 12 14 16 18 20
-10

-5

0

5

10

15

20

Time (sec)

Lo
ad

in
g 

at
 N

15

0 2 4 6 8 10 12 14 16 18 20
-5

0

5

10

15

20

Time (sec)

Lo
ad

in
g 

at
 N

2

0 2 4 6 8 10 12 14 16 18 20
-10

-5

0

5

10

15

20

Time (sec)

Lo
ad

in
g 

at
 N

1

0 2 4 6 8 10 12 14 16 18 20
-10

-5

0

5

10

15

20

Time (sec)

Lo
ad

in
g 

at
 N

8

708



 
 
 
 
 
 

Extension of indirect displacement estimation method using acceleration and strain to… 

 

Fig. 7 Example 1 – first three mode shapes compared with assumed ones 
 
 
Using the simulated acceleration at N5 and strains at N4, N8, and N12, the displacements at N5 

are estimated by the three indirect methods introduced in Section 2 and compared with the exact 
displacement. Fig. 8 is the comparison of the estimated displacements at node N5 by the three 
indirect methods, introduced in Section 2, with exact displacement. The acceleration-based method 
(see Fig. 8(a)) accurately estimates the high-frequency component of the displacement, as clearly 
shown in the zero-mean tail part (after 15 sec). However, the method cannot estimate the 
low-frequency (i.e., quasi-static) component that is generated when the directional loading (e.g., 
vehicle loading) is applied. Meanwhile, the strain-based method (see Fig. 8(b)) estimates the 
low-frequency component of the displacement while missing the high-frequency component. The 
IDEAS method (see Fig. 8(c)) estimates almost identical displacement to the exact displacement. 
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Fig. 8 Example 1 – comparison of time-domain displacements estimated at N5: (a) acceleration-based 
method, (b) strain-based method, and (c) IDEAS method 
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Fig. 9 Example 1 – comparison of PSDs of estimated displacements at N5: (a) acceleration-based method, 
(b) strain-based method, and (c) IDEAS method 

 
 

Fig. 9 shows the power spectral densities (PSD) of the estimated displacements compared to 
the PSD of the exact displacement. The PSD from the acceleration-based method is almost 
identical to the exact PSD except very low-frequency range below 2 Hz. The PSD from the 
strain-based method is relatively close to the PSD of the exact displacement, while the 
high-frequency component above 15 Hz differs from the exact PSD. The IDEAS method shows 
almost identical PSD to the exact one. This result demonstrates that the IDEAS method makes a 
synergic use of both of the methods by the fusion of acceleration and strain data. 

 
4.2.2 Example 2: asymmetric beam 
 
The second example is a single-span beam whose section is asymmetric as shown in Fig.10. 

The depths of the right-half span (from N8 to A2) are decreased to 0.002 m, which is a half of the 
original depth (i.e., 0.004 m). The simulation setup is exactly same as the previous non-prismatic 
beam example. Fig. 11 shows the first three mode shapes of the model compared with the assumed 
mode shapes. The assumed modes show big discrepancies with the actual mode shapes of the 
model, which is also quantified with the low MAC values. Therefore, the modal mapping matrix 
D , composed using the assumed modes, cannot be expected to map the strain to the displacement 
with high accuracy. 
 

 
Fig. 10 Example 2 – asymmetric single-span beam model 
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Fig. 11 Example 2 – first three mode shapes compared with assumed ones 
 
 
Fig. 12 is the comparison of the estimated displacements with exact displacement. In the case 

of strain-based method, the displacement is badly estimated as expected due to the significant 
discrepancy between the assumed modes and actual modes. The IDEAS method shows larger error 
than Fig. 8, but still estimates the displacement with higher accuracy than the other methods. Fig. 
13 shows the comparison in the frequency domain. By using both of the acceleration and strain, 
the IDEAS method provides better estimates in the high frequency range than the 
acceleration-based method and in the low frequency range than the strain-based method. The result 
shows that the fusion of two responses which have strengths in different frequency ranges provides 
the robustness to the measurement noise as well as the big discrepancy of the assumed modes. 
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Fig. 12 Example 2 – comparison of time-domain displacements estimated at N5: (a) acceleration-based 
method, (b) strain-based method, and (c) IDEAS method 
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Fig. 13 Example 2 – comparison of PSDs of estimated displacements at N5: (a) acceleration-based 
method, (b) strain-based method, and (c) IDEAS method 

 
 
4.3 Multi-span beams 
 
4.3.1 Example 3: two-span prismatic beam 
The third example is the two-span prismatic beam shown in Fig. 14. The second span is the 

duplicate of the single-span prismatic beam model shown in Fig. 4. The two-span model is 
selected as an example since the multi-span model has multiple modes that have similar mode 
shapes for a single span (e.g., from A1 to A2) by the action of the extended spans. Fig. 15 shows 
the first six mode shapes of the two-span model compared with the assumed mode shapes for a 
single span. By looking at the first single span, the similar mode shapes are repeated twice with 
some difference due to the action of the intermediate support A2. The odd orders of modes have 
identical shapes to the assumed mode shapes as indicated by the MAC values of unity, while the 
even orders of modes have slightly different shapes with smaller MAC values.  

 

Fig. 14 Example 3 – two-span prismatic beam model 
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Fig. 15 Example 3 – first six mode shapes compared with assumed ones 
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Fig. 16 Example 3 – comparison of time-domain displacements estimated at N5: (a) acceleration-based 
method (b) strain-based method, and (c) IDEAS method 

 
 
Figs. 16 and 17 are the comparison of the estimated displacements with exact displacement in 

the time and frequency domain, respectively, and they show the aforementioned benefit clearly. 
Similar to the previous results, the two previous methods showed big discrepancy in either 
low-frequency range or high-frequency range. The IDEAS method estimates the dynamic 
displacement with negligible error, though the even orders of modes show the low MAC values 
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comparable with the MAC values of Example 2 shown in Fig. 11. In the frequency-domain, the six 
peaks of the exact PSD are tracked well by the PSD of the estimated displacement using the 
mapping matrix composed of using only three assumed modes. Considering that the IDEAS 
method showed visible error in time-domain (though it was insignificant) in Example 2, this result 
shows substantial robustness to the increasing spans. 

 
4.3.2 Example 4: two-span beam with asymmetric sections 
The fourth example is the two-span prismatic beam similar to the Example 3, but having 

asymmetric sections for each span as shown in Fig. 18. The second span (i.e., from A2 to A3) is 
designed to have the depth which is a half of the first span, while keeping the other parameters. Fig. 
19 shows the first seven mode shapes of the two-span model compared with the assumed mode 
shapes for a single span. Contrast to the previous two-span model, this model has seven modes 
which has similar mode shapes to the first three sinusoidal modes. Looking at the first single span, 
the mode sequence correlated to the assumed modes is changed from the previous model: the first 
and second modes are correlated to the first sinusoidal mode, the third, fourth, and fifth modes are 
to the second sinusoidal mode, and the other two modes are to the third sinusoidal mode. 
Especially, the third mode with a relatively low MAC value (close to 0.5) occurred by the weaker 
second span, while keeping the other modes shown in Fig. 15. 
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Fig. 17 Example 3 – comparison of time-domain displacements estimated at N5: (a) acceleration-based 
method, (b) strain-based method, and (c) IDEAS method 

 

Fig. 18 Example 4 – two-span beam model with asymmetric sections 
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Fig. 19 Example 4 – first seven mode shapes compared with assumed ones 
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Fig. 20 Example 4 – comparison of time-domain displacements estimated at N5: (a) acceleration-based 
method, (b) strain-based method, and (c) IDEAS method 
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Fig. 21 Example 4 – comparison of PSDs of estimated displacements at N5: (a) acceleration-based 
method, (b) strain-based method, and (c) IDEAS method 

 
 
Figs. 20 and 21 are the comparison of the estimated displacements with exact displacement in 

the time and frequency domain, respectively. The IDEAS method estimates the dynamic 
displacement with negligible error in both time and frequency domain despite of the third mode 
with very low MAC value. The seven peaks of the exact PSD are tracked well by the PSD of the 
estimated displacement using the mapping matrix composed of using only three assumed modes, 
while the eighth peak at 49 Hz is not. One thing to note is that the third mode is also tracked very 
well despite of its low MAC value of 0.5.  

The result of this simulation can be extended to the beams with more than two spans. The 
action of the multiple spans will generate more number of modes whose mode shapes are similar 
to several lower sinusoidal shapes. Some of them will have very similar mode shapes to the 
assumed ones for a monitoring span and the others will not. Regardless of the correlation (i.e., 
MAC value) of the appeared modes, all the modes which have somewhat similarity to the three 
assumed modes will be considered in constructing the modal mapping matrix as shown in Fig. 19. 
This brings a big benefit in estimating the accurate displacement of a single span while keeping the 
number of strain gauges as three, and the benefit will appear larger for the beams with more spans. 

 
 

5. Conclusions 
 
In this paper, the indirect displacement estimation using acceleration and strain (IDEAS) 

method has been extended to various beam-type structures beyond the previous validation on the 
prismatic or near-prismatic beams done by Park et al. (2013). In this paper, the extension to the 
general types of beams has been verified by the mathematical formulation of modal mapping 
matrix using the sinusoidal mode shapes. By constructing the modal mapping matrix only for the 
monitored substructure, so-called monitoring span in this paper, it has been demonstrated that only 
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a few sinusoidal assumed mode shapes acts for the repeated mode shapes on the monitoring span, 
which appear on the continuous beams and wide beams. The effect of disagreement of the assumed 
mode shapes to the actual mode shapes has been investigated from the numerical simulation of 
four types of beams: a single-span beam with non-prismatic section, a single-span beam with 
asymmetric section, a two-span beam with prismatic section, and a two-span beam with 
asymmetric sections. By forcing a moving load, the displacements estimated by the IDEAS 
method on the four numerical models are compared with the exact displacements as well as the 
ones estimated displacements by the acceleration-based and strain-based methods in time and 
frequency domains. The results of the numerical validation can be summarized as: 
(1) For single-span beams, the sectional irregularities of numerical models rarely affect the 

accuracy of the displacement estimation by the IDEAS method that has better accuracy than 
the acceleration-based and strain-based method. 

(2) For 2-span continuous beams, the IDEAS method still works accurately using a few 
sinusoidal assumed mode shapes by introducing the concept of monitoring span, which 
allows the extension of the IDEAS method to continuous beams with multiple-spans. 

(3) The comparison in the frequency domain shows that the displacements estimated by the 
IDEAS method is precise at both low- and high-frequency ranges for all types of beams.  

The results of this study evidence the applicability of the IDEAS method to effectively measure 
the displacements of the beam-type structures where the direct measurements are not available, 
such as bridges crossing straits, rivers, narrows, or highways. 
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