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Abstract.    The present paper develops piezo-thermo-elastic analysis of a thick spherical shell for 
generalized functionally graded piezoelectric material. The assumed structure is loaded under thermal, 
electrical and mechanical loads. The mechanical, thermal and electrical properties are graded along the 
radial direction based on a power function with three different non homogenous indexes. Primarily, the non 
homogenous heat transfer equation is solved by applying the general boundary conditions, individually. 
Substitution of stress, strain, electrical displacement and material properties in equilibrium and Maxwell 
equations present two non homogenous differential equation of order two. The main objective of the present 
study is to improve the relations between mechanical and electrical loads in hollow spherical shells 
especially for functionally graded piezoelectric materials. The obtained results can evaluate the effect of 
every non homogenous parameter on the mechanical and electrical components. 
 

Keywords:    piezoelectric; thick hollow spherical shell; functionally graded piezoelectric material; non 
homogenous 
 
 
1. Introduction 
 

Indian men have found new group of materials named “Ceylon Magnet”. These materials have 
tendency to absorb the tiny particles when those are heated. Quartz has been known as a first 
piezoelectric material. Piezoelectric materials have different applications especially in electro 
mechanical systems such as systems including the sensors and actuators. The piezoelectric 
materials can exchange the input electric potential to mechanical deformation and conversely 
mechanical deformation to electric potential. The first case can be applied in micro positioning as 
actuator and the second case can be applied in sensing and measuring applications as sensors. The 
piezoelectric effect is scientifically discovered by Pierre and Jacques Curie in 1880. Piezoelectric 
structures are very applicable in the industrial systems. Disk, hollow cylindrical and spherical 
shells are three famous structures that can be used as sensor or actuator.  

For many applicable conditions, it is appropriate to investigate the relation between the applied 
loads and displacement or electric potential in a piezoelectric structure such as hollow spherical 
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shell. In order to control the distribution of the displacement or electric potential in a piezoelectric 
structure, functionally graded piezoelectric material (FGPM) can be used. The properties of this 
material vary continuously along the thickness direction.  

The present study develops the piezo-thermo-elastic relations for a functionally graded 
piezoelectric hollow spherical shell under mechanical, thermal and electrical loads. All material 
properties are graded along the thickness direction based on a power function. Three compositions 
of material properties are considered based on three selected non homogenous parameters. The 
effect of different types of non homogeneity is investigated on the responses of the hollow 
spherical shell, comprehensively. 

Functionally graded materials were created for the first time in laboratory by a Japanese group 
of material scientist. For many advantageous properties, these materials can be used in the 
vigorous environments such as nuclear reactors and chemical laboratory with abruptly gradient of 
pressure and temperature.   

A brief literature can justify studying about functionally graded piezoelectric structures under 
mechanical, thermal and electrical loads as a novel subject in scope of electro elastic analysis. 

Mindlin presented the primary researches about piezoelectric structures. He also presented the 
other studies about forced and high frequency vibration of piezoelectric plates (Mindlin 1952, 
Mindlin 1972, Mindlin 1984). Crawley and De Luis (1987) developed the use of piezoelectric 
materials in intelligent systems. This material can be used as a sensor or an actuator in electro 
mechanical systems. Many researchers analyzed the structures with bonded piezoelectric layers 
(Im and Atluri 1989, Lee 1990, Crawley and Anderson 1990). 

Yamanouchi and Koizumi presented the concept of functionally graded materials for the first 
time in Japan (Yamanouchi et al. 1990, Koizumi 1993). New theories for analysis of the structure 
including the piezoelectric layers are developed based on the shear deformation and layerwise 
theories (Wang and Rogers 1991, Huang and Wu 1996, Jonnalagadda et al. 1994, Mitchell and 
Reddy 1995). Three-dimensional thermo-electro-elastic response of multilayered hybrid composite 
plates was developed by Xu et al. (1995). Each of the fundamental unknowns (three displacement, 
electric potential …) was expressed in terms of a double Fourier series in the Cartesian surface 
coordinates. Piezo-thermo-elastic solution of a finite transversely isotropic piezoelectric 
cylindrical shell under thermal, mechanical and electrical loads has been addressed by Kapuria et 
al. (1996). Solution of the governing equations was obtained in terms of potential functions which 
satisfy the boundary conditions at the ends. The axisymmetric loadings were expanded as a Fourier 
series in the axial coordinate.  

Dube et al. (1996) presented piezo-thermo-elastic solution of infinitely long, simply-supported, 
orthotropic, piezoelectric, flat panel in cylindrical bending under pressure, thermal and 
electrostatic excitation. Fourier series have been employed for extension of the fields of 
displacements, electric potential and temperature. Tang et al. (1996) presented 
thermo-electro-elastic response of multilayered hybrid composite plates based on two-dimensional 
plate theories. The modeling approaches have been contained shear deformation theories and 
predictor-corrector procedures. Kapuria et al. (1997) employed first-order shear deformation and 
classical lamination theories for thermo-electro-mechanical solution of hybrid rectangular plates.    

Senthil and Batra (2001) analyzed the elastic plates with distributed or segmented piezoelectric 
layers using the classical laminated plate and the first order shear deformation theories. The 
obtained results were compared with an analytical solution. Benjeddou et al. (2002) proposed an 
exact two-dimensional analytical solution for the free-vibration analysis of simply supported 
piezoelectric adaptive plates.  
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As observed, researchers have not been considered any non homogeneity for studied 
piezoelectric structures before 2003. In this year Chen et al. (2002) studied a FG piezoceramic 
hollow sphere by using 3D electro elastic formulation. Transient electro elastic analysis of a non 
homogenous sphere based on a power function was analytically investigated by Ding et al. 
(2003a). Dynamic thermo elastic analysis of a functionally graded pyroelectric sphere under 
mechanical and electrical loads under a uniform temperature rising was performed by Ding et al. 
(2003b) based on definition of a dependent variable.     

The piezo thermo elastic solution of a functionally graded hollow cylinder was presented by 
Ying and Zhi-Fei (2005). They assumed that only piezoelectric coefficient vary quadratically in 
radial direction while the other material parameters were assumed to be constant. 
Thermo-electro-elastic transient analysis of functionally graded piezoelectric hollow structures 
was analytically investigated under thermal, mechanical and electrical loads by Dai and Wang 
(2005). Liew et al. (2005) investigated thermo-piezo-electrical analysis of multilayered composite 
plates. The analysis was performed using the three-dimensional equations of 
thermo-piezo-elasticity and the differential quadrature (DQ) numerical technique.  

Magneto thermo elastic analysis for solution of stress and perturbation of magnetic field in FGP 
hollow structures are analytically investigated using the elasticity theory by Dai and Fu (2007). 
Two previous studies investigated on the sphere structure that made of piezoelectric materials. The 
non homogeneity is considered identical for all mechanical and electrical properties. Due to this 
incompleteness and simplified manner for variable material properties, the present study proposes 
a comprehensive investigation on the piezo-thermo-elastic analysis of thick hollow spherical shell 
that made of general piezoelectric non homogenous material. For presentation of the general 
solution, three types of material with three non homogenous variables are considered and the 
effects of every non homogenous index are investigated individually on the different mechanical 
and electrical components. Exact solution of cylindrical shell made of functionally graded 
piezoelectric materials under cylindrical bending was carried out by Wu and Syu (2007). Transient 
piezothermoelastic analysis of a hollow sphere made of functionally graded piezoelectric material 
was studied by Ootao and Tanigawa (2007). An overview of various three-dimensional (3D) 
analytical approaches for the analysis of multilayered and functionally graded (FG) piezoelectric 
plates and shells has been developed by Wu et al. (2008). A review was contained four different 
approaches.  

Khoshgoftar et al. (2009) presented the comprehensive thermo elastic analysis of a functionally 
graded piezoelectric cylindrical shell under electrical and mechanical loads. They supposed all 
mechanical and electrical properties to be variable along the thickness direction. They considered 
three different materials for those analyses. Wu and Huang (2009) developed three-dimensional 
analysis of doubly curved functionally graded (FG) piezo-thermo-elastic shells under thermal 
loads. Exponent-law dependency has been considered for variation of material properties. Wu and 
Jiang (2011) developed three dimensional coupled analysis of simply supported FGP circular 
hollow sandwich cylinders under thermal loads. A parametric study of the influence of the 
geometric values, material-property gradient index and boundary conditions has been performed. 
Three-dimensional (3D) coupled analysis of simply-supported; doubly curved FGP shells using a 
meshless collocation method were developed by Wu et al. (2012). The effect of gradation has been 
evaluated on the field variables in the FG shells and plates under thermal loads. 

Arefi and Rahimi (2010, 2012) studied the effect of nonhomogeneity on the thermal and 
electrical behavior of functionally graded cylinder. A functionally graded piezoelectric rotating 
cylinder as mechanical sensor under pressure and thermal loads is analytically investigated by 

227



 
 
 
 
 
 

M. Arefi and M.J. Khoshgoftar 

 

Rahimi et al. (2011) for evaluation of angular velocity of rotary devices. Arefi and Rahimi (2011, 
2012) investigated on the general formulation, linear and nonlinear analyses of piezoelectric 
structures by using the energy method. 

Studying the previous published works indicates that have not been reported a comprehensive 
analysis with evaluation of all non homogenous indexes. All previous papers considered one non 
homogenous index for all variable properties. Due to this incompleteness, the authors focus on a 
FGP hollow spherical shell with three non homogenous indexes. Effect of every non homogenous 
index is studied on the all mechanical and electrical components, individually. These analyses 
direct designers and engineers for selection of best and optimized material property distributions. 

 
 

2. Solution of the heat conduction equation 
 
The present section deals with the thermal analysis of a functionally graded hollow spherical 

shell (Fig. 1) based on some simplified assumptions. The reduced governing differential heat 
transfer equation for symmetric and steady state one dimensional distribution of temperature can 
be expressed as (Frank 1996, Lienhard 2008) 
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where, ar and br are the inner and outer radii, ( )Tk r is the thermal conductivity which is assumed 

as a function of the radius r . As mentioned previously, the modified differential equation is of 
order two and consequently must be had two boundary conditions. In the general state, the 
boundary conditions may be defined as a linear combination of temperature distribution and 
differentiation of that as follows (Khoshgoftar et al. 2009) 
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where, ( 1,2; 1,2)T
ijC i j  are constants which depend on the thermal conductivity and the 

thermal convection, 1f  and 2f  are constants which are evaluated at the inner and outer radii, 
respectively. The solution procedure of temperature distribution can be completed by devoting the 
appropriate function to ( )Tk r as a function of r (Eq. (3)) 
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The general solution of temperature distribution is obtained as   
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Fig. 1 The schematic figure of a functionally graded hollow spherical shell 
 
 

3. Piezothermoelastic problem   
 

In this section, general equations of a thick-walled hollow spherical shell with general non 
homogeneity are presented. In the general case, the stress includes the thermal, mechanical and 
piezoelectric terms and can be obtained from Eq. (6) (Ding et al. 2003a, Ding et al. 2003b, Dai 
and Wang 2005, Dai and Fu 2007). 

TEeCCCTEeCC rrrrrrrrrrrrrrrr    )(   ,2     (6) 

where, ij and  (i,j=r, )ij   are the components of stress and strain tensor, ( )T r  is the 

temperature distribution, ( )E r  is the electric field, ( , , ; , , )ijC i r j r      is the elastic stiffness 

and ( , , )ije i j r   is the piezoelectric coefficient. r  is zero due to symmetry.   can be 

obtained from (Khoshgoftar et al. 2009)   
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where, ( , )i i r    is the coefficient of thermal expansion.    
After presentation of above equations, the appropriate relations for strain components and 

electric field can be derived. For a symmetric spherical structure, only nonzero displacement 
component is radial displacement ( )u r . Therefore by consideration of above assumption, the radial 
and circumferential components of strain can be derived as (Ding et al. 2003a, Ding et al. 2003b, 
Khoshgoftar et al. 2009, Lai et al. 1999)    
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Due to imposing an electric potential on a piezoelectric structure, the electric field can be 
derived by using the minus divergence of electric potential φas (Khoshgoftar et al. 2009) 

r
Er 





                                 (9) 

The electrical displacement rD which includes the strain, the electrical field and temperature, 
can be derived as 

pTEeeD rrrrrrr   2                       (10) 

Due to symmetric distribution of all mechanical and electrical components, the circumferential 
component of the electrical displacement, D  is zero. In Eq. (10),   is the dielectric constant 

and p  is the pyroelectric constant.  
One of the main relations for analysis of the problem can be expressed in this stage. The 

equilibrium equation of stress components can be expressed in the spherical coordinate system as 
follows (Lai et al. 1999, Boresi 1993) 
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The equilibrium equation of electric displacement which is known as Maxwell’s equation 
expresses that the divergence of the electrical displacement vanishes at any point within the media. 
By applying the Del operator in spherical coordinate system and employing a symmetric condition, 
we’ll have (Dai and Wang 2005, Dai and Fu 2007) 
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Eqs. (11) and (12) are adequate for obtaining unknown function ,u  . Before substituting the 
component of the electric displacement in the Maxwell’s equation, the appropriate functions for all 
properties are assumed as (Wu and Syu 2007)   
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where, l  and b  are the non homogenous parameters of the material properties. Substitution of 
the above properties into Eq. (13), yields two components of the stress and electrical displacement  
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After substitution of Eq. (14) into two equilibrium equations of mechanical and electrical 
components (Eqs. (11) and (12)), we’ll have two non homogenous ordinary differential equations 
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The above ordinary differential equations can be analytically solved for studying the behaviors 
of a non homogenous hollow spherical shell under thermal, electrical and mechanical loads.   

 
 

4. Solution of the problem 
 

Solution of the obtained ordinary differential equations in the previous section can be expressed 
as summation of homogenous and particular solutions as follows 

phph uuu         ,                        (16) 

where the first term in the right-hand side of both equations is the homogenous solution (
h

u , h )and 

the second term is the particular solution ( pu , p ).  

A simple change of variable sr e can be employed for transformation of obtained 
Cauchy-Euler, non homogenous, uncoupled differential equations to solvable differential equations 
as follows.   
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Determinant of above simplified differential equations can yield the fourth order characteristic 
equation as follows 
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Due to non zero assumption of radial displacement in the general state; the coefficient of u in 
Eq. (18) must be zero.     
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Eq. (19) is known as the characteristic equation. The characteristic equation is of fourth order 
and therefore, in general state, has four roots. The solution has different cases which correspond to 
the classification of the values of roots in Eq. (19). The same procedure has been developed in the 
previous published paper of authors and therefore can be eliminated from this paper (Khoshgoftar 
et al. 2009).  

Solving Eqs. (15(a)) and (15(b)) together with the appropriate boundary conditions yields the 
distribution of stress, strain, electric field and electric displacement.  

 
 

5. Numerical results and discussion  
 
In order to investigate the effect of non homogeneity on the responses of structure, it is 

appropriate to select an applied material for this purpose. Cadmium Selenide is selected as the 
material that can be presented as a FGPM (Ootao  and  Tanigawa 2007, Khoshgoftar et al. 2009). 
The properties of Cadmium Selenide are given as 
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After substitution of the material properties into derived equations, the different types of non 
homogeneity may be investigated on the responses of the problem. As mentioned in the previous 
section, three different non homogenous parameters are selected for analysis of the problem. 

,  ,  b l k are three types of non homogenous indexes. Different numerical values may be devoted for 
non homogenous indexes. For tending to these aims, a classic manner may be proposed for 
selection of non homogenous parameters. Three compositions are proposed for the present study. 
For every composition, two parameters is fixed and one remained parameter can be varied between 
-2, 2 with unit increment.   

Three compositions of material properties are named as Material 1, 2 and 3 which are presented 
in Table 1.  

The solution procedure can be completed by determination of boundary conditions. Six thermal, 
electrical and mechanical boundary conditions can be written as   
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where, ra , rb are the inner and outer radii and equal to 0.6, 1, respectively.  
All mechanical and electrical components can be derived for different values of non 
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homogenous index. The obtained results can be classified for three defined materials named as 
Material 1, 2 and 3 in Table 1.  

 
5.1 Material 1: investigation on the effect of first non homogenous index k 
 
The effect of first non homogenous index that introduced as Material 1 can be studied in the 

present section on the mechanical and electrical components.  
Shown in Fig. 2 is the radial distribution of temperature along the thickness direction of hollow 

spherical shell for different values of non homogenous index. This figure indicates that the 
temperature decreases with increasing the non homogenous index. The distribution has linear 
behavior for l=-2. This behavior can be understood directly from Equation of heat transfer (Eq. 
(1)). Figs. 3 and 4 show the radial distribution of radial displacement and electric potential for five 
values of non homogenous index, respectively. 
 
Table 1 Non homogeneous parameters 

L b k 

Material 1 

0 
0 
0 
0 
0 

2 
2 
2 
2 
2 

2 
1 
0 
-1 
-2 

Material 2 

0 
0 
0 
0 
0 

2 
1 
0 
-1 
-2 

0 
0 
0 
0 
0 

Material 3 

2 
1 
0 
-1 
-2 

2 
2 
2 
2 
2 

1 
1 
1 
1 
1 

 
 

Fig. 2 The radial distribution of temperature for changing the non homogeneity of Material 1 
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The value of the radial displacement decreases with increasing the value of non homogenous 
index. Studying the gradient of change for different values of non homogenous index through a 
determined radial location for Material 1, 2 and 3 can present the important results. As depicted in 
Fig. 3, this gradient is not significant for 0k  . It seems that this behavior is because of 
approximately linear distribution of temperature for 0k  . Therefore, it can be concluded that the 
temperature gradient has significant effect on the radial displacement for Material 1. 

 
 

 

Fig. 3 The radial distribution of radial displacement for changing the non homogeneity of Material 1 
 
 

 

Fig. 4 The radial distribution of electric potential for changing the non homogeneity of Material 1 
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Fig. 4 indicates that the distribution of electric potential is approximately independent of non 
homogeneity for 0.85

b

r
r  . This behavior can be under effect of high temperature at inner radius 

rather than outer radius. Therefore, the local temperature rising has significant effect on the electric 
potential. This behavior can be because of implicit effect of thermal non homogenous index, k, on 
the Maxwell and equilibrium equations. It is predictable that the distribution of electric potential 
must be significantly under effect of the non homogenous index of Material 2 and 3.           

Shown in Figs. 5 and 6 are the radial distribution of the radial and circumferential stresses 
along the thickness direction for changing the non homogeneity of Material 1. It is observed that 
the distribution of the radial stress is approximately independent of non homogeneity of Material 
1.   

 

 

Fig. 5 The radial distribution of radial stress for changing the non homogeneity of Material 1 
 

 

Fig. 6 The radial distribution of circumferential stress for changing the non homogeneity of Material 1
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For 2 0k   , the circumferential stress has different behavior from 1k  . For the first case, 
the distribution has 2 point of intersection along the wall sphere. For these points, we have the 
identical values of circumferential stress for different non homogeneity of Material 1. For the 
second case, the behavior is uniformly along the thickness and there is no intersection point. In 
case 2, the value of circumferential stress decreases with increasing the non homogeneity of 
Material 1. 

Shown in Figs. 7 and 8 are the radial distribution of electric field and electric displacement 
along the thickness direction for changing the non homogeneity of Material 1.  

Fig. 7 indicates that the radial distribution of electric field for five values of non homogenous 
index has three different regions along the wall of the hollow spherical shell. Two intersection 
points are depicted in Fig. 7 that the values of electric field are identical for different non 
homogenous index.  

The electric displacement is only component of electrical and mechanical components that has 
uniformly distribution along the wall of hollow spherical shell. 

 
5.2 Material 2: Investigation on the effect of second non homogenous index b 
 
Shown in Fig. 9 is the radial distribution of temperature along the thickness direction for 

changing non homogeneity of Material 2. 
Due to independent solution of heat transfer equation by considering the one non homogenous 

parameter, k, it is obvious that the temperature distribution is unchangeable for changing the non 
homogeneity of Material 2. This behavior may be observed in temperature distribution of Material 
3.   

Shown in Figs. 10 and 11 are the radial distribution of the radial displacement and electric 
potential along the thickness direction for changing the non homogeneity of Material 2, 
respectively.  

These figures indicate that the obtained results can be classified for different ranges of non 
homogeneity. It is observed that two distributions are significantly under effect of non 
homogenous index for 1b   . For 0b  , it isn’t observed such significant dependency. 

 

 

Fig. 7 The radial distribution of electric field for changing the non homogeneity of Material 1 
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Fig. 8 The radial distribution of electric displacement for changing the non homogeneity of Material 1
 
 
 

Fig. 9 The radial distribution of temperature for changing the non homogeneity of Material 2 
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Fig. 10 The radial distribution of radial displacement for changing the non homogeneity of Material 2
 
 
 

Fig. 11 The radial distribution of electric potential for changing the non homogeneity of Material 2
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Figs. 12 and 13 show the radial distribution of the radial and circumferential stresses for 
different non homogenous index of Material 2. The radial distribution of electric field and electric 
displacement can be presented in Figs. 14 and 15. 

The previous observation in Figures.10, 11 can be observed again in Figs. 12-15 for radial and 
circumferential distribution of stresses, electric field and electric displacement. The significant 
effect of non homogenous index of Material 2 on the radial and circumferential stresses, electric 
field and electric displacement can be understood for 1b   . 

 
 

 

Fig. 12 The radial distribution of radial stress for changing the non homogeneity of Material 2 
 
 

 

Fig. 13 The radial distribution of circumferential stress for changing the non homogeneity of Material 2 
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5.3 Material 3: Investigation on the effect of third non homogenous index l 
 
Due to presented reason in section 5.2, the temperature distribution is independent of non 

homogenous index of Material 2, 3 and therefore can be withdrawn in this section. 
 
 

Fig. 14 The radial distribution of electric field for changing the non homogeneity of Material 2 
 
 

Fig. 15 The radial distribution of electric displacement for changing the non homogeneity of Material 2
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Figs. 16 and 17 show the radial distribution of radial displacement and electric potential for 
different values of non homogenous index of Material 3. Only uniformly distribution of 
mechanical and electrical components can be observed for Material 3 while l is only variable non 
homogenous index (b, k are constant according to Table 1). The values of the radial displacement 
and electric potential decrease with increasing the value of non homogenous index. 

 
 

Fig. 16 The radial distribution of radial displacement for changing the non homogeneity of Material 3
 
 

Fig. 17 The radial distribution of electric potential for changing the non homogeneity of Material 3
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Shown in Figs. 18 and 19 are the radial distribution of the radial and circumferential stresses 
along the thickness direction for Material 3, respectively. It is observed in Fig. 18 that the absolute 
value of the radial stress decreases with increasing the non homogenous index.   

The distribution of circumferential stress has considerable behavior. The value of this stress is 
negative at inner radius. This value tends to a positive value at outer radius. From the observed 
trend in Fig. 19, it can be predicted a total negative distribution of circumferential stress for large 
positive values of l. the most thickness of hollow spherical shell can be under positive 
circumferential stress for large negative values of the non homogenous index. Shown in Figs. 20 
and 21 are the radial distribution of the electric field and electric displacement along the thickness 
direction for Material 3, respectively. 

 
 

 

Fig. 18 The radial distribution of radial stress for changing the non homogeneity of Material 3 

 

 

Fig. 19 The radial distribution of circumferential stress for changing the non homogeneity of Material 3
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Two figures have an intersection point at the middle surface of hollow spherical shell. At 
regions that the radius is greater than the middle surface, the absolute value of two components 
decreases with increasing the non homogenous index. 

 
 

 

Fig. 20 The radial distribution of electric field for changing of the non homogeneity of Material 3
 
 

 

Fig. 21 The radial distribution of electric displacement for changing of the non homogeneity of Material 3
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6. Conclusions 
 
The present paper developed the equilibrium equations of mechanical and electrical 

components for a spherical structure made of functionally graded piezoelectric materials. Three 
different types of material are selected which for every material, one non homogenous index is 
considered variable and the other variables are considered constant. Solution of the defined 
problem for every material presents a comprehensive investigation about the effect of the different 
non homogenous indexes on the piezo-thermo-elastic responses of a hollow spherical shell. After 
solution of heat transfer equation in the spherical coordinate system with some simplified 
assumptions, the obtained temperature distribution is entered into Maxwell and equilibrium 
equation. Characteristic equation is derived in the general condition (Eq. (19)). By substitution of 
different numerical values into characteristic equation, the different responses can be obtained for 
different roots of characteristic equation. The main conclusions can be classified as follows: 

1. As mentioned in abstract and introduction, the main purpose of the present study is to 
develop and improve the relation between mechanical and electrical components in a hollow 
spherical shell using the functionally graded materials in order to best controlling of systems 
including the thermal and pressure sensors or actuators. This comprehensive solution can present 
vast and valid options for designer and manufactures for attaining to best design.  

2. The obtained results indicate that the absolute values of the radial displacement and 
electric potential decreases with increasing the values of non homogenous index. Because of 
applying the inner pressure, the radial displacement is positive for all values of non homogenous 
index. The effect of different non homogenous index on the radial displacement for Material 1, 2 
and 3 indicates that this effect is considerable, significant and uniformly for Material 3. The minor 
and irregular effect of non homogenous material on the radial displacement and electric potential 
can be investigated for Material 1, 2. 

3. Investigation on the Material 2 indicates that for this material, the distribution of different 
mechanical and electrical components has two separate behavior for 1b   and 0b  . The 
gradient of change of mechanical and electrical components at a defined location of the wall of the 
hollow spherical shell indicates that this gradient is significant for 1b   . The mentioned gradient 
decreases significantly for 0b  . 

4. The uniformly and regular distribution for different values of non homogenous index can 
be investigated for Material 3 where non homogenous index l changes gradually and continuously.    

5. The achieved results justify application of functionally graded materials for attaining to 
optimization and best design of most applicable structures such as hollow spherical shell.   
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