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Abstract.   Vibration-based fault detection and condition monitoring of rotating machinery, using statistical 
process control (SPC) combined with statistical pattern recognition methodology, has been widely 
investigated by many researchers. In particular, the discrete wavelet transform (DWT) is considered as a 
powerful tool for feature extraction in detecting fault on rotating machinery. Although DWT significantly 
reduces the dimensionality of the data, the number of retained wavelet features can still be significantly large. 
Then, the use of standard multivariate SPC techniques is not advised, because the sample covariance matrix 
is likely to be singular, so that the common multivariate statistics cannot be calculated. Even though many 
feature-based SPC methods have been introduced to tackle this deficiency, most methods require a 
parametric distributional assumption that restricts their feasibility to specific problems of process control, 
and thus limit their application. This study proposes a nonparametric multivariate control chart method, 
based on multiscale wavelet scalogram (MWS) features, that overcomes the limitation posed by the 
parametric assumption in existing SPC methods. The presented approach takes advantage of 
multi-resolution analysis using DWT, and obtains MWS features with significantly low dimensionality. We 
calculate Hotelling’s 2T -type monitoring statistic using MWS, which has enough damage-discrimination 
ability. A bootstrap approach is used to determine the upper control limit of the monitoring statistic, without 
any distributional assumption. Numerical simulations demonstrate the performance of the proposed control 
charting method, under various damage-level scenarios for a bearing system. 
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1. Introduction 
 

As one of the most critical categories of industrial equipment, rotating machinery requires a 
condition monitoring technique for early warning of the occurrence of fault, before it develops to 
failure and breakdown. Reliable monitoring and evaluation techniques are responsible for 
providing decision-making to the operator regarding the operation of rotating machinery, based on 
a thorough evaluation of the available data in a timely fashion. Rolling element bearings are the 
most popular locations of potential defects in rotating machinery. Because the essence of bearing 
condition monitoring is a prognostic warning of incipient fault, advanced signal processing and 
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fault diagnosis are very critical. In this context, signal processing of vibration measurement has 
been an active research area in recent years (Lin and Zhang 2005, Lei et al. 2013, Koh et al. 2008) 
Typically, a bearing system with a defect experiences periodic impulses in its vibration signal, due 
to repeated collisions between the defect and rolling components of the bearing.  

The typical condition monitoring process is composed of two steps: first, acquisition of data 
from sensor measurements around the bearing system. Then, extracting damage-sensitive features 
from the measured data, and classifying the pattern for further diagnosis, such as allowing a 
decision for maintenance (Jardine et al. 2006). Over the last three decades, feature extraction from 
vibration signal has been widely investigated for monitoring bearing conditions, in conjunction 
with advanced signal processing techniques (Randall and Antoni 2011). Considering the 
non-stationary nature of bearing dynamics, many studies are devoted to the time-domain and/or 
time-frequency analysis. In the time domain, the simplest fault detection method is to evaluate the 
crest factor or kurtosis value from measurements (Dyer 1978). Also, empirical mode 
decomposition (Yu et al. 2006), wavelet transform (Prabhakar 2002), and autoregressive filter 
(Wang 2002) have been successfully employed for monitoring fault in rotating machinery.  

Among many other fields, condition monitoring for rotating machinery using statistical process 
control (SPC) combined with statistical pattern recognition methodology, such as feature 
extraction, has become an area of promising research. Recent literature has presented several 
variants of a wavelet-decomposition-based multiscale data analysis method for vibration-based 
fault detection, which are, in concept, superior to those of the traditional single scale methods, 
such as the time series method (Jung and Koh 2009, Jung et al. 2006). A discrete wavelet 
transformation (DWT) uses appropriate low-pass and high-pass filters, to map the signal from the 
time domain into the time-scale domain. While DWT significantly reduces the dimensionality of 
the data, using denoising techniques, the number of retained wavelet coefficients can still be 
significantly large.  

Hence, additional dimensionality reduction effort is necessary to summarize the wavelet 
coefficients. Consequently, a DWT is only a start, and further analysis of the coefficients is needed 
for multivariate monitoring process. Thus, in this present study, the multiscale wavelet scalogram 
(MWS) is selected as a set of defect-sensitive features, especially in very low dimension, for 
constructing a control chart, to avoid a high false alarm rate (FAR). MWS provides measures of 
signal energy at various frequency bands, and is commonly used in decision making tasks, 
including signal and image processing, astronomy and metrology (Rioul and Vetterli 1991, Scargle 
1997, Peng et al. 2002, Jeong et al. 2003). Peng et al. (2002) used the wavelet scalogram to 
analyze vibration data of an industrial machine. The machine was 300MW pumped storage power 
generator unit (PSPGU) running at several operating conditions, and affected by many factors, 
such as hydraulic factors and electric factors. They showed the advantages of wavelet scalogram to 
extract the feature of defect. Jeong et al. (2003) applied the MWS concept to the problem of a 
rapid thermal chemical vapour deposition (RTCVD) process that deposits thin films on 
semiconductor wafers using a temperature-driven surface chemical reaction in order to detect 
process condition different from the nominal. They applied a commonly used data mining tool to 
the scalograms and showed the effectiveness of their techniques. MWS represents the scale-wise 
distribution of energies of the signal. These energies at different scales have distinct characteristics 
of different signals. Therefore, intuitively, it is possible that MWS will be useful in monitoring 
process changes, with data collected in time sequences.  

Traditionally, a control chart assumes that the monitoring statistics follow a certain probability 

distribution. The most widely used multivariate control chart has been Hotelling’s 2T  ( 2T  chart) 
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(Hotelling 1947). The 2T charts monitor 2T statistics that measure the distance between an 
observation, and the scaled-mean, estimated from the in-control data. Assuming that the observed 

process data follow a multivariate normal distribution, the control limit of a 2T  control chart is 
proportional to the percentile of an   distribution in Phase I (retrospective analysis), and an F  
distribution in Phase II (future monitoring) (Mason and Young 2002). However, when the 
normality assumption of the data does not hold, a control limit based on the   and F  
distribution may be inaccurate, because the control limit determined this way may increase the 
false alarm rate (Chou et al. 2001). To tackle the limitation posed by the distributional assumption 
underpinning traditional control charts, nonparametric (or distribution-free) control charts have 
been developed. In particular, many studies have focused on the construction of nonparametric 
control charts by using a bootstrap procedure (Bajgier 1992, Seppala et al. 1995, Liu and Tang 
1996, Lio and Park 2008, Polansky 2005, Phaladiganon et al. 2011). This procedure is favored 
over the traditional distribution-assuming procedures, because of its proven capabilities to 
effectively manage process data, without posing assumptions about their distribution.  

In this study, multivariate control chart analysis, which is the most commonly used SPC 
technique, and very suitable for automated condition monitoring, is applied to evaluate vibration 
signals, for further diagnosing the incipient fault in a bearing system. In our case, even though 
MWS composes a set of good features with high discriminating power in very low dimension, 
suitable for SPC application, the probability distributional information of MWS is theoretically 
intractable, due to the nature of the nonparametric approach, so that the traditional multivariate 

statistical control chart, such as Hotelling’s 2T  control chart, is not a good choice. To overcome 
the limitation posed by the parametric assumption, this study proposes a nonparametric 
multivariate control chart method, using a bootstrap approach based on MWS-based monitoring 
statistic for fault detection. Before the proposed method is introduced, we first summarize a 
discrete wavelet transformation, and multivariate statistical process control techniques.  

The organization of this paper is as follows. In Section 2, the motivating example of a bearing 
system and vibration signal acquisition is summarized. The theoretical background for discrete 
wavelet transformation and multivariate statistical process control is outlined in Section 3. In 
Section 4, the proposed method for monitoring a high-dimensional vibration signal is explained. In 
Section 5, the performance of the proposed method is evaluated, through simulation of the bearing 
signal. Finally, Section 6 contains the conclusion, and future research work. 

 
 

2. Motivating example: bearing condition monitoring 
  
2.1 Bearing system with localized defect 
 
The bearing system in most rotating machinery needs a reliable measure for diagnosing its 

functionality, to avoid the risk of catastrophic accident, which may cause personal damage and 
economic loss. The most successful method for condition monitoring of a bearing system is using 
vibration measurements. The easiest way of measuring the vibration is mounting accelerometers 
on the surface of the outer frame of the bearing, and instrumenting them to the data acquisition 
system, for further signal processing.  
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  (a)                         (b) 

Fig. 1 Schematics of a roller-bearing system: (a) a defect on the surface of an inner race with rolling 
elements, and (b) rotating direction of the rolling elements 

 
 

 

Fig. 2 Schematics of the impulsive stress wave generated by repeated collisions of crack and rolling 
elements 

 
 
A roller bearing system includes three rolling components: the inner-race, outer-race and rollers, 

as shown in Fig. 1. The common defects of bearing systems are cracks, pits and spalls on the 
surface of the rolling elements. When a localized defect on the element hits its mating element, a 
sharp impulse inflicts the stress waves within a very short duration (see Fig. 2). And, this impulse 
penetrates the overall structure of the bearing system, including its mounting frame. Thus, the 
reflected stress wave is similar to the impulse response, incorporating the dynamics of the overall 
system. The pulse wave produces noise-corrupted vibration, which needs to be monitored to 
diagnosis the occurrence of fault in the bearing.  

 
2.2 Simulation of the bearing vibration signal 
 
Instead of using experimental data, many studies exploit bearing simulation schemes, in which 

we can arbitrary control the severity and collision frequency of defects. Previously, some 
researchers proposed bearing simulation methods, by producing series of repeated periodic 
oscillation with proportional damping terms (McFadden and Smith 1984, Cong et al. 2010). Again, 
the frequency of impulse is related to the collision frequency between the defect and rotating 
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elements. The model equation of the simulated bearing signal can be expressed as Eq. (1) 

 )()(=)(
=1

tniPtwAtx ii

M

i

                         (1) 

In the equation, P  is the impulses period, )(tw  is the oscillating wave, and )(tn  is 

measurement noise. iA  is the periodic amplitude, after the T  period. Note that the shaft speed 

for inner defects and cage speed for rolling elements becomes T1/ . In the averaging period of 
impulses, minor and random fluctuation in oscillating waveform is denoted as i . Considering 

natural frequency and damping of the bearing system, the equation of )(tw  becomes a cosine 

with a damping term, as )(2=)( wn
Dt tfcosets   . For exponential decaying to simulate 

damping, i.e., decrease of waveform to zero after a specific interval, D  can be conveniently 
selected with appropriate value. Also, phase angle is denoted as w . The amplitude of iA  can be 

presented as the amplitude of the impulse having cosine waveform )(2= 0 Ani tfcosAA   .  
The limitation of the simulation approach using Eq. (1) is that it only represents a single 

frequency component. It is reasonable to believe that a bearing system has its own dynamics, and 
many modes of broad spectrum. Thus, we used a state-space model to represent the dynamics of 
the overall bearing system, instead of simply using Eq. (1). Specifically, the state-space model 
consists of two-degree-of-freedom system, i.e., two masses connected by springs and dampers. 
Each compoent of spring, mass, and damper simulates the overall dynamics of inner-race, 
outer-race, rolling elements, and housing structure. The effect of bearing fault is simulated by 
inflicting periodic impulses to the state-space system.  

It is reasonable to consider that the severity of fault in a bearing is proportional to the power of 
periodic impulse caused by collision impact between the defect and rolling elements. We 
quantified the level of fault severity, denoted SL (Severity Level), as the relative intensity of 
impact force on the state-space model, having a scale from 0 to 1. Here, 0 represents no fault or 
pristine condition, while 1.0 indicates the condition from the most severe defect. In this paper, we 
used five levels of fault severity, SL =0.05, 0.1, 0.15, 0.2, and 0.25. Thus, the lower the SL  
value, the more difficult it is to differentiate the incipient defect from measurement noise or 
background resonances. The time-history data simulated from the model of the bearing system for 
the healthy case is shown in Fig. 3(a), and for the bearing having defect is depicted in Fig. 3(b), 
respectively. It is worth noting that the severity of a bearing defect reflected in terms of signal 
power can be easily masked by environmental noise, making its detection extremely difficult in 
practice. Thus, damage-sensitive features extracted by signal processing must be further 
interpreted, and evaluated for fault detection. Again, feature extraction is the process of identifying 
damage-sensitive properties derived from the measured vibration that allows one to differentiate 

the incipient fault from a healthy bearing. The number of data points has been fixed to 212 =4096 
points, which is large enough to include at least two defect-driven impulses during the rotation of 
the bearing. 

Once it is revealed that the extracted features are adequately sensitive to structural defects, the 
most direct way to deal with a vibration signal in SPC, is treating features extracted from the 
vibration signal as a realization of a multivariate process. However, the use of standard 
multivariate SPC charts is ill-advised, because when the number of monitored features exceeds the 
number of collected samples, the covariance matrix is singular, and the common multivariate 
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statistics cannot be calculated. Also, even though the number of monitored features is less than the 
number of collected samples, it is well known that the power of detecting process fault or 
structural damage will drop significantly, when the number of features becomes large (Fan 1996). 
This implies that the rate of false alarm will be significantly increased. Functional principal 
component analysis (FPCA; Ramsay and Silverman 1997) and related procedures (Hall et al. 2001) 
are useful as a dimension reduction tool, in modelling high dimensional data. However, there are 
some drawbacks in applying the FPCA approach to SPC procedure. For instance, the FPCA 
method presents difficulties of interpreting the relationship between changes in a few principal 
components, and the high-dimensional signal. To overcome the limitation posed by 
high-dimensionality, this study proposes a wavelet-based multivariate control chart method, for 
fault detection of a bearing system. 

 
 

3. Theoretical background: DWT and SPC 
 
3.1 Discrete wavelet transformation (DWT) 
 
The feature extraction using vibration signal is mostly based on the Fourier transform, which 

breaks down a temporal signal into constituent sinusoids of different frequencies. The Fourier 
analysis transforms a time-based signal to a frequency-based one. Unfortunately, in transforming 
the domain, the time-based information is lost, and it is impossible to determine when or where the 
particular event took place. To a certain extent, this could be overcome by the application of 
different windowing techniques, leading to the short-time Fourier transforms (STFT). But these 
also have their own limitations, such as the fact that the information about time and frequency can 
be obtained with a limited precision that is determined by the size of the window. An alternative 
method is to use wavelets. This section provides a brief review of DWT (Mallat 1989, Vidakovic 
1999).  

 

 

Fig. 3 Examples of time-history response from sensor for bearing: (a) healthy condition, and (b) damaged 
condition with SL =0.2 
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A wavelet is a function )()( 2 RLt   with the following basic properties 

 1,=)(0=)( 2 dttanddtt
RR
                        (2) 

 

where, )(2 RL  is the space of square integrable real functions defined on the real line R . 

Wavelets can be used to create a family of time-frequency atoms, )(=)( 1/2
, uststus  , via the 

dilation factor s , and the translation u . We also require a scaling function )()( 2 RLt   that 
satisfies  

 1.=)(0=)( 2 dttanddtt
RR
                         (3)

 

Selecting the scaling and wavelet functions as });(22=)({ /2
, Zkktt LL
kL  , 

},);(22=)({ /2
, ZkLjktt jj
kj  , respectively, one can form an orthonormal basis to 

represent a signal function )()( 2 RLtf  , as follows  

 ),()(=)( ,,,, tdtctf kjkj
ZkLj

kLkL
Zk

 


                     (4) 
 

where, Z  denotes the set of all integers }2,1,{0,  , and the coefficients 

dtttfc kL
R

kL )()(= ,,   are considered to be the approximation level coefficients characterizing 

smoother data patterns, and dtttfd kj
R

kj )()(= ,,   are viewed as the detail level coefficients 

describing (local) details of data patterns. In practice, the following finite version of the wavelet 
series approximation is used 

 ,)()(=)(
~

,,
=

,, tdtctf kjkj
Zk

J

Lj
kLkL

Zk

 


                     (5) 
 

where, LJ >  and L  correspond to the coarsest resolution level. Consider a sequence of data 
T

Ntyty ))(,),((=y 1   taken from )(tf . The discrete wavelet transform (DWT) of y  is defined 
as  

 2.=I where)d,,d,d(=d )((2)(1)  LJT
I                    (6) 

The main advantage of exploiting wavelets is performing local analysis of a highly localized 
signal, such as spikes. On the other hand, wavelets can be contained in a finite interval. Hence, 
they are well suited to represent or approximate signals containing discontinuities. This 
functionality is particularly important for fault detection using vibration signals. Moreover, due to 
the availability of a fast transform version, the computational effort to perform the signal 
processing is reduced. Because of these features, the wavelet transform has recently been 
considered as a powerful tool for fault detection and condition monitoring for rotating machinery 
(Prabhakar 2002). Wavelet-based examples showing the time-scale nature of damage 
characteristics in vibration responses can be found in Law (2005), Li (2006), and Li et al. (2007). 
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3.2 Statistical Process Control (SPC) 
 
SPC is one of the most widely used techniques for quality control. The basic objective of SPC 

is to quickly detect the occurrence of special cause variation, so that the process can be 
investigated, and corrective action may be taken, before quality deteriorates and defective units are 
produced (Stoumbos et al. 2000). One important tool in SPC is the control chart, which is used to 
monitor the performance of a process over time, to keep the process in an in-control state. A broad 
spectrum of SPC methods have been developed, including methods for univariate SPC, such as 
Shewhart, moving-average (MA), exponentially weighted moving-average (EWMA), and 
cumulative-sum (CUSUM) charts. Methods for multivariate SPC include multivariate extensions 

of univariate methods, such as the Hotelling’s 2T  statistic, and methods that monitor latent 
variables obtained by combining the measured variables with a lower dimension of space. Popular 
methods for reducing the dimensionality of the measured data include principal-component 
analysis (PCA), and partial least-square regression (PLS) (Ku et al. 1995). Many extensions and 
applications of these have been extensively investigated (Kresta et al. 1991, MacGregor and 
Kourti 1995).  

In general, control chart problems in SPC can be divided into two phases (Woodall and 
Montgomery 1999, Woodall 2000). Phase I analysis tries to isolate the in-control (baseline) data 
from an unknown historical data set, and establish the control limits for future monitoring (Zhang 
and Albin 2007). Phase II analysis monitors the process using control charts derived from the 
“cleaned” in-contol data set from the Phase I analysis. With a simple plot of the set of monitoring 
statistics derived from the original samples, the control chart can effectively determine whether or 
not a process is in an in-control state. In addition to the monitoring statistics, another important 
component of control charts is determining the control limits, which are often calculated based on 
the probabilistic distribution of the monitoring statistics (Sukchotrat et al. 2010).  

Common characteristics used for comparing the performance of control charts are first an 
in-control Average Run Length (ARL0), and secondly an out-of-control Average Run Length 
(ARL1). ARL0 is defined as the expected number of observations taken from an in-control process, 
until the control chart falsely signals out-of-control. ARL0 is regarded as acceptable, if it is large 
enough to keep the level of false alarms at an acceptable level. ARL1 is defined as the expected 
number of observations taken from an out-of-control process, until the control chart correctly 
signals that the process is out-of-control. Ideally, the ARL1 should be as small as possible. 

 

3.2.1 Parametric Hotelling’s 2T  statistic and limitation 
Hotelling extended the univariate control chart to handle multivariate problems (Hotelling 

1947). Hotelling’s 2T  chart is a multivariate control chart that can monitor a multivariate process 
efficiently. Mason and Young give the basic steps for the implementation of multivariate statistical 

process control using the 2T  statistic, and they published a textbook on the practical 

development and application of multivariate control techniques using the 2T  statistic (Mason and 
Young 2002). There is an crucial matter of the sample size n  of each sample statistic in a control 
chart. If 1=n , then special care must be taken. As Lowry and Montgomery suggest, the 
appropriate use of a sample statistic can be divided into four categories (i.e., (1) Phase I and 1=n , 
(2) Phase I and 1>n , (3) Phase II and 1=n , (4) Phase II and 1>n ). 

For charts constructed using individual observations ( 1=n ), the test statistic for the i th 
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individual observation has the form  
 )x(Σ)x(= 0

1
00

2   
i

T
iiT                           (7) 

where, ix  is the i th, mi ,1,2,=   observation following )Σ,( 00pN , where 0  and 0Σ  are 

the known vector of means and the known variance-covariance matrix, respectively. The 2
iT  

statistic follows a 2 -distribution with p  degrees of freedom (Seber 1984). 

In Eq. (7), if 0  is replaced by 0x , 0Σ  is replaced by 0S , and fx  is a future individual 

observation, which is independent of the estimators 0x  and 0S , then the 
12 ))(1)(1)((/  pmmmmpTi  statistic follows an F -distribution with p  and )( pm   

degrees of freedom. Thus, a multivariate Shewhart control chart for the process mean, with 
unknown parameters, has the upper control limit (Tracy et al. 1992) in Eq. (8) below, and this 

control chart is called a Phase II 2T -chart.  

 )(,,1)(

1)1)((
= pmpF

pmm

mmp
UCL 


                      (8) 

Although Hotelling’s 2T  chart is one of most popular multivariate control charts, it is difficult 
to apply this chart to the non-normal data that is often found in many applications, due to the 

distributional assumption of the 2T  chart. A number of non-parametric control charts have been 
developed to address the limitation of the distributional assumptions (Chakraborty et al. 2001, Liu 
et al. 2004, Bakir 2006, Kim et al. 2007, Qiu 2008). However, no consensus exists about which of 
them best satisfies all the conditions encountered in modern process systems. A detailed review of 
non-parametric control charts is beyond the scope of this study. 

 
3.2.2 Nonparametric approach for non-normality situations: bootstrapping  
 
In traditional control charts, the control limits are determined based on the underlying 

distribution of the monitoring statistic, with the user-specified value of Type I error rate ( ). Here, 
Type I error rate represents the probability of a false alarm. In contrast, the distribution of some 
non-parametric monitoring statistics of new control charts is unknown, due to its non-parametric 
nature. This provides the motivation to develop an appropriate non-parametric procedure to 
establish the control limits (Chou et al. 2001, Sukchotrat et al. 2010). In particular, many studies 
have focused on the construction of non-parametric control charts, by using a bootstrap procedure. 
The bootstrap, originally proposed and named by Efron (1979), is a computational technique that 
can be used to effectively estimate the sampling distribution of a statistic. One can use the 
non-parametric bootstrap to estimate the sampling distribution of a statistic, while the only 
assumptions are that the sample is representative of the population from which it is drawn, and that 
the observations are independent and identically distributed.  

Bajgier (1992) introduced a univariate control chart whose lower and upper control limits were 
estimated by using the bootstrap technique, and Seppala et al. (1995) proposed a subgroup 
bootstrap chart, to compensate for the limitations of Bajgier’s control charts. Liu and Tang (1996) 
proposed a bootstrap control chart that can monitor both independent and dependent observations. 
Note that several control charts based on the bootstrap are compared in the study from Jones and 
Woodall (1998). We apply the concept of the bootstrap procedure in Section 4.2 to construct a 
control limit for the our test statistic, with a more explicit description. 
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4. The proposed control chart: MWS-based bootstrap control chart 

 
4.1 Multiscale Wavelet Scalogram (MWS) 
 

When the i th component of d  in Eq. (6) is defined as T

imiiii ddd ),,,(=d )()2()1()(  , where 

im  is the number of wavelet coefficients at the )(i th resolution level, the element of multiscale 

wavelet scalogram (MWS) at the )(i th resolution level is defined as (Vidakovic 1999, Jeong et al. 
2003)  

Iids ki

im

k
i ,1,2,=,= 2

)(
1=

)(                          (9)
 

which is the sum of the squares of all wavelet coefficients at the )(i th resolution level, where 

2=  LJI . Then, a vector of MWS that represents a single vibration signal, is defined as  

 ),,,(= )((2)(1) IsssS                             (10) 

where, (1)s  is for the approximation level, and Iis i ,2)(  is for the detail levels. MWS 

provides measures of signal energy at various frequency bands (Rioul and Vetterli 1991). MWS 
represents the scale-wise distribution of the energies of a signal. Thus, a vector of MWS in Eq. (10) 
is in very low dimension, depending on the predetermined depth of decomposition (decomposition 
level= 1I ). An adequate depth of decomposition is required, to avoid the risk of eliminating 
important features, and over-smoothing of the signal. For a signal of length N  in an off-line 
mode, or a window of length N  in an on-line mode, empirical evidence suggests that the depth 
of decomposition should be half the maximum possible depth. According to Ganesan et al. (2004), 

for a dyadic data length jN 2= , the recommended depth of decomposition is /2j  (i.e., 

1/2= jI ). Fig. 3 shows the result of boxplot analysis based on MWS, for the bearing signal 

having N =4096 datapoints and 6 decomposition levels ( ),,,(= (7)(2)(1) sssS  ), towards the 

healthy and damaged cases. Here, a thousand sets of bearing signals for both healthy ( SL =0) and 
damaged ( SL =0.2) cases are generated for demonstration purpose (each set has N=4096 
datapoints). As shown in the figure, the approximation level (1)s , and relatively high frequency 

scales, such as (4)s , (5)s , (6)s , (7)s , are less sensitive to the bearing defect, while low frequency 

scales, such as (2)s  and (3)s , are quite sensitive to the defect. For example, the highest frequency 

scale (7)s  in Fig. 3(g) has almost the same interquartile ranges between the health and damaged 

case, while the lowest frequency scale (2)s  in Fig. 3(b) has no overlapping interquartile ranges. 

Fig. 4 represents a 2-D visualization of the discriminating ability of MWS. The goal of 
MSW-based clustering is to discriminate the existence of damage in a bearing. Here, the scales 

(2)s  and (3)s  are used for extracting damage-sensitive features for clustering. Obviously, all 1000 

sets of signals generated from the damaged bearing with ( SL =0.2) have been sufficiently 
separated from the 1000 sets of signals from the healthy bearing ( SL =0). Thus, in this present 
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study, MWS is regarded as the set of extracted features that are damage-sensitive, in terms of 
scale-wise energy representation of vibration signals. MWS is also, in very low dimension, 
suitable for constructing a multivariate control chart.  

 
 

Fig. 4 Boxplot analysis based on MWS at different scales with two different classes (healthy and damaged 
condition) 

 
 

 

Fig. 5 Two-dimensional visualization of clusters at bi-scale scalograms ( (2)s  and (3)s ) 
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4.2 MWS-based Bootstrap Control Chart (MWSB chart) 
 

The proposed monitoring statistic using MWS, 2
)(ST , measures the distance between an 

observed MWS vector of the vibration signal, and the scaled-mean MWS vector, estimated from 
the in-control data. The monitoring statistic for the i th individual vibration signal observation can 
be calculated by the following equation, which is similar to Eq. (7) 

 )(Σ)(= )(1)(2
)( SSSST i

S
Ti

iS                          (11) 

where, )(iS  is a vector of MWS for the i th observation, S  and SΣ  are a sample mean vector 
and a sample covariance matrix of those vectors of MWS for vibration signals from an in-control 
process, respectively. Then, the procedure for constructing our multiscale wavelet scalogram-based 
control chart via bootstrap (MWSB chart) is summarized as follows, in a similar manner used in 
Phaladiganon et al. (2011).   

 

1. Compute the 2
)( iST  statistic for mi ,1,=   with m  observations from an in-control dataset, 

using Eq. (11).  

2. Let )2(
)1(
b

ST , )2(
)2(
b

ST , , )2(
)(
b
mST  be a set of m  2

)( iST  values from the b th bootstrap sample 

( Bb ,1,=  ) randomly drawn from the initial 2
)( iST  statistics, with replacement. In general, B  is 

a large number (e.g. 5,000>B ).  
3. In each of B  bootstrap samples, determine the 100  ( 1 )th percentile value, given a 

user-specified value  , with a range between 0 and 1.  
4. Determine the control limit, by taking the average of B  100  ( 1 )th percentile value 

( 2
)(1),100( ST ). Note that statistics other than the average can be used (e.g., the median).  

5. Use the established control limit to monitor a new observation. That is, if the monitoring 

statistic of a new observation exceeds ( 2
)(1),100( ST ), we declare that specific observation as out of 

control.  
 
Determination of the appropriate number of bootstrap samples to use is not obvious. However, 

with reasonably large numbers of bootstrap samples, the variation of results is insignificant. The 
computational time required has been perceived as one of the disadvantages of the bootstrap 
technique, but this is no longer a critical issue, because of the computing power currently 
available. 

 
 

5. Simulation study for performance evaluation  
 
5.1 Comparison of control limits 
 
In order to use MWS features for bearing condition monitoring, we need to first decide which 

wavelet basis function type should be used. Several wavelet basis function types are available in 
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the literature. Some of these are the Haar’s, Daubechies’, coiflets, symlets, and bi-orthogonal 
wavelets. For a detailed description on the mathematical properties of the wavelet basis function, 
refer to Goswami and Chan (1999). In this study, we used Daubechies’ wavelet type (db5), with 

depth of decomposition 6 (i.e. N =4096, 
2

)(2 Nlog
=6).  

We generated two groups of 1,000 sets of signals from healthy condition (in-control 
observations). The first group of 1,000 in-control sets of signal was used to determine the control 

limits of the 2
)(sT  statistic, from the F -distribution and bootstrap approach. The second group of 

1,000 in-control sets of signal was monitored on the control chart, which were based on the control 
limits established by the first group of in-control sets of signal. The control chart that produces a 
similar value for both the actual FAR and the nominal FAR would be considered the better one. To 
check multivariate normality of the in-control observations, we conducted a Royston’s H test 
(Royston 1983). The p -value, which measures the plausibility that the dataset follows a 
multivariate normal distribution, was almost zero (i.e., Royston’s statistic: 188.067, degrees of 
freedom: 7.000048, P-value: 0.0000). This strongly indicates that this dataset does not come from 
a multivariate normal distribution.  
 

 

 

Fig. 6 Control limits established by the Hotelling’s F-distribution, and the proposed bootstrap percentile 

on the monitoring statistic 2
)( iST  
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Fig. 5 shows the proposed 2
)(sT -based control charts from the second group of 1,000 in-control 

observations. The control limits were computed using the F -distribution and bootstrap approach, 
respectively. We specified the nominal FARs from 0.01, 0.05, and 0.1. As illustrated in Fig. 5(a) 
and (b) for the nominal FARs 0.1 and 0.05 respectively, the control limits from the F -distribution 
and bootstrap approach generate similar actual FARs. However, in Fig. 5(c) for the nominal FAR 
0.01, the control limit from the F -distribution tended to generate higher FAR than the bootstrap 
approach (FAR with F -distribution: 0.025 and FAR with bootstrap: 0.01). The control limit 
determined by the bootstrap approach produced similar FAR to the nominal one. 

 
5.2 ARL0 performance evaluation 
 
As mentioned in earlier chapters, ARL0 is defined as the average number of observations 

required for the control chart to detect a change under the in-control process of Phase I. To 
compare the competing control charts, we need to determine the better one, corresponding to the 
higher value of ARL0. Given a Type I error rate ( ), which is assumed as equal to 0.01, 0.05, and 
0.1, the two competing approaches (using F -distribution and the bootstrap approach) can be 
compared in terms of ARL0 (in-control ARL). In this study, the ARL0 was calculated using 
bootstrap techniques. Starting from a group of 1,000 in-control sets of signal as a sample, we 
simulated 5,000 bootstrap samples, where each sample is selected randomly, with replacement, 
and with the same size 1,000 as the original sample. For each bootstrap sample, the run length (RL) 
to detect a change under the healthy condition was calculated.  

 
 

 
Fig. 7 ARL0 comparison between F-distribution and the bootstrap approach, for different type I error rates
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Fig. 6 shows the nominal ARL0 values and the actual ARL0 values as obtained by F

-distribution and the bootstrap approach, for different Type I error rate  . This figure shows that 
across the different approaches, the actual ARL0 values are close to the nominal ARL0 values, 
when the Type I error rate   is equal to 0.05 and 0.1. However, for the Type I error rate 

0.01= , the difference between the actual ARL0, as determined by the F -distribution and the 
nominal ARL0, increases. In contrast, the bootstrap approach generated similar actual and nominal 
ARL0 results. This suggests that choosing the bootstrap approach, instead of F-distribution, will 
reduce the false alarm rate. 

 
5.3 ARL1 performance evaluation 
 
The objective in Phase II of control charting is to quickly detect any change in the process from 

its in-control state. In this phase of control charting, the competing methods are compared in terms 
of ARL1, where the run length is defined as the number of samples taken, until an out-of-control 
signal is issued. In order to evaluate the performance of control charts in this operating phase, the 
occurrence of assignable causes (faults) were simulated by a total of five out-of-control conditions. 
Each condition is then characterized by a damage severity level parameter ( SL ), directly 
proportional to the damage severity of the out-of-control (i.e., 25.15,0.2,0.0.05,0.1,0=SL ) 
introduced in the baseline model (i.e., 0=SL  for the in-control state). 

 
 
 

 
Fig. 8 ARL1 comparison among several type I error rates, for different damage severity levels 
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Fig. 7 summarizes the simulation results under study. This figure reports the ARL1 

performance estimated by computing a set of 5,000 bootstrap run lengths for  =0.01, 0.05, and 
0.1, in a similar manner to the case of ARL0 calculation, given that the new sets of signal are 
simulated according to a specific out-of-control model (i.e., 25.15,0.2,0.0.05,0.1,0=SL ). In order 
to select the better approach in each different study (where each case study is characterized by a 
specific out-of-control), we need to determine the better method, corresponding to the lower value 
of ARL1. Fig. 7 shows that the actual ARL1 values with larger   are smaller, as one would 
expect. More importantly, as SL  increases, the actual ARL1 decreases, until SL  becomes 0.15. 
This means that as damage becomes more severe, it is more quickly detected. If the damage 
severity level is greater than or equal to 0.15, the damages are all detected in average at the first 
observation, across all different Type I errors. This results indicate that the proposed control chart 
is very sensitive to the severity of incipient fault in a bearing system. 

 
 

6. Conclusions 
 
This study introduced a new feature extraction and dimension reduction technique, to alleviate 

the high dimensionality problem of implementing multivariate statistical process control, when the 
quality characteristic is a vibration signal from a bearing system. A set of multiscale wavelet 
scalogram features was generated to reduce the dimensionality of data, and the bootstrapping 
technique applied as nonparametric density estimation, to set up an upper control limit of the 
control chart. Our example and numerical simulation of a bearing system demonstrated that the 
proposed method has satisfactory fault-discriminating ability, without any distributional 
assumption.  

The proposed bearing condition monitoring approach has several desirable attributes. First, the 
fault detection is conducted in an unsupervised learning mode. That is, data from the damaged 
system are not needed. The ability to perform the fault detection in an unsupervised learning mode 
is very important, because data from damaged bearing are typically not available for most 
real-world practices. Second, the approach presented herein is very attractive for the development 
of an automated continuous monitoring system because of its simplicity, and because it requires 
minimal interaction with users. However, it should be pointed out that the procedure developed has 
only been verified on relatively simple numerical simulations, using a bearing model. To verify 
that the proposed method is truly robust, it will be necessary to examine many time records, 
corresponding to a wide range of operational and environmental cases, a wide range of damaged 
and pristine condition, as well as different damage scenarios.  

In this research, we emphasized a damage severity-change problem, but this can be easily 
extended to damage classification problems. The other direction that this research could be 
extended to, is to estimate the damage severity level from vibration signals using nonparametric 
regression techniques, such as support vector regression. Finally, there are several parameters still 
to be determined, such as the wavelet type, the level of decomposition, and the number of 
bootstrap samples for density estimation, before the proposed approach can be used effectively. 
Some theoretical guidelines are needed in future research, to select ‘optimal’ sets of parameters. 
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