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Abstract.    One of the most important requirements in the evaluation of existing structural systems and 
ensuring a safe performance during their service life is damage assessment. Damage can be defined as a 
weakening of the structure that adversely affects its current or future performance which may cause 
undesirable displacements, stresses or vibrations to the structure. The mass and stiffness of a structure will 
change due to the damage, which in turn changes the measured dynamic response of the system. Damage 
detection can increase safety, reduce maintenance costs and increase serviceability of the structures. 
Artificial Neural Networks (ANNs) are simplified models of the human brain and evolved as one of the 
most useful mathematical concepts used in almost all branches of science and engineering. ANNs have been 
applied increasingly due to its powerful computational and excellent pattern recognition ability for detecting 
damage in structural engineering. This paper presents and reviews the technical literature for past two 
decades on structural damage detection using ANNs with modal parameters such as natural frequencies and 
mode shapes as inputs. 
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1. Introduction 
 

Structural systems in civil engineering are exposed to deterioration and damage during their 
service life. Damage is defined as a weakening of the structure which may cause undesirable 
displacements, stresses or vibrations to the structure leading to sudden and catastrophic 
consequences. Damage can severely affect safety and functionality of the structure and detection 
of it at early stage can increase safety and extend its serviceability. Thus detection of damage is 
one of the most important factors in maintaining the integrity and safety of structures. 

Visual inspections have always been the most common approaches used in detecting damage 
on a structure. However these inspection techniques are often inadequate for assessing the health 
state of a structure especially when the damage is invisible to the human eyes. Thus, in many 
situations to ensure structural integrity, it is desirable to monitor the structural behavior when 
damage is not observable. Some numerical techniques such as the finite element method, artificial 
neural networks, genetic algorithm and fuzzy logic have been applied increasingly for damage 
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detection with varied success (Abella et al. 2012, Chandrashekhar and Ganguli 2011, Ghodrati 
Amiri et al. 2011, Li et al. 2010, Mahzan et al. 2010, Lakshmanan et al. 2008 and Kim et al. 2007). 
In recent decades there has been an increasing interest in using neural networks to predict and 
estimate the damage in structures.  

ANNs can be considered as an Artificial Intelligence (AI) technique and the structure of an 
ANN bears a very approximate similarity to the human brain. ANNs are employed when the 
relationship between the input and output is complicated or when the application of another 
available technique requires long computational time and the effort is very expensive (Hakim 
2006). ANNs are a powerful tool used to solve many real life problems. They have the capability 
to learn from their experience in order to improve their performance and to adjust themselves to 
changes in the environment. 

Damage detection as an inverse problem can be identified using ANNs from the measured 
responses under excitation of the structure. The inverse problem is defined as the determination of 
the internal structure of a physical system from the system’s measured behavior or identification of 
the unknown input that gives rise to a measured output signal. The neural network can be trained 
to recognize the characteristics of an undamaged structure as well as those of the structure with 
elements of varying degrees of damage. The trained neural network will then have the ability of 
identifying the location and the extent of damage of individual elements (Li and Yang 2008).  

There are four levels of damage identification consisting of determination of the presence of 
damage in the structure, determination of damage location and determination of the severity of 
damage (Rytter 1993). The fourth level that is prediction of the remaining service life of the 
structure is associated with fatigue life and fracture mechanics and will not be addressed in this 
review. In this paper a review of the literature for damage identification and structural health 
monitoring based on measured dynamic properties by using ANNs during the last two decades is 
presented. 

 
 

2. Artificial neural networks 
 

2.1 General definition 
 
The brain is a highly complex, nonlinear and parallel computer that has the capability to 

perform certain computations many times faster than the fastest digital computer and consists of a 
large number of highly connected elements called neurons. These neurons have three principal 
components consisting of dendrites that carry electrical signals into the cell body, the cell body 
itself that effectively sums and thresholds these incoming signals and the axon for carrying the 
signal from the cell body out to other neurons (Haykin 1999).  

The point of contact between a dendrite of one cell and axon of another cell is called a synapse. 
Fig. 1 is a simplified diagram of two biological neurons (Hagan et al. 1996). In summary, a neuron 
receives signals from synapses either located at the cell body or its dendrite, determines its state, 
and sends the output down to the axon (Hakim 2006). 

ANNs are inspired by human biological neural networks, whereby they capture the brainy 
function manipulation to approach a specific problem by using certain rules to achieve suitable 
results (Jadid and Fairbairn 1996). ANN is composed of several processing elements namely 
neurons that are interconnected with each other. The network structure consists of an input layer, 
an output layer, and at least one hidden layer (Saldarriaga et al. 2009, Lakshmanan et al. 2008, 
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Demuth et al. 2005). The appropriate number of neurons in each layer depends on the type of 
problem. 

Fig. 2 shows the model of an artificial neuron which consists of a neuron that receives N 
weighted inputs that are summed and passed through an activation function to produce a single 
output. The output of this kind of neuron can be expressed in Eq. (1) (Sakla 2003 and Yeh 1998). 
In this equation, yj, Op, w and  are input, output, weight and bias of neuron, respectively. 

Op=f ( 


j

N

j
i yw

1

)                            (1) 

The activation functions usually have a sigmoid shape, but they may also take the form of other 
non-linear functions. Learning is the process by which the ANN adjusts itself to a stimulus and 
eventually produces the desired response. The network learning model can be divided into two 
categories, including supervised and unsupervised learning.  

In supervised learning the training samples require an input vector and an output vector. 
However in unsupervised learning, the training samples require only an input vector. Table 1 
indicates the comparison between the biological model and the artificial neural network. 
 

 
Fig. 1 Schematic biological neurons connected by synapses (Hagan et al. 1996) 

 
 

 

Fig. 2 Artificial neuron 
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Table 1 Comparison between artificial neural network and biological model 

Biological Model Artificial Neural Network 
Neuron Node 
Axon Connection 

Synapse Weight 
Speed 10-3 s Speed 10-9 s 

Size 1011 neurons Size 103 nodes 
 

2.2 Artificial neural networks architecture 
 
A group of neurons can be collected and commonly referred to as an ANN. As shown in Fig. 3, 

a typical neural network has three layers namely the input layer, the hidden layer and the output 
layer. Each neuron in the input layer represents the value of one independent variable. The neurons 
in the hidden layer are only for computation purposes.  

Each of the output neurons computes one dependent variable. Signals are received at the input 
layer, pass through the hidden layer, and reach the output layer. Each layer can have a different 
number of neurons and activation functions such as sigmoid and linear functions. All neurons are 
interconnected to the neurons in the next layer through their weights. The structure of an ANN is 
often determined by the characteristic of the input data and behavior that needs to be approximated. 
In general, a single-layered ANN has been found suitable for simple patterns or behaviors, while 
multi-layered ANNs are used to approximate more complex nonlinear behaviors (Wasserman 
1989).  

Back Propagation Neural Network (BPNN) defines a systematic way to update the synaptic 
weights of multi-layer feed-forward supervised networks and is considered to be the most 
applicable due to the mathematical design of the learning complex nonlinear relationships 
(Fonseca and Vellasco 2003). Back propagation algorithm has a performance index, which is the 
least Mean Square Error (MSE) (Noorzaei et al. 2007, Ince 2004, Lee 2003). In MSE algorithm, the 
error is calculated as the difference between the target output and the network output. Among 
various neural networks, Multi-Layer Perceptron (MLP) is most commonly used in structural 
identification problems. Their applications to engineering problems have been summarized and 
reported in literature (Hakim et al. 2011, Noorzaei et al. 2008, Wu et al. 2002, Xu et al. 2002).  
 

 

Fig. 3 Artificial neural network architecture (Pawar et al. 2007) 
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3. Structural damage detection 
 
Civil engineering structures are subjected to deterioration and they may be damaged during 

their life time. The occurrence of damage in entire structures affects their functionality and leads to 
a decrease in the load carrying capacity of the structure thereby making it an unsafe structure. 
Therefore for the purpose of assuring safety and to prevent the reduction in the useful life due to 
the existence of cracking or deformation, it is necessary to monitor the occurrence, location, and 
extent of damage. Undetected damage may potentially lead to more damage due to further 
deterioration and finally to catastrophic failure. 

In many situations, such damage is not visually observable, and to ensure structural integrity it 
is desirable to monitor the occurrence, location, and extent of such damage. Detection of damage 
before any event or immediately after an extreme event can help engineers assess the condition of 
a structure and make a sensible decision regarding the retrofit or replacement of the damaged 
structure thereby preventing expensive repairs resulting from the absence of structural assessment 
(Parloo et al. 2003, Pandey and Barai 1995). Any deterioration has a cause, and it should be the 
purpose of the engineer to find the cause, otherwise if the cause is ignored, the deterioration will 
be repeated. So, it is very important to detect damage at the earliest possible age of occurrence in 
structural engineering. 

 
 
4. Structural damage detection using ANNs  

 
Any reduction in stiffness of a structure can lead to a change in the dynamic parameters such as 

natural frequencies, mode shapes and damping ratio. A change in these parameters from the datum 
state indicates a possible defect in the structure. Thus, it is necessary to establish a relationship 
between damage occurring in a structure and its dynamic parameters to determine the health status 
of the structure. 

During the last two decades a lot of research work has been conducted and reported pertaining 
to damage assessment. Two comprehensive review of available literature on structural health 
monitoring have been carried out by Doebling et al. (1996) and Sohn et al. (2004). 

Current methods and different damage detection techniques consisting of changes in measured 
mode shapes and their derivatives, changes in modal parameters and changes in flexibility 
coefficients are summarized in these reviews. Various approaches in the area of damage detection 
area have been proposed, reported and reviewed, but up to date there is no review regarding the 
application of ANNs for structural damage detection using modal parameters such as natural 
frequencies and mode shapes. The purpose of this paper is to present a summary on the application 
of ANNs to develop damage identification algorithms using dynamic parameters such as natural 
frequencies, mode shapes and combination of both, during the last 20 years. 

 
4.1 Frequency shifts  
 
Natural frequencies can be easily obtained from a dynamic measurement anywhere on the 

system and is very common and popular damage indicator. The fact that changes in structural 
properties cause shifts in natural frequencies, warrant the use for structural health monitoring and 
damage detection. It is worth mentioning that frequency changes have limitation for applications 
to different types of structures and require high resolution and accurate measurements.  
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The feasibility of using an ANN trained with only natural frequency data to recognize the  
severity of damage in steel bridge girder is presented by Hakim and Abdul Razak (2013a, 2011a, 
b). The required data for the ANNs consists of natural frequencies of the first five modes of the 
undamaged and damaged bridge model are obtained from experimental modal analysis and have 
been successfully applied as the training patterns for the ANN. Based on this work ,the dynamic 
tests carried out on the damaged and undamaged test structure demonstrated that the reduction in 
stiffness during the damage lead to a reduction in natural frequencies for different modes. 
According to results in this study, ANN could predict the damage severity with an error of 5.6, 6. 
25 and 7.79% for training, testing and validation, respectively and seems to be quite promising in 
terms of accuracy. This research was extended by the same authors (2013b) to consider adaptive 
neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN) techniques to identify 
damage using natural frequency data obtained from experimental modal analysis. According to 
this research, ANN can be utilized as an early evaluation and other artificial intelligence technique 
such as ANFIS can be subsequently implemented to identify the severity of damage in a girder 
bridge with higher accuracy. 

Kazemi et al. (2011) applied a procedure based on ANN and Particle Swarm Optimization 
(PSO) to determine the location and depth of cracks in cantilever beams. The first three natural 
frequencies of beams were obtained from the finite element analysis and applied as inputs of ANN. 
Particle Swarm Optimization (PSO) approach was applied to train the neural networks. Four 
trained ANNs were then applied to predict the location and depth of cracks. Results were in good 
agreement with actual data. However, a disadvantage of ANNs is their need for a huge number of 
training datasets to provide reliable predictions. 

The natural frequencies and frequency response functions (FRFs) were applied as the inputs of 
the ANN and adaptive neuro fuzzy interface system (ANFIS) in order to predict the location and 
size of cracks in curvilinear beam elements by Saeed et al. (2012) and Saeed and George (2011). 
In these researches, changes in natural frequencies and amplitudes of FRFs of the beams for cracks 
of different sizes at various locations were determined from the finite element method and applied 
as input data for ANN and ANFIS. According to these studies, cracks longer than 5 mm can be 
located with acceptable accuracy, even if there are different levels of noise in the input data. Also 
the authors showed that this approach was less accurate for small cracks and sensitivity analysis 
showed that ANN is more sensitive to the noise than ANFIS approach. 

Guo and Wei (2010) proposed a method to detect damages of different locations and severity 
on a simply supported rectangular beam using ANN based on the frequency change parameters. 
The simulation was performed with a simply supported beam in the laboratory. The process was 
divided into damage detection, location, degree of injury identified and combined the modal 
analysis with neural network technology to achieve damage assessment. This method also had 
strong robustness that was not impacted by small model errors and the detection accuracy was not 
influenced by incomplete measurement information. 

The use of natural frequencies to detect damage in structures has been addressed by some 
researchers. In this section an attempt has been made to include earlier work during the two last 
decades. For example, Rosales et al. (2009) presented two methods consisting of the Power Series 
Technique (PST) and ANNs for detecting cracks in beam elements using the analysis of shifts in 
the frequencies as a dynamic parameter. Bernoulli Euler cantilever beam and a spinning beam as 
two structural elements were checked with PST and cracks were defined by introducing springs to 
represent the stiffness reduction. The aim was the detection of the existence and location of 
damage and the depth of crack. For this purpose, the natural frequencies measured in the damaged 
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beam were selected as the input and the location and value of the spring constant were the output. 
Two dimensional FEA of a cracked beam was applied for obtaining data for training of ANN. Four 
hundred scenarios of damage were considered in this study. Then, frequencies measured in a 
physical experiment were introduced in the trained ANN and applied as input in the ANNs 
algorithm to detect the damage. Finally the ANN approach was applied to the case of the damaged 
cantilever beam. 

The authors highlighted that the PST technique is very easy and can detect the crack with small 
errors and low cost but this method could only detect the crack at the first stage. On the other hand 
ANN produced larger errors but could handle and solve more complex problems such as 
nonlinearities due to large deformations or cracks. This study showed that a combination of the 
PST and ANN methods can detect existence, location and depth of the crack better than each 
method separately using natural frequencies. 

Ramadas et al. (2008) presented a method to combine damage detection features of ultrasonic 
Lamb wave with first and second natural frequencies for detection of transverse cracks in a 
composite beam. In this investigation, first and second natural frequencies, amplitude ratio and 
Time of Flight (TOF) were considered as inputs to ANN and crack location and depth were the 
outputs of ANN, as depicted in Fig. 4. The training data sets for ANN were generated using FEA.  

It was reported that if Lamb wave technique and vibration are applied individually for sizing of 
transverse cracks, Lamb wave technique fails when the damage zone is close to the fixed boundary 
and vibration technique fails when the damage zone is close to the free edge. Thus it was apparent 
that when damage features of more than one technique were combined, the domain of damage 
detection increased and damage could be recognized more accurately than using damage features 
of each technique individually. In this work the ANN was an efficient tool and could predict the 
damage location and depth with an accuracy of 95.8% and 89%, respectively. 

 
 
 

 

Fig. 4 ANN architecture used for damage detection (Ramadas et al. 2008) 
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Damage assessment of prestressed concrete beams using ANN approach incorporating natural 
frequency measurements was investigated by Jeyasehar and Sumangala (2006). Based on 
experimental results in this work, there is a strong relationship between natural frequency, ultimate 
load, crack load, crack width and deflection on damage identification of prestressed concrete 
beams and there is no mathematical model to show the behavior of beams on damage. ANNs do 
not need a mathematical model and in this study were used to estimate the damage in prestressed 
concrete beams. Aforementioned parameters used as inputs to train and test of the neural network 
from both damaged and undamaged beams. Two hidden layers with 7 and 5 neurons were 
considered in this work. The predicted extent of damage in the beam was the output of network. 
Static and dynamic data of the datum and damaged beams were obtained experimentally. Based on 
this work, the ANN trained with natural frequencies, using only dynamic data obtained for 
different applied loads on a prestressed concrete beam; the damage level could be assessed on 
error of less than 10%. It is shown that ANN trained with post-crack stiffness and natural 
frequency is adequate to predict the damage with reasonable accuracy. This research was extended 
by Sumangala and Jeyasehar (2011) to formulate a method using the results obtained from an 
experimental study carried out in the laboratory. Prestressed concrete (PSC) beams were cast, and 
pitting corrosion was introduced in the prestressing wires and allowed to be snapped using 
accelerated corrosion process. Both dynamic and static tests were carried out to study the behavior 
of undamaged and damaged beams. The network was trained only with natural frequency and 
stiffness of damaged and undamaged beams. Also, good results obtained with the use of natural 
frequencies at different loads of a prestressed concrete beam. 

A damage detection system to assess structural integrity using natural frequencies was proposed 
by Tsuchimoto et al. (2004). In this system, the damage sites were first detected globally by using 
ANN method, and then the damage was identified locally by determining the changes in the 
structure’s eccentricity between centers of rigidity and weight due to the damage in order to 
narrow down the damage sites. This strategy was applied to a scaled 5-story structure in which the 
beams were fixed at both ends. The experimental structure is shown in Fig. 5(a). This structure 
was modeled as a 5-mass shear system as shown in Fig. 5(b). It can be seen in Fig. 5(b), that each 
element represents a single story. 

 
 

 
(a) 5-story experimental structure (b) Multi-mass shear system 

Fig. 5 Experimental and modeled structure (Tsuchimoto et al. 2004) 
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Fig. 6 Feed-forward neural networks (Tsuchimoto et al. 2004) 
 

 
In this study, a neural network used in the global damage detection strategy included 5 inputs 

and 5 output neurons, respectively. The first five natural frequencies were selected as the input, 
and the reduction rate of the stiffness of each element or story were selected as the output. This 
network is shown in Fig. 6. According to the results, ANN showed very good accuracy in 
identifying the extent of damage, and then by detecting change in eccentricity, the damage 
locations could be narrowed down. 

Suresh et al. (2004) applied a modular ANN architecture to identify the location and height of 
cracks in cantilever beams. In this research the first three natural frequencies were analytically 
computed for diverse crack locations and heights and were considered as inputs of ANN. Depth 
and location of cracks were appointed as outputs of ANN. According to the authors, measured 
natural frequencies as inputs of modular ANN can be applied to detect damage in structures with a 
high level of accuracy. Also, the results of a comparative study showed that the radial basis 
function (RBF) network performed better than the multilayer perceptron (MLP) network. 

Natural frequencies were used to detect the location and depth of cracks in a clamped-free 
beam and a clamped-clamped plane frame by Suh et al. (2000), who presented a technique by 
combining neural network with genetic algorithm for damage assessment. The location and depth 
of a crack were inputs for neural network and the structural eigenfrequencies were the outputs. 
Finite element model of aforementioned structures were used to confirm the effectiveness of this 
approach. After training of neural network, genetic algorithm (GA) was employed to detect the 
location and depth of crack from measured natural frequencies. This was extended by Sahoo and 
Maity (2007) to consider the problem in selection of suitable values of neural network such as 
learning rate, and momentum, type of activation function, convergence criteria and training 
algorithm.  

Neuron-genetic algorithm based on modal parameter and strain values were applied to 
determine the severity and location of defect. Genetic algorithm was applied to select reasonable 
and good values of the network parameters by treating them as variables and back propagation 
ANN for damage detection. The capability of this method was verified using a beam and a plane 
frame structure. 

ANNs have been applied to detect the extent, location and magnitude of the damage by Kim 
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and Kapania (2002). The natural frequencies of a damaged beam were used as inputs for ANNs 
and the outputs were the location, extent, and the magnitude of the damage. Differences in natural 
frequencies of intact beam and damaged beam were employed for damage identification in this 
study. To increase the sensitivity of the natural frequencies to detect small magnitude of damage, 
high frequency modes may be used. However high frequency modes are more sensitive to 
environmental conditions than low frequency modes and this is one of its major drawbacks. 

ANNs have been utilized by many researchers to identify damage location and severity in 
bridges using natural frequencies. The first twelve natural frequencies measured from the Tsing 
Ma suspension cable tension bridge in the Hong Kong were used as the inputs and outputs of the 
autoassociative neural network to detect damage by Chan et al. (1999). This network is called 
autoassociative because the samples at the input layer were reproduced at the output layer. In this 
work an index is defined as the difference between the target outputs and the outputs estimated 
from the autoassociative network and are able to detect the anomaly caused by a 5% reduction in 
cable tension. From this study, it can be concluded that the suggested combination of the 
autoassociative network using the index has the ability to differentiate the changes caused by 
damage and changes due natural variations of the system.  

Also, damage was detected in a steel bridge element using ANN by Spillman et al. (1993). A 
4.5 m steel bridge element was considered as an example in this research and damage was 
simulated by cutting the element and bolting plate reinforcement over the top of the cut. Thus, by 
removing the plate, loosening and tightening bolts of the plate, full, partial and undamaged states 
of the elements, respectively could be considered. 

Based on this work, when the plate attached, the element was mentioned as undamaged. Three 
sensors consisting of two accelerometers and a fiber optic modal sensor was installed on the 
element. The FFT of the time history signal from each sensor was computed and recorded. The 
amplitudes and frequencies of the first two modal peaks of Fourier transformed acceleration time 
history signal were used as inputs. The impact intensity and location were also provided as inputs 
to the neural network while each of the possible damage states were the outputs. In this study, 
ANN architecture with 14 inputs neuron, 20 hidden neuron and 3 outputs neuron was employed 
for each of the possible damage. Using these three sensors, the results demonstrated that accurate 
diagnosis was achieved in 58% of the cases considered. 

 Ceravolo and De Stefano (1995) employed natural frequencies as the input parameters to 
ANN to predict the two dimensional coordinates representing the damage location in a truss 
structure. In this study, the damage was modeled by removing the truss elements. A Back 
Propagation Neural Network (BPNN) model with ten input neurons representing to ten natural 
frequencies and two output neurons corresponding to the x and y directions was applied. One 
hidden layer consisting of ten hidden neurons was chosen based on trial and error method. In this 
work only single damage was considered and truss structure was modeled by FEA. Eighteen 
patterns consisting of various single damage cases were considered for neural network training. 
Results showed good agreement between natural frequencies and location of damage. 

The analysis of relative sensitivities of structural dynamic parameters using ANN based on 
combined parameters was reported by Hesheng et al. (2005). The combined parameters calculated 
with the three different parameters as follows: 

i) Change in rates of the natural frequencies  
ii) The change in ratios of the frequencies 
iii) The assurance criteria of flexibilities 
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These parameters were introduced as the input of the neural network. Based on analytical 
results such as cantilever and truss with different damage scenarios, it was concluded that the 
combined parameters were more compatible for the input samples of ANNs than the other 
parameters, individually. 

ANNs were developed to detect the damage in cantilever beams using natural frequencies by 
some researchers. For example, the assessment of damage in numerically simulated cantilever 
beam using natural frequencies was conducted by Ferregut et al. (1995). The architecture of neural 
network consisted of three layers with six neurons in the input layer corresponding to the first six 
natural frequencies, 17 and 11 neurons in hidden and output layers respectively. In output layer the 
first neuron was allocated for damage magnitude and the other 10 neurons were for damage 
location. In this research study, the damages were modeled by reducing the depth and width of the 
corresponding element from 1% to 30% and the network was trained using 240 data samples. The 
researchers found that only severe damages were recognized. According to the authors, the reason 
for this is that natural frequencies are insensitive to low level of damage.  

In addition, an ANN was developed to identify damage in a four-element cantilevered beam by 
Leath and Zimmerman (1993). In this research, the damage in the beam was modeled by reducing 
Young’s modulus by up to 95%. ANN was applied to identify the map from the first two bending 
frequencies to the level of damage in each member. In this study, up to 35% damage could be 
detected using ANN. 

Composite materials have high strength and stiffness. Therefore they have been used in many 
application of structural engineering. One of the common damage in composite structures is 
delamination. Delamination decreases the frequencies and stiffness in structures and increase 
modal damping. Some attempts have been made to detect the size and location of delamination 
using ANNs based on shifts in natural frequencies. Chakraborty (2005) suggested an ANN 
delamination model for predicting the shape, size, and location of delaminations in laminated 
samples with an elliptical embedded delamination. In this investigation, ten natural frequencies of 
the specimen were the input variables of ANN, while the outputs were size, shape and location of 
delamination. One hidden layer with 9 neurons was considered in this study based on the trial and 
error. The author compared ANN results with the finite element results and obtained good 
agreement for them.  

Also, good results have been obtained with the use of natural frequencies of damaged 
composite beams generated from finite element simulations by Okafor et al. (1996) using ANNs. 
In this study, the existence and location of delamination were identified by comparing 
experimental and theoretical results. The size of delamination was estimated by ANN. It was 
demonstrated that the third and fourth natural frequencies were better indicators for delamination 
detection. The efficiency and application of this method was verified experimentally. 

In addition, Islam and Craig (1994) reported the effectiveness of using natural frequencies as 
the inputs for neural networks in determining the size and location of delamination in a cantilever 
beam. The first five natural frequencies were selected as input parameters of neural network. Two 
neurons corresponding to delamination location and size were selected as outputs. The neural 
network was trained with 14000 training samples. This work was verified using both numerical 
and experimental examples and results demonstrated that ANN is capable to identify the location 
and size of delamination in cantilever delaminated beam. 

Damage detection of a cracked column using ANN was studied by Yau (2005). In this study, 
the first natural frequency of the cracked column under different compression load by an analytical 
method were calculated and applied as inputs and the crack size, crack location and the 
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compression load of the column were chosen as outputs of the ANN. The authors according to the 
results of testing patterns on numerical example by a trained ANN found that BPNN is a useful 
tool for predicting the applied compressive force to the column, and the crack size-location on the 
cracked column.  

Also in this study, the high precision of predictions for the cracks of a damaged column was 
demonstrated when analysis was done using a larger number of vibration frequencies computed to 
give the inputs of the BPNN. Finally the authors compared the results for detecting the crack 
location on the column from that analytically solved from the characteristic equation with back 
propagation neural networks and concluded that ANN can predict the cracks and compression 
force on a cracked column with good accuracy and results demonstrated that increasing the 
number of inputs will improve the accuracy of the predictions. 

Identification of damage in a steel lattice mast subject to wind excitation using ANNs was done 
by Kirkegaard and Rytter (1994). The steel lattice mast considered in this research was 20 meters 
high. An ANNs was trained using patterns of the relative changes of the first five natural 
frequencies. Training sets were generated from a FEA and using data with 0% to 100% reduction 
in area of selected diagonals. Four outputs corresponding to four of the diagonals were chosen. In 
the architecture of ANN two hidden layers of five neurons each, were chosen in this work. ANN 
could reproduce the training data, but it had less success on the test data. The authors examined the 
effects of the location and quantification of the damage and concluded that at 100% damage, ANN 
could locate and quantify the damage but at 50% it could only predict the existence of damage. In 
this investigation damage less than 50% could not be detected. 

 
4.2 Mode shapes  
 
As mentioned in the previous section, one approach to structural damage assessment is to use 

natural frequency. However, the natural frequencies are not sensitive to damage, thus limiting their 
application. A mode shape that is an indication of the shape of vibrational deformation of the 
system can give more information than natural frequencies and are much more sensitive to system 
damage. For this reason mode shape is more useful in damage location techniques. Available 
literature on the application of the ANNs for damage detection using mode shapes is limited. 
However some researchers have employed mode shapes instead of natural frequencies for 
detection of damage in structures using ANNs.  

Application of the ANNs for damage identification using mode shapes in beam structures were 
investigated by Park et al. (2009) and Pawar et al. (2007). Park et al. (2009) proposed a sequential 
methodology for damage detection in beams using time-modal features and ANNs. These 
approaches include acceleration-based damage alarming for real time damage incidence and modal 
feature-based damage estimation for offline damage assessment. In the time domain damage 
assessment, an acceleration-based neural network is designed to assess the occurrence of damage 
in a structure by using cross-covariance functions of acceleration signals measured from two 
different sensors.  

By using the acceleration feature, the network was trained for potential damage scenarios and 
loading patterns which were unknown. In the modal-domain damage assessment, a modal 
feature-based neural network was designed to estimate the location and severity of damage in the 
structure by using mode shapes and modal strain energies. By using the modal feature, the neural 
network was trained for potential damage scenarios. The authors proposed a damage detection 
procedure as summarized in Fig. 7. 
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Fig. 7 Sequential damage detection approaches using ANNs (Park et al. 2009) 
 
 
In addition, Pawar et al. (2007) presented a numerical evaluation of a new damage index 

method and formulated it in the form of a vector of Fourier coefficients acquired by spatial Fourier 
analysis of mode shapes in the spatial domain of damaged beams using ANNs. Fourier coefficients 
are sensitive to both damage size and location. In this method a FEA of a damaged beam with 
fixed boundary conditions was applied to obtain the mode shapes and results were compared with 
different types of time domain application of Fourier analysis for vibration difficulties.  

An ANN was employed to assess the damage location and size using Fourier coefficients of the 
first three mode shapes of aforementioned beam as input parameters. The number of input 
parameters for the ANN was the number of modes selected multiplied by the number of Fourier 
coefficients selected for damage identification. Analytical works showed the performance of this 
approach and demonstrated that damage assessment using Fourier coefficients and ANNs has the 
ability to identify the location and damage size with very good accuracy. The authors showed that 
damage caused changes in the Fourier coefficients of the mode shapes, which were found to be 
sensitive to both damage size and location. Therefore, a damage index in the form of a vector of 
Fourier coefficients was formulated in this study.  

ANNs have been applied by some researchers to identify damage in bridges using mode shape. 
The differences or the ratios of the mode shape components before and after damage and also 
direct mode shapes were used as the input to the neural networks for damage detection of 
multiple-girders simply supported bridges by Lee et al. (2005). This model was verified by using 
two numerical models, i.e., laboratory and field test data. It was noted by the authors and 
demonstrated through the modeling errors of up to 20% in the baseline finite element simulations 
that, when using direct mode shape as network inputs, the method generated relatively high errors 
indicated low accuracy of damage assessment. However, in this research it was found that the 
mode shape differences or the ratios of mode shapes before and after damage were less sensitive to 
modeling error and this method was capable of detecting damage with good accuracy. As shown in 
Fig. 8, the architecture of neural network consists of an input layer, two hidden layers, and an 
output layer. 

In this Figure, i denote the element number and subscripts o and d denote datum and damaged 
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cases. Also, ,   and od  /  are the mode shape, the mode shape differences and the 

mode shape ratios before and after damages, respectively. The output layer contains the element 
stiffness indices as Eq. (2), where k is the stiffness matrix. 

         Si=
oi

di

k

k

,

,                                 (2) 

Also the proposed method was verified on the laboratory bridge model and similar results were 
obtained. For more confidence, this method also verified on Hannam Grand Bridge in Korea and 
ANN trained using mode shape differences and mode shape ratios could recognize the location of 
damages with good accuracy. Small errors were encountered for severity of damage. 

 A two step algorithm to detect simulated damage in a finite element model of a girder beam of 
the Crowchild Bridge located in Canada was presented by Xu and Humar (2006). Two single and 
one double damage cases was studied in this study. The 2D finite element model of the girder 
beam with 20 elements and the Crowchild Bridge with 15 beam elements are shown in the Figs. 9 
and 10, respectively. 

As shown in Fig. 8, each intermediate node has three degrees of freedom i.e., horizontal and 
vertical translation and rotation. Abutments have two degrees of freedom comprising of horizontal 
translation and rotation. Only the rotational degree of freedom for pier nodes was considered. In 
the first step a damage index using modal strain energy was employed to locate of damage and in 
the second step, an ANN for estimating of damage magnitude was proposed. Measurement errors 
were simulated by inputting 5% noise to the mode shapes. Good results were obtained in 
predicting the damage location in the girder model from the first step. However when the damage 
indices were obtained from translational modes, some errors in location of damage occurred. For 
the second step, the authors demonstrated the effectiveness of ANN in predicting the damage 
severity where there was very good agreement. 

 
 

Fig. 8 Architecture of ANN (Lee et al. 2005) 
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Fig. 9 Finite element model of a beam (Xu and Humar 2006) 
 
 

 

Fig. 10 Girder model of the Crowchild Bridge (Xu and Humar 2006) 
 
 
Just-Agosto et al. (2008) applied the neural network method with a combination of mode 

shapes and thermal damage detection signatures to develop a damage detection tool. They applied 
the developed technique on sandwich composite beams for the purpose of crack detection. Results 
showed that the network can successfully detect damage.  

Toro et al. (2003) employed the fundamental displacement mode shape curvature of a sandwich 
composite structure to detect localized damage corresponding to a reduction in stiffness. Three 
dimensional finite element simulations of sandwich composite structures were done and artificial 
neural networks were conducted based on training performed with the FEA. Based on this study, 
mode shape curvature of a sandwich structure could identify the damage. 

Frame structures are considered as important applications of vibration-based structural health 
monitoring. Elkordy et al. (1993, 1994) applied Back Propagation Neural Network (BPNN) to 
identify damage in three different models of a five-storey steel frame structure. These models 
include two finite element models and one experimental structure. The first finite element model 
was a two-dimensional frame with beam elements while in the second finite element model, truss, 
beam and plate elements had been used. The authors used mode shapes and the percentage change 
in member stiffness as inputs and outputs of the neural networks, respectively and were identified 
the map between them. In this study damage was introduced to the model by reducing the member 
stiffness in the bottom two stories from 10% to 70%.  

Two ANNs were trained on mathematical models and verified with experimental data. It was 
seen that the network trained with data generated of the first finite element model was not able to 
produce correct damage estimation. However the network trained with data generated of second 
finite element model using truss, beam and plate elements gave good damage predictions with less 
than 10% error for damage severities. According to ANN trained with experimental data ,it was 
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further found that the model was more accurate in predicting damage to the first and second stories 
as well as estimating the extent of the defect. 

Also ANNs have been trained to identify damage in truss structures using mode shapes. Three 
lowest modes of the two-dimensional truss structure with nine bays have been considered to train 
the ANNs for detecting and locating damage by Faravelli and Pisano (1997). In this study, the 
authors assumed that damage happens in only one element at a time. The suggested neural network 
consists of two sub neural networks. The first sub neural network determines if any of the truss 
members is damaged. Classification of damage element into three groups consisting of diagonal, 
vertical and horizontal element groups was determined by the second sub neural network. The 
efficiency of the network varies depending on which element group imposes the damage. 

 
4.3 Combined modal parameters   
 
According to a review by Salawu (1997), although shifts of natural frequencies are a useful 

parameter to recognize the existence of damage in a structure, it is not sufficient to locate the 
damage. Therefore, more information such as mode shape is needed to overcome this weakness. 
Additionally, multiple modes are often needed to provide better prediction of damage severities 
and locations. 

A combination of natural frequencies and mode shapes for detecting damage using ANNs has 
been used by many researchers. The applications of combined modal parameters on specific 
structures such as beams, frames, bridges, buildings and other structures have been investigated 
which are explained as follows: 

 
4.3.1 Beams 
Aydin and Kisi (2012) employed the first four natural frequencies and mode shape rotation 

deviation data as input to the neural network models to estimate the location and extent of cracks 
in Timoshenko beam structures. In this paper, multilayer perceptron (MLP) and a radial basis 
function neural network (RBNN) were applied to training of the data sets. According to the results, 
ANN models can be applied in diagnosing the multiple cracks on beam structures. Also, 
comparison of the error results of MLP and RBNN showed that the RBNN model performed better 
than the optimal MLP model.  

Combination of natural frequency and mode shape for prediction of crack severity and its 
location in a cantilever beam using ANN technique is applied by Das and Parhi (2009). In this 
study the inputs to the ANN were relative deviation of first three natural frequencies and first three 
mode shapes and the outputs of ANN were relative crack depth and relative crack location. A set of 
training samples are used to train the ANN for prediction of crack location and crack depth. 
Experimental test has been done to verify the robustness of the developed ANN and the 
comparison showed this approach can be applied as a useful and effective tool for damage 
identification. 

Li et al. (2005) applied an algorithm for location and severity prediction of crack damage in 
beam like structures using a combination of global and local vibration-based analysis data as input 
in Radial Basis Function (RBF) ANNs. A FEA was done to obtain the dynamic characteristics of 
undamaged and damaged cantilever steel beams for the first three natural modes. In this study, an 
experimental validation was considered and modal parameters such as resonant frequencies and 
strain mode shapes were obtained using several steel beams with six distributed surface bonded 
electrical strain gauges and an accelerometer mounted at the tip. In this work, it was seen that 
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trained ANN using the data obtained from the numerical damage case can predict the severity and 
localization of the crack damage successfully. 

Sahin and Shenoi (2003a, b) presented a damage assessment algorithm using a combination of 
changes in natural frequencies and curvature mode shapes as input in ANNs for the location and 
severity prediction of damage in numerical models of composite beam structures. In this study, 
three different networks were trained and dynamic characteristics of intact and damaged cantilever 
steel beams were obtained from the FEA. The first three natural frequencies, the absolute 
differences in mode shape curvatures and finally, the maximum absolute differences in curvature 
of the mode shapes and their corresponding locations along the beam were chosen as input 
parameters for first, second and third network, respectively. In addition, more neural networks 
were trained using combinations of all the above parameters. 

Different damage scenarios were modeled by reducing the local thickness of the elements at 
different locations along the finite element model of the beam structure. An experimental analysis 
was done to obtain modal parameters such as the resonant frequencies and strain mode shapes and 
the data obtained from the experimental analysis was used for the quantification and localization 
of the damage in ANN. A schematic picture of damage identification method is shown in Fig. 11. 

According to the results of this study, the performance of each network was more efficient 
compared to the trained network that applies all the combined input parameters. Based on this 
study, maximum absolute differences in mode shape curvatures and their corresponding locations 
along the beam produced fairly accurate damage location, while natural frequencies did not 
produce useful information about location or magnitude of the damages. 

To illustrate the effects of uncertainties, noise was injected to frequencies and the maximum 
differences in mode shape curvature data. It was demonstrated that when noise data was added to 
the networks, more accurate estimations were obtained for damage location in comparison to 
severity of damage. 

 
 
 

 

Fig. 11 A schematic picture of damage assessment method (Sahin and Shenoi 2003) 
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Zhao et al. (1998) employed the dynamic properties of structures for detecting and locating 
damage and support movement in a three-span continuous beam using a Counter Propagation 
Neural Network (CPN). The architecture of CPN is composed of an input layer, only one hidden 
layer and an output layer. The type of learning in CPN is unsupervised and it can work with 
incomplete data. In the CPN algorithm all weighting arrays are not updated simultaneously, 
therefore it uses less computation time than a BPNN. In this study, four different inputs including 
natural frequencies, mode shapes, slope array and state arrays were considered. Dynamic 
properties of the structures in continuous beams and static displacements on plane frames were 
applied as diagnostic parameters for the network and damages were simulated by reducing the 
values of Young’s modulus of members and the required data was obtained via FEA. The authors 
concluded that natural frequencies and slope arrays gave better results compared to mode shapes 
and state arrays. The authors also showed that the dynamics parameters were good diagnostic 
parameters for damage assessment, while static displacement was not suitable to detect multiple 
damages as similar displacements can be obtained with different combination of damage and 
loading. Finally, this study deduced that ANNs have the ability to detect damage in structures and 
are promising tools in damage detection. 

 To predict the location of damage in a structure, the mode shape curvatures changes are more 
sensitive than mode shapes themselves and can be obtained from the measured displacement 
components of the mode shape. Therefore a better localization of damage could be done by 
considering curvature of the mode shapes (Hamey et al. 2004, Kolakowski et al. 2004, Koh et al. 
2003). The mode shape curvature approach cannot provide the prediction of the severity of the 
damage. Also, the application of the mode shape curvature approach is limited to structures that 
can be simulated as a set of girders. The usefulness of mode shape curvature as a good indicator 
for damage identification of beam structures was shown by Pandey et al. (1991).  

Chang et al. (2000) also proposed a structural damage detection method based on natural 
frequencies and first mode shape curvature using an iterative neural network technique. This 
technique was verified from experimental and numerical studies of a RC beam. In this study the 
network was first updated using initial training data sets consisting of assumed structural 
parameters as target outputs and their corresponding dynamic characteristics which included 
natural frequencies and first mode shape curvature, calculated from the FE model as inputs. Then, 
the structural parameters predicted from the trained ANN were used in the FEA to reproduce the 
measured dynamic characteristics. The network model would go through the second training phase 
if the simulated dynamic parameters deviate from the measured ones. After the training process, 
the structural parameters identified from the measured vibration signals were applied to infer the 
location and extent of damage. In this study, four damage cases were simulated and the results 
demonstrated that all damage cases were successfully detected, but some small errors were seen 
when experimental data was applied. According to the authors, this may be due to uncertainties 
related to material properties or material in homogeneity. 

The prediction of hole defect sizes and locations in glass fiber reinforced plastic (GFRP) 
composite laminated beams using ANN was applied by Jenq and Lee (1997). Inputs of the network 
consists of the frequency shifts of the first four modes and two output nodes corresponding to the 
hole size and location. The finite element model was calibrated by using measurement data to 
enhance the accuracy of the analytical model. After that, five hundred sets of simulations were 
performed to generate training data sets with various sizes of holes at different locations. The 
authors were then able to predict the hole size and location with average errors of 7% and 6%, 
respectively using an ANN including one hidden layer consisting of 15 neurons. 
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The application of ANNs for damage assessment in a fiber reinforced plastic (FRP) beam was 
reported by Byon and Nishi (1998). The first three natural frequencies and/or the third mode shape 
of the beam were selected as inputs of neural network and damage was modeled by cutting the 
unidirectional composite fibres and replacing with teflon film. Artificial neural network could 
predict the location and amount of damage successfully. 

Natural frequency and mode shape as the input parameters to a radial basis neural network to 
update the finite element model based on experiment modal data was applied by Levin and Lieven 
(1998). A ten-element cantilever beam was used as an example and showed the capability of ANNs 
for verifying modal updating parameters for the numerical model using experimental modal data. 
 

4.3.2 Frames 
Kanwar et al. (2007) developed a correlation between the damage in the 2D rigid frame of the 

RC three-storey building with dynamic parameters using an ANN model. In this study, the 
dynamic characteristics were obtained analytically under different levels of damage using modal 
analysis of the frame by changing the rigidity of the structure. In this study the results from modal 
analysis consists of storey height, mode shape coefficient and fundamental frequency ,were 
mentioned as inputs and the damage index (DI) was selected as the output and ANN trained for 
estimating of damage in the structure. The authors defined the damage in four stages consisting of 
minor, moderate, severe and collapse depending on the value of damage index between 0 and 1. In 
this work, authors showed that an increasing of the damage index in each storey with reducing in 
the frequency during the damage. It was noted by the authors that the trained neural network could 
predict the damage index values in the RC frame building based on their approach with maximum 
error of 6% which indicates high accuracy for the prediction of damage.  

Bakhary et al. (2007) described the application of ANN with the consideration of uncertainties. 
In this research, random errors were considered and a numerical single span steel portal frame is 
modeled to show the proposed method. The steel frame is divided to six sub-structures as depicted 
in Fig. 12. Each sub-structure contains of five elements. In this study, the damage severity for each 
sub-structure is denoted by a Stiffness Reduction Ratio (SRF). SRF is defined as Eq. (3). 

              SRF = 1 −
E

E '

                                 (3) 

In Eq. (3) E is the Young’s modulus in the undamaged state and E is Young’s modulus at the 
desired damage level. For the damage assessment in this study, the training data was obtained from 
the FEA, which involved generating large numbers of damage case studies based on an initial 
baseline finite element model. The input data consisted of natural frequencies and mode shapes, 
and the output layers consisted of Young’s modulus i.e., E values, to represent the stiffness 
parameter. After training of the ANN model, the testing data was then applied to the ANN model 
to obtain the locations and severities of damages.  

Bakhary (2010) extended this research to consider a statistical vibration based damage 
identification that includes the effect of uncertainties in the measured data and finite element 
model of the steel frame. In this research nine mode shape points and frequencies for the first three 
modes of a structure were used as the input parameters. The output parameters were Young’s 
modulus (E) of every section. Rossenblueth’s points estimation method was used to determine the 
statistics of the identified parameters. Results demonstrated that a probabilistic method using ANN 
is capable of detecting the damaged members with a higher confidence level and good accuracy. 
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Fig. 12 Finite element model of the steel frame (Bakhary et al. 2007) 
 
 
Lam and Ng (2008) applied separately damage-induced changes in modal characteristics such 

as natural frequencies, mode shapes and Ritz vectors as pattern features for training two ANNs. In 
this study, the calculation of Ritz vectors was done based on a set of measured natural frequencies 
and mode shapes. A benchmark structure that is a four storey, two-bay by two-bay steel frame with 
six damage patterns is considered in this research. Based on this work, the authors found that the 
efficiency of the ANNs trained using natural frequencies and mode shapes for structural health 
monitoring was better than that of ANNs trained via measured Ritz vectors. There is no detail 
about the calculation of the Ritz vectors in this paper. Lam et al. (2006) also employed the use of 
damage-induced Ritz vector changes as ANN inputs to recognize damage location and severity. 

Zapico et al. (2001, 2003) described a procedure for damage detection in a two storey steel 
frame structure and a composite floor based on ANNs. In this investigation, three different ANNs 
were considered. In the first network, the first natural frequency and in the second network, the 
first mode shape were used as input parameters while for the third network, the first two 
longitudinal bending frequencies were chosen as inputs. The reliability of each neural network was 
verified using numerical and laboratory data of the structures. The first network was not well 
against new data and could not generalize from the first natural frequency as the selected input and 
failed. According to the second network good generalization occurred for the numerical data. 
However for laboratory data in second network due to the low accuracy of the extracted mode 
shapes, generalization could not be achieved and failed. Finally the third network which trained 
the first two longitudinal bending frequencies was capable of providing correct damage 
identification, especially when the structural damage and the associated changes in vibration 
properties were simulated analytically. 

Yun and Bahng (2000) reported a method for estimating the sub-structural stiffness parameters 
of a complex structural system by using an ANN with natural frequencies and mode shapes as 
input patterns. This method was applied on ten-storey with two bay frame structures as depicted in 
Fig. 13. Based on this Figure the frame structure was contained 44 nodal DOFs and was 
subdivided into three sub-structures contains an internal and two external sub-structures. In this 
study, noise was induced in training and testing phases. The prediction of average relative errors 
for testing data samples were obtained in the range of 9-15%, which demonstrated good agreement 
and showed the applicability of ANNs using combined modal data based on sub-structuring 
technique for the detection of damage in large structural systems. 
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Fig. 13 Sub-structuring of two-bay frame structure (Yun and Bahng 2000) 
 
 
4.3.3 Bridges 
Mehrjoo et al. (2008) focused on reporting damage of joints in two truss bridge structures using 

ANNs. The natural frequencies and mode shapes were applied as inputs to the ANN for damage 
identification. Accuracy and efficiency of the suggested method was demonstrated using numerical 
models of the two different truss bridges with five and sixteen joints, respectively. Various types of 
damages to suspension cables, main members, girders, and joints were considered. The type of 
damage that was considered in this study was fatigue in the joints, as shown in Fig. 14. 

It was assumed for modeling that when a truss joint was damaged, the cross-sectional area of 
all elements linked to that joint, was reduced in proportion to the damage intensity percentage at 
that joint. A tiny element was then defined at the end of all elements common to the joint, to 
facilitate modeling of damage at joints and the cross-sectional area of all the tiny elements 
connected to that joint, was proportionately reduced. Based on the findings, the average errors for 
testing the data set in the case of using five modes were demonstrated to be about 1%, which 
proved the applicability and efficiency of the ANN method to determine the severity and locate 
damage of the joints in truss bridges. However, the results demonstrated that when only one mode 
was applied, an average error of more than 8% was obtained. Finally, it was concluded that the 
optimum number of mode shapes to be included was five to produce a minimum error of about 1%. 
In this research only investigated data from noise-free analytical modeling and real testing 
uncertainties such as measurement noise were not applied. 

 

Fig. 14 A schematic picture of fatigue damage in a truss joint (Mehrjoo et al. 2008) 
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A three-step algorithm for identifying existence, location and severity of damage on a finite 
element model of cable-stayed Kap Shui Mun Bridge located in Hong Kong using modal 
parameters was utilized by Ko et al. (2002) wherein twelve cases were studied. In the first step, 
natural frequencies of datum and damaged states of structure as inputs for autoassociated neural 
networks were considered for the purpose of defecting damage. In two of twelve cases studied, this 
step could not recognize damage and failed to sense the damage. In the second step, modal 
flexibility index and modal curvature index were used to determine the damage location. It was 
found that, these modal indices were sometimes unable to locate the damage. Natural frequencies 
and mode shapes in the third step of this algorithm were used as inputs to Multi-Layer Perceptron 
(MLP) neural network for identifying damage severity. According the authors, the third step was 
most promising in terms of damage identification. 

The damage assessment of a bridge structure was carried out based on the estimated modal 
parameters using ANN by Lee et al. (2002). As inputs to the neural networks, the ratios of the 
resonant frequencies between before and after damages and the mode shapes after the damages 
were used to take into account the mass effect of traffic on the bridge. Ambient vibration testing 
data caused by traffic loadings was used and the modal parameters were identified from the 
free-decay signals extracted using the random decrement method. The predicted damage locations 
and severities were found to compare well with the imposed damages on the structure.  

Choi and Kwon (2000) applied a finite element model to develop a damage detection method 
for a steel truss bridge based on an ANN. Strain data, mode shapes and natural frequencies for 
training of neural network were obtained through the FEA. The static analysis of the finite element 
model identified eight truss members subjected to high stress levels, and the stiffness in each of 
these members was reduced to simulate eight different damage cases. Two different neural 
networks were developed for damage localization. The first network determined which half, either 
the left or the right of the midpoint of the bridge, was damaged. The strain readings from seven 
truss members that were generated from the analytical model have been used as inputs to the first 
neural network. Binary number corresponding to the left or right side of the bridge was chosen as 
an output of network. The inputs to the second network were the binary output from the first 
network, modal parameters, mode shapes, and natural frequencies which were generated from the 
FEA. The second neural network determines which of the eight truss members are damaged and 
each output demonstrates the existence of damage at the associated truss member. The authors 
found that a two-step neural network successfully located the damage in the finite element model. 

Feng and Bahng (1999) proposed a method for the monitoring of jacketed RC columns using a 
combination of ANN, finite element techniques and vibration testing. In this research, the input 
patterns included the mode frequencies and mode shapes of columns determined from the FEA. 
Correction coefficients of element stiffness for the column were chosen as the output pattern. A 
finite element model was built to predict the baseline vibration characteristics of a small-scale 
bridge model, and the predicted responses were compared with the vibration test data taken from 
the scale model. After that, damage was defined in the bridge model, and the vibration tests were 
repeated for several cases of damage. ANN was trained using data taken from the finite element 
model and the damage bridge. In this work, the ANN could estimate changes in the stiffness based 
on the measured dynamic characteristics.  

 
4.3.4 Trusses 
A technique for predicting the sub-structural stiffness parameters of a truss with two-span 

planar by using an ANN with natural frequencies and mode shapes as input patterns was described  
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Fig. 15 Sub-structuring of truss structure (Yun and Bahng 2000) 
 
 

by Yun and Bahng (2000). As shown in Fig. 15, the truss was contained 90 nodal DOFs and three 
sub-structures contains an internal and two external sub-structures. In this research, the estimation 
of average relative errors for testing data sets were obtained in the range of  9-15%, which 
showed the applicability of ANNs using natural frequencies and mode shapes based on 
sub-structuring technique for the damage assessment in truss structure systems. 

Identification of damage in a 20-bay planar truss composed of sixty struts was done by Povich 
and Lim (1994). Removal of struts from the structure simulated damage in the truss. The structure 
was excited by a shaker and two accelerometers were used to provide input data and frequency 
range investigated was within the first four bending modes. An ANN was applied to identify the 
map from the Fourier transform of the acceleration history to damage in each desired member. The 
network consisted of 394 inputs corresponding to the acceleration FFTs at the frequencies of 
interest for two points and 60 outputs, one for each strut in the structure. This network could 
identify the missing strut in 21 cases and was able to localize the damage to two adjacent struts in 
38 cases. The authors did not check the generation capabilities of this work and did not carry out 
verification or testing of the neural network. 
 

4.3.5 Buildings 
Gonzalez and Zapico (2008) applied neural networks to identify seismic damage in a 5-storey 

office building using natural frequencies and mode shapes. In this study, detection and 
quantification of the global damage at each storey of a Welded Steel Moment Frame (WSMF) 
building using its low natural frequencies and mode shapes was investigated. The first flexural 
mode consists of frequencies and mode shapes as inputs and mass and stiffness at each principal 
direction of the structure was selected as outputs. The finite element model was used to generate 
the data needed to train the ANNs and an index for damage was defined by comparing the initial 
and final stiffness. This method was successful in determining which storey of the building was 
damaged. The results were successful and showed the robustness of the ANN for the prediction of 
damage. The authors found that ANN was quite sensitive to modal data based on the sensitivity 
analysis that had been done in this work.  

Two different neural networks namely the multilayer perceptron (MLP) network with Back 
Propagation(BP) algorithm and the Radial Basis Function (RBF) network were evaluated for 
damage assessment by Rytter and Kirgegaard (1997). A finite element model of a full-scale 
four-story reinforced concrete building was used for this research work. Random damage states 
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were generated through finite element modeling simulations, which were essentially stiffness 
reductions in beams and columns. The relative changes in the modal parameters were used as 
inputs of the network to detect the bending stiffness changes of the beams and columns at the 
output layer. In this work, four thousand nine hundred sets of mode shapes and natural frequencies 
were calculated for different damage situations. The MLP network showed the possibility of being 
used in connection with vibration-based inspection, where else the RBF network completely failed. 
Based on this research, the performance of the RBF network was highly dependent on an 
appropriate selection of damage cases used in the training. 

Vinayak et al. (2008) employed the dynamic properties of four and the eight storey building 
model for determination of severity and location of damage. In this research natural frequency and 
mode shape change were applied as inputs of ANN and output was combination of various damage 
levels of different storey of the building. According to this study accuracy of grade of damage 
identified in structure increased with the increase in the number of damage cases combination used 
for ANN training. Also the results confirm that the accuracy to determine extent of damage 
decreases with increase in the number of storeys being damaged. 

 
4.3.6 Other structures 
A substructuring technique was applied with a multistage ANN method to detect the location 

and extent of the damage in a two-span continuous concrete slab structure by Bakhary et al. (2010). 
Mode shapes and natural frequencies of the substructures were used as the inputs to predict the E 
values of the segment in the identified substructure. The authors showed that by dividing the 
structure into substructures and analyzing each substructure separately, local damage can be better 
identified. Based on this technique, all the simulated damages in the structure were successfully 
detected. 

Bakhary (2006) also investigated the ability of ANNs to detect damage location and severity in 
a slab-like structure using natural frequencies and mode shapes as the input. Dynamic 
characteristics of the damage and undamaged structure to train the ANN were obtained from finite 
elements analysis. In this study, damage modeled by reducing the values of modulus of elasticity 
of the elements at various locations along the slab and the trained ANN was validated using 
experimental data. The results demonstrated that ANN is capable to provide reasonable results on 
damage detection using data generated from FEA. In this study, higher modes provided good 
performance for training of ANN, but yielded higher error which led to reduce accuracy of ANN. 

The use of natural frequencies and mode shape as input variables were successfully 
implemented by Tsou and Shen (1994) whereby two different neural networks with different input 
parameters were compared. In the first neural network only changes in natural frequencies were as 
the inputs while in the second ANN combination of natural frequencies and mode shapes were 
selected as the inputs. In the architecture of ANN each neuron in the output layer was applied to 
represent the stiffness loses of each member. In this study, reducing the spring constant to model 
the damage of system was considered. Both networks were verified with single and multiple 
damages. In this investigation, finite element simulation of a three degree and eight degree of 
freedom spring-mass system was applied as examples. According to authors the first ANN with 
changes in natural frequencies as the input parameters could detect single and multiple damages in 
a simple system. However for complicated systems the results were not in agreement while the 
second ANN consists of combination of natural frequencies and mode shapes could identify 
damage with more accuracy for complicated systems. This highlighted that the mode shapes 
information is an important indicator in damage detection. 
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5. Conclusions  
 
Modal parameters consists of natural frequencies, mode shapes, and damping ratios which are 

functions of the physical features of the structure such as mass, damping, and stiffness. Therefore 
any changes in the physical features will cause changes in the modal parameters. Damage is 
assessed via changes in the dynamic characteristics or response of structures and has been given 
much attention in previous literature. Damage assessment approaches attempt to identify damage 
by solving an inverse problem, which often requires the construction of numerical models.  

A robust damage assessment will be able to identify whether damage happened at a very early 
stage, locate the damage, and provide some estimate of the severity of the damage. Artificial 
neural networks are one of the most important ways of solving the inverse problems. 

A neural network can be applied to map the inverse relationship between the measured 
responses and the structural parameters of interest based on training and testing data sets. Based on 
this review paper, it is evident that over the past two decades there have been numerous studies 
applying ANN on modal properties of structures in the field of damage detection and structural 
monitoring. It has been proven that ANNs using modal parameters can provide several advantages 
over the conventional mathematical approaches and damage detection is much improved. ANNs 
have the capability to detect damage even when trained with incomplete and insufficient data. 

Choosing a suitable architecture of ANN, the number of hidden layers and numbers of hidden 
neurons in each layer can improve the capability of ANNs. The inputs and outputs of ANNs can be 
selected with high flexibility without increasing the complexity of the training and testing process.  

In this review paper it is also shown that modal analysis data are directly linked to the topology 
of the structure and can be easily applied for damage assessment and are more accurate for 
detecting large defects in structures. However the data are very sensitive to noise during 
acquisition and are not applicable for nonlinear structures. 

It can be summarized that earlier studies applied modal frequency changes to detect damage. 
However recent researches have shown that frequency changes are insufficient and changes in 
mode shapes are more sensitive and may be more useful for detection of the damage location using 
ANNs.  

Finally, it is noteworthy that most neural networks suffer from a single common difficulty in 
that the training requires a lot of data sets from both the undamaged and damaged structures. 
However the trained ANN models are capable of generating effective damage behavior and 
damage dissipation at different damage levels and are feasible tools for damage detection based on 
vibration data. 

Based on this review, many studies have attempted to generate the training data sets associated 
with various damage cases from numerical simulations such as FEA and needless to say that  the 
success of artificial neural networks depends on the accuracy of the applied numerical models. 

 
 

6. Recommendations for future works 
 
Based on this review, further studies on the structural damage detection in the area of ANNs 

using dynamic modal parameters are recommended. Several specific recommendations for future 
research are drawn below: 

i) According to researchers in this review, the application of ANN based damage assessment 
methods to a real structure is limited and are usually on small building components of 
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structures. However the practical structures are usually complex and large. Thus, it is 
recommended that the feasibility studies of ANNs are conducted on large-scaled and real 
structures for future works. 
ii) Application of ANN using modal parameters to structures with multiple-type damages is 
limited. Therefore, more study in this field is suggested.  
iii) Very little efforts have been directed to the methodology for detecting unanticipated damage 
cases and further research on different types of damage at the different locations using different 
damage detection algorithms should be investigated. 
iv) Excitation techniques for components of structures can be simply applied by hammer 
impact. However, when large and complex structures are investigated, the source of excitation 
should be changed. Further studies regarding the influence of the different sources of excitation 
such as shaker on large structures should be done. 
v) Data samples have very important effect in efficiency of training and testing of ANNs. There 
is scarcity on the ANN performance under different methods for generating of data for training 
and testing of network. Thus a comparison study on the ANN implementation under different 
algorithm for training and testing patterns selection is recommended. 
vi) Application of ANN using modal parameters with noisy data is limited. However, accurate 
prediction of parameters from noisy data can be challenging and improving the capability of 
measurement noise and reducing the influences of the modeling error need to be further 
investigated. 
vii) Locations and number of measurements points have very important influence on the 
accuracy of damage assessment results. There is little effort on the effect of numbers and 
location of measurement points to damage detection algorithm using ANNs and further work is 
recommended in this area.  
viii) Damage detection investigation can be further investigated for nonlinear material 
behaviors using ANN models with modal parameters as input. 
ix) It is also useful to study the performance of various types of ANNs in order to improve 
damage detection results. 
x) Artificial neural networks implemented in this review usually used a supervised-trained 
method which means that the networks had to be given the input data i.e., modal parameters 
and theh corresponding output data i.e., damage identification. However, in real life, usually the 
output data is not available. It is further recommended to investigate the use of 
unsupervised-trained neural networks for damage identification and make a comparison 
between using the results for supervised and unsupervised learning for damage identification. 
xi) Many researchers have tried to develop reliable methods for damage detection. Current 
methods produce good results but have their own limitations. However the challenge lies ahead 
in establishing a method which is applicable for all types of structures and damage scenarios 
with minimal limitations. 
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