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Abstract.    In this paper, a fuzzy inference system and an analytical hierarchy process-based online 
evaluation technique is developed to monitor the condition of the 32-km Donghai Bridge in Shanghai. The 
system has 478 sensors distributed along eight segments selected from the whole bridge. An online 
evaluation subsystem is realized, which uses raw data and extracted features or indices to give a set of 
hierarchically organized condition evaluations. The thresholds of each index were set to an initial value 
obtained from a structure damage and performance evolution analysis of the bridge. After one year of 
baseline monitoring, the initial threshold system was updated from the collected data. The results show that 
the techniques described are valid and reliable. The online method fulfills long-term infrastructure health 
monitoring requirements for the Donghai Bridge. 
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1. Introduction 
 

In the last two decades many integrated bridge health monitoring systems have been 
implemented. Multiple mechanical and physical measurements are continuously made in real-time 
by a variety of remote sensing techniques. Many integrated infrastructure health monitoring 
systems are well designed and implemented. As the extent of integration increases, more functions 
are added into the system, more functionality is specified by system designers and researchers, and 
the definitions of structure health monitoring systems are continuously improved (Los Alamos 
National Laboratory report 2003, Hsieh et al. 2006). Three generations of the structural health 
monitoring system (SHMS) are recognized. In the first generation, measurement is discontinuous 
and only a few kinds of sensing apparatus are installed. The second generation, the so-called 
integrated health monitoring system, uses multiple-sensor subsystems, data acquisition, 
communication and software control systems to run the functions of data storage and management, 
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and simple data processing and display. Unfortunately, the utilization of this painstakingly 
gathered and expensive data is still low or nil, with most research being done on the data offline 
and after a long time lag. Third generation SHMS are expected to have a capacity for using the 
data for multiple purposes in real time, allowing online  infrastructure health status evaluation. 

Although these three generations of structural health monitoring systems for bridges 
(hereinafter referred to as BHMS) are expected to meet original motivations such as validation of 
design, ensuring the security and normal operation of the structures, and finding new knowledge 
about the performance of the structures, these targets are not yet routinely achieved. There is still 
much work to be done to take raw monitoring data and process it to achieve aims such as local 
damage identification, and assessment of structural conditions. From the viewpoint of bridge 
owners and designers, optimized bridge maintenance and management is a high priority aim for a 
BHMS. Objective judgments of bridge health and safety status aided by BHMS are urgently 
required (Ou et al. 2006). 

Early bridge management systems used evaluation technologies. By using inspection 
information and Non Destructive Testing (NDT) results, rating techniques were introduced to give 
reasonable and systemic judgments concerning the safety, serviceability and durability of the 
bridge, allowing objective and optimized decisions on bridge maintenance and management. To 
give a reasonable evaluation, an analytical hierarchy process is used to assess numerous items of 
data, and computing techniques such as fuzzy evaluation technologies, neural net computing and 
Bayesian probabilistic approaches are used to improve rationality and veracity (Liang et al. 2001, 
Ratay and Wiley 2005). 

To incorporate present structural condition assessment techniques into a bridge health 
monitoring system with a real-time online evaluation mechanism is an urgent requirement. In this 
paper, a fuzzy inference system (FIS) using an analytical hierarchy process (AHP) is used to create 
an online bridge evaluation system. Information from the real-time monitoring system and more 
subjective information from inspection routines are organized in a hierarchical architecture and 
data fusion between the two sorts of information and reasoning processes are realized in a fuzzy 
interference system. The technologies presented here are installed as an online evaluation 
subsystem of the Donghai Bridge Health Monitoring System (DHBHMS). 

 
 

2. The Donghai Bridge Health Monitoring System 

 
Donghai Bridge (Fig. 1) links Luchao Port in Shanghai and the Yangshan Island Deep Water 

Port in Zhejiang Province. The bridge is about 32 km long and consists of 2 cable-stayed bridges 
and a large number of continuous and simply supported bridge spans. Donghai Bridge is the first 
large scale bridge across a stretch of sea in China (Huang 2004). 

The goals of the Donghai Bridge Heath Monitoring System (DHBHMS) are as follows: 
1) To monitor the performance and the operating condition of the bridge, both in real-time 

monitoring and by periodical inspection.  
2) To ensure the safety and normal service conditions of the structure. 
3) To supply objective scientific data and decision support for bridge maintenance and 

management.

130



 
 
 
 
 
 

The application of a fuzzy inference system and analytical hierarchy process… 

 

 

Fig. 1 Donghai Bridge, Shanghai, China 
 
 

 
Fig. 2 The modular structure of the DHBHMS 

 
 

The underlying principle of the design of the DHBHMS is performance monitoring. The layout 
of the sensors and the selection of the items to be monitored are related to the needs of bridge 
performance monitoring. Similarly, the data process and online evaluation subsystems are 
designed to meet the needs of judging safety and the normal service conditions of the structure 
during operation. Precautionary data analysis and an offline evaluation scheme are required to 
meet the needs of bridge maintenance and management as well as the requirements of scientific 
research. 

Based on these general considerations, the DHBHMS (Danhui and Sun 2004) was designed and 
installed in April, 2006. The 478 sensors are distributed along eight segments selected from the 
whole bridge structure. Browser/Server based software is realized to measure the target quantities, 
monitor selected features extracted from the raw data in real-time, and to store and manage the 
data. Critically, an online evaluation subsystem is realized, which uses the raw data and the 
features (modal parameters or other indices) extracted from the data to give a set of condition 
evaluations organized in a hierarchical structure. The modular structure of the DHBHMS is 
illustrated in Fig. 2. 

This paper describes the first attempt in China to use monitoring and inspection data to support 
safety judgments and structural health status assessment by means of automatic online bridge 
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health evaluation. The AHP (analytical hierarchy process) was used to organize the evaluation 
hierarchy tree structure, and an autonomous network-based Fuzzy Inference System (ANFIS) 
technique is used to perform inference in each knot (marking the end of one region of data and the 
beginning of another) of the tree. Scores at each knot are transferred to the level above in the tree. 
Finally, an ultimate score can be calculated and a report can be generated to support human 
decision-making. 

 
 

3. An AHP and FIS based online evaluation framework 
 
As previously mentioned, the DHBHMS covers the whole 32 km of the bridge including 

continuous beam spans and two cable-stayed bridges. The captured data are vast and complex, and 
so must be organized into a suitable architecture for interpretation.  

First the sensors installed on the bridge are organized into logical groups. For example, Global 
Positioning System (GPS) sensors, displacement sensors for extension gaps, connected pipe 
sensors detecting uneven settlement and deflections in mid span, can be grouped to monitor the 
whole geometric shape of the bridge, and also can be composed into a global geometric 
configuration logical group. Similarly, the vertical direction acceleration sensors on the beams can 
be composed into a vertical mode monitoring group. The inspection information is also organized 
into logical groups according to physical function. Fig. 4 gives the layout of the sensors on the 
main navigation channel cable stayed bridge. Table 1 gives detail of some of the logical groups of 
the main navigation channel cable-stayed bridge. 

 
 
 

Table 1 Some sensor logical groups in the main navigation channel cable-stayed bridge 

Logical groups Location  Sensors Target quantities in the group 
Wind field 
monitoring group 

Top tower, middle of 
mid span 

Ane Mean wind speed, wind pressure, gust wind speed. 
The spectral features of different directions 

System temperature 
of the beam 

All the temperature 
sensors 

St To estimate the temperature distribution alone the whole 
bridge 

Temperature grads 
monitoring group 

Section 7 at beam 
Section 2 at tower 

St, At To estimate the temperature distribution inner same 
sections 

Local deformation 
monitoring group 

Section 7 at beam 
End sections at beam 

GPS 
Fi 

Get the deflection of the beam and other indirect 
quantities 

Global deformation 
monitoring group 

The whole bridge GPS 
Fi 

To estimate the global deformation of the bridge 

Strain monitoring 
group 

The strain installed in 
same sections 

Str Estimate the inner force under live load, vildate the 
hypotheses of even section, and the statistical feature of 
them. 

Vertical mode 
monitoring group 

Vertical acceleration 
in beam 

Acc To monitor the magnitudes level of the bridge, and the 
vertical modal parameters. 

Cable force 
monitoring group 

Selected cables Cf To monitor able force and estimate the redistribution 
among the cables, towers, and beam. 

Weather monitoring 
group 

Near the bridge Aws To estimate the rust situation of the steel components. 
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Fig. 3 The DHBHMS client interface (viewed with Microsoft Internet Explorer) 

 
 

 
Fig. 4 The layout of the sensors on main navigation channel cable-stayed bridge At—atmosphere 

temperature sensor (1); St—structural temperature sensors (46) ； Ane—Anemometer (1); 
Aws-weather station (1); GPS—GPS (3)；Str—FBG strain gauges (48)；Acc—acceleration meter 
(27); Sei-strong vibration accelerometer; (2); Ti—fatigue meters (24); Fi—extension gauges (4); 
Cf—cable force apparatus (8) 

 
 
The whole online evaluation is designed as a hierarchical tree structure. The lowest layer has 

the sensors and inspection items; each knot in this layer represents a channel in the real-time 
monitoring system or a virtual channel from the secondary quantities processed from actual 
channel data, or from inspection. In the first layer, the raw data act as representation patterns, the 
feature selection and extraction operations are conducted to reduce the data dimensions and data 
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compression. In doing this, the original data from each logical group are processed, with the aim to 
obtain several meaningful indices. Both the number and the length of the indices are smaller than 
the original data, but the useful information are more condensed. For example, in vertical mode 
monitoring group, 14 channels acceleration records are processed into modal flexibility matrix by 
means of modal parameter identification process, and the elements which contains the most 
information of dynamic features are selected. Both the length and dimensions of the extracted 
indices is far smaller than original acceleration record. 

The second layer is the logical group layer, and the fuzzy inference system (FIS) is used to 
realize inference from the feature patterns to form the ratings or scores of the logical group. FIS 
have a capacity to integrate different types of quantities into one set of linguistic quantities, the 
inputs are objective numerical data measured from sensors and the other inputs are subjectively 
determined by the inspectors' experience and intuition (Danhui 2004, 2006). This is therefore a 
highly suitable case for conducting data fusion between monitoring and inspection information. 
The third layer is the reliability evaluation layer where safety, durability and serviceability are 
evaluated simply by a set of systematic rating scores. The fourth layer is the segment evaluation 
layer with inputs composed of three overall scores for safety, durability and serviceability. The 
final layer describes the whole bridge. This global score for the whole bridge supports human 
decision-making, and is based on the inference engines of the underlying layers in weighted 
accumulation of input.  

By means of feature S&E (selection and extraction), FIS, and weighted accumulations, the 
information flows from the lowest layer to highest layer, and the raw data are processed, extracted, 
and condensed as final scores, which help to give the whole bridge an general description and 
judgment. 

 
 

 
Fig. 5 The AHP based online evaluation tree of DHBHMS 

 

 
Fig. 6 The architecture of the FIS engine (Feature Pattern, abbr. FP) 
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The architecture of the FIS engines is illustrated in Fig. 6. For the convenience of programming, 
the initial antecedent membership function (MF) is selected as follows 
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Where the   is the membership function and its subscript ‘small’, ‘modest’, and ‘large’ 
represent the three levels of descriptions for a given antecedent domain ‘ x ’; and parameters ‘ a ’, 
‘b ’, ‘ c ’, and ‘ d ’ are key points in antecedent domain ‘ x ’, which can be determined according to 
what the ‘ x ’ is.  

The consequent MF are selected as follows 
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Where the ‘ x ’ here represents the consequent domain variables and ‘ c ’ and ‘ ’ is the 
parameters who described the feature of distribution of ‘ x ’, also can be determined and adjusted 
by experience. 

Initial rules for the kernel engine for online evaluation system are as follows, 
 
 

Table 2 Initial rules for FIS engines 

Rules  FP1 FP2 Conclusion 
Rule 1 Small  Small Good 
Rule 2 Small Modest Good 
Rule 3 Small Large Ordinary 
Rule 4 Modest Small Good 
Rule 5 Modest Modest Ordinary 
Rule 6 Modest Large Bad 
Rule 7 Large Small Ordinary 
Rule 8 Large Modest Bad 
Rule 9 Large Large Bad 
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The key to designing a successful evaluation system is to give the index a set of significant and 
reasonable thresholds, and using these thresholds, the value spaces of the index can be divided into 
several subspaces, and the evaluation problem itself can be converted to a judgment problem on 
the value spaces that the index drops into. The initial antecedent MF gives a partition of input 
space tensioned by selected feature patterns. The parameters in each antecedent membership 
functions are determined by the initial threshold of the corresponding feature pattern. In expressing 
(1a, 1b, and 1c), the parameters a, b, c, and d for each feature pattern are designated in advance as 
follows: 

1) The specifications and criteria regulated by the bridge design code, e.g., the mid-span 
deflection and the displacement in an extension gap have specified limiting values, which can used 
as a nominal threshold for the corresponding index. 

2) The structural analysis result from the process of structural design, e.g., the cable force upper 
and lower boundaries can be calculated for different load combinations, particularly in the cases of 
dead load and extreme situation live load combinations.  

3) Generally, thresholds of the most selected feature patterns cannot be designated via 1) and 2). 
Special structural analyses are needed for structural damage and performance evolution analysis 
(SD&PEA) and are described by the authors elsewhere; the boundaries of modal frequencies can 
be computed by SD&PEA by assuming reasonable damage scenarios and forecast performance 
degradation rules and incorporating these into numerical finite element method (FEM) models of 
the bridge.  

Table 3 gives the partial initial thresholds for the feature patterns listed in Table 1 for segment 5, 
the main navigation channel cable-stayed bridge. The intervals division and correspondence 
parameters of their membership function is illustrated in Fig. 7. 
 
 
Table 3 Partial initial thresholds for the feature patterns 

Monitoring 
logical group 

Section/ 
location 

Sensor Feature 
Good 
(Healthy) 

Good 
(Fine) 

Ordinary 
(level one) 

Bad 
(level 
two) 

Local 
deformation 
logical group 

Extension gap 1 Fi 
Longitude 
displacement 

By design document and codes 

Extension gap 2 Fi 
Longitude 
displacement 

By design document and codes 

Global 
deformation 
monitoring 
group 

Top platform of  
PM335 

GPS 
Longitude 
displacement 

[-110,110]mm 
[-223,-110]mm 
[110,223]mm 

[-280,-220]mm 
[223,280]mm 

Others 

Top platform of  
PM336 

GPS 
Longitude 
displacement 

[-110,110]mm 
[-223,-110]mm 
[110,223]mm 

[-280,-220]mm 
[223,280]mm 

Others 

Mid-span GPS Vertical deflection [0,200]mm 
[-52,0]mm 
[200,476]mm 

[-110,-52]mm 
[476,550]mm 

Others 

Cable force 
monitoring 
group 

Cable No.24 Cf 
Cable force under 
dead and live load

[5586,6272]kN
[5103,5586]kN 
[6272,6932]kN 

[4116, 5103]kN 
[6932,7614]kN 

Others 

Cable No. 23 Cf 
Cable force under 
dead and live load

[5566,6076]kN
[5081,5566]kN 
[6076, 6787]kN 

[4116,5081]kN 
[6787,7448] N 

Others 

Cable No. 24* Cf 
the relative cable 
force 

[310,380]kN 
[275,310]kN 
[386,462]kN 

[200,275]kN 
[462,500]kN 

Others 

Cable No.24** Cf 
the relative cable 
force 

[64.9,73.4]kN 
[62.0,64.9]kN 
[73.4,79.0]kN 

[0,62]kN 
[79,123]kN 

Others 

Vertical mode 
monitoring 
group *** 

Acceleration Acc 
Mode frequency 

(order 1) 
[0.366,0.369] 

[0.363,0.366], 
[0.369,0.372] 

[0.355,0.363], 
[0.372,0.378] 

Others 

Acceleration Acc 
Mode frequency 
(order 2) 

[0.506,0.512] 
[0.501,0.506], 
[0.512,0.515] 

[0.498,0.501], 
[0.515,0.519] 

Others 

*,** Corresponding to the relative cable force in case study in section 5. The former is the initial thresholds and the latter 
is the evolved thresholds defined by the cumulative distribution function of one year’s real data. The relative cable force 
is defined as the distance of cable force from the designed value under dead load to the value under live load and dead 
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load.  
*** Considering geometric and boundary non-linearity, the dynamic characteristics of the bridge shows little variation 
even in a no-damage situation, so all the factors affecting the inner force distributions can ultimately affect the dynamic 
characteristics of the bridge. Temperature fluctuations and uneven settlement of supporting piers are taken into account 
when calculating the mode frequencies using the FEM model. The results show that the total accumulation of all the 
effects will not exceed 3% for a given mode frequency. The threshold here is a conservative estimate. The estimate may 
not agree with the observations from on-site measurements because of relative variations of mode frequency due to 
temperature, the main reason being that the FEM model itself may require further investigation and refinement. 
 
 

 

Fig. 7 The intervals division and parameters of membership function 
 
 

4. Threshold system evolution and updating 
 
The initial threshold system above gives an apriori division of the feature pattern space. The 

first objective is simply to give a reference to the feature patterns extracted from the raw data. The 
second is to answer questions from the designer and the bridge operator in the first baseline period 
of operation, for example, whether or not the bridge is safe, or the design specifications are 
suitable: these thresholds are conservative estimates.  

To give a more precise and reasonable health status evaluation (a division of input feature 
patterns space), the initial thresholds must be updated and improved based on actual monitored 
data from the baseline period. In this section, several threshold modifying technologies are 
discussed. Before updating and evolving the division of pattern space, the feature patterns are 
re-chosen according actual monitored data. Two methods are used to fulfill these tasks, fuzzy 
clustering, and statistical pattern recognition. The fuzzy clustering approach is introduced in detail 
in the following.  

As mentioned above, the parameters ‘a’, ‘b’, ‘c’, and ‘d’ in the membership function of the 
initial input feature patterns a-priori gives its space a meaningful division. If the value space of the 
input feature pattern has a rich realized samples set, its space can be reduced to a certain extent and 
the divisions can be made more precise and reasonable. The baseline period is defined as the first 
year of DHBHMS operation, in which no structural damage occurred.  

The space division can be determined by the fuzzy clustering approach, as follows: 
- Step I, determining the number of clusters. Here all the realizations of feature patterns 
come from the baseline period, so it is proposed to be equal to 1. 
- Step II, find the central point of each cluster.  


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- Step III, calculate the difference measure between each single point and cluster central. 
- Step IV, divide the feature pattern space according to the distance in step III. 

Fuzzy k-mean clustering was described by Dunn in 1974, Chan FTS and Dagdeviren M in 2008,  
the basic consideration is to allow each sample to have a different membership value to all the 
clusters. The algorithm of Fuzzy k-mean clustering finds a parameter ijy , (i=1,2,…,n; j=1,2,…,g), 

which makes 

  


n

i

g

j ji
r
ijr mxyJ

1 1
                            (3) 

under a restriction condition 

niy
g

j ij  
11

1
                           (4) 

and 

gjniyij ,...,2,1;,...,2,10                        (5) 

to obtain a minimum value. 

In Eqs. (3)-(5), rJ  is the thr  value function of fuzzy k-mean clustering; ix is the thi  data 

sample in vector; ijy  is actually the memberships of thi  sample ( ix ) to thj  cluster, r is the 

weight index to control clustering process. n  is number of samples, and g  is the total number 

of clusters. jm  is the central of thj  cluster, given by 
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xy
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There are several measures can be selected as a distance definition. Considering the distance 
are expected to be measured invariably whatever units the components composed the feature 
pattern are used, the unit-independent distance measures like Mahalanobis distance should be 
chosen. Other distance measures like Minkowski or Manhattan are unsuitable here. The definition 
of the Mahalanobis distance is following 

   ji
T

jiij mxmxd                             (7) 

here   is covariance matrix of data sample. 
The parameters ‘a’, ‘b’, ‘c’, and ‘d’ can be easily determined by probabilities in the range  [0, 

max (dij)]. Finally, a threshold system can be extracted from the real monitoring data. 
To illustrate the above clustering algorithm, the vertical mode monitoring group of segment 5 

in the DHBHMS is chosen. Figure 8 gives one of sensors picture and a segmental acceleration 
records in this group, which located is on the top panel of the girder in middle section. Two days of 
acceleration recording from this group is used to perform continuous (online) modal parameter 
identification [20, 21], and the modal flexibility matrix can be calculated by the modal frequency and 
mode shape. The modal flexibility matrix is defined as follows, 
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here,   is the modal matrix, and    is eigenvalue diagonal matrix,  i  is the ith modal 

shape vector, and i  is the mode circular frequency. 

 
 
 

 

(a) Photo of the accelerate meter installed on the top 
panel of the girder in middle section 

(b) Acceleration record 

Fig. 8 The acceleration record of the vertical mode monitoring accelerometer group 
 
 
 

 
Fig. 9 Scatter plot of the diagonal element modal flexibility matrix 
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Vertical mode monitoring group contains are all together 14 accelerometers, so the dimension 
of the modal flexibility matrix is 14. To identify modal parameters every 30 minutes from 2 days 
records of 14 accelerometers, and by Eq. (8), 96 samples of the modal flexibility matrix are 
obtained. Theoretically speaking, all the elements in this matrix can be selected as the feature. As a 
matter of convenience, two diagonal elements of the modal flexibility matrix will be chosen in this 
paper. In order to contain the maximum information in the feature patterns, the selected pattern 
should be independent. Fig. 9 gives 14 scatter plots of diagonal elements in the modal flexibility 
matrix. The element in the ith row and jth column of the plot matrix gives a correlation measure 
between ith and jth the diagonal element in modal flexibility matrix. The first and fifth diagonal 
elements in the modal flexibility matrix are chosen to act as representative feature patterns, 
because the correlation coefficient ρ calculated from the 1th row and 5th column of the scatter plot 
is the smallest (ρ=0.106), which means that this selected feature pattern will contain the maximum 
bridge vertical modal information. 

 
 
 

 
 

(a) The feature space tensioned by selected patterns (b) The center found by fuzzy clustering approach 

(c) The threshold determined by distance empirical
cumulated density function 

(d) The evolution of the cluster and its center, for long 
term monitoring. 

Fig. 10 The fuzzy clustering algorithms for threshold system updating and evolution 
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Fig. 10(a) is the feature space tensioned by chosen patterns above. Fig. 10(b) is the fuzzy 
clustering result. The center of the data calculated from equation 6, as shown in Fig. 10(b), point 
(0.6927, 44.79) means that all the sample points are distributed around the center point (0.6927, 
44.79). The Matlab function ‘fcm’ is used to find the center of the data, needing 6 iterations to 
obtain a convergent solution.  

After clustering, the distance between each sample point (FP1, FP2) to the cluster center can be 
calculated. From this, two days modal flexibility matrix data, comprising 96 distance values 
varying from zero to a maximum of 1.94. Fig. 10(c) gives the empirical cumulative distribution 
function. The threshold of this feature space can be determined by the empirical probability value 
of the distance. In this case, the parameters ‘a’, ‘b’, ‘c’, and ‘d’ dividing the modal flexibility 
defined feature space are designated as 0.5945, 0.7033, 0.897, 1.258, with empirical probabilities 
of 30%, 50%, 80%, and 95%. The dimension of the space can be reduced to one, with some risk of 
the fuzzy inference system avoiding an exploding dimension. The subspace can be partitioned with 
intervals as [0 0.5945], [0.5945 0.7033], [0.7033 0.897], [0.897 1.258], [1.258 + ]. 

Fig. 10(d) gives the illustration of evolution of the online evaluation system. Periodic updating 
of this system is needed. Every fixed period, the data set and its center are re-analyzed, and the 
empirical cumulative distribution function (CDF) are estimated again, the parameters ‘a’, ‘b’, ‘c’, 
and ‘d’ can be re-defined. Evolving the thresholds is the key to evolving the whole evaluation 
system, and the center moving tracks reflect the history of the feature space. Here, there data set 
representing three periods - period I, II, and III are plotted on Fig. 10(d), its corresponding center 
is (0.693,44.79), (0.693,34.5), and (0.729, 44.79) . In long term monitoring, this data is tracked 
continuously. 

 
 

5. The performance of the updated online evaluation system 
 
To validate the performance of the updated online evaluation system by the above mentioned 

approach, a comparative investigation was conducted before and after updating. The vertical mode 
monitoring group was not used as an evaluation item in the baseline period, so the cable force 
monitoring group was chosen for comparison. The performance of the vertical mode monitoring 
group will be described elsewhere. 

The initial threshold of the relative cable force (defined as the distance of cable force from the 
designed value under dead load to the value under live load and dead load) is [200 kN, 500 kN] in 
level one and [500 kN, +∞] in level two, values taken from the bridge design specification. There 
are 25 instances of data exceeding the threshold value of 200, and 6 instances of data exceeding 
the threshold 500 in a month (Fig. 11). The general score of the group calculated by the FIS engine 
is 50.97, judged as ‘Ordinary’; because the bridge is in good condition, in another words, ’health’, 
which is inconsistent with the judgment ‘Ordinary’. That is a troublesome conclusion, because it is 
prone to induce bridge owners’ worrying about the security of the bridge. After one year of 
monitoring, the parameters dividing the feature space are modified according the fuzzy clustering 
approach described above, the center of cable force index is 67 kN, and the thresholds are 0 kN, 67 
kN, 78 kN, 107 kN, 123 kN, and 306 kN, corresponding to a CDF value of 100%, 50%, 60%, 80%, 
95%, and 99% (Fig. 12). To designate these thresholds (0 kN, 67 kN, 123 kN, and 306 kN) to the 
parameters of antecedent membership function ‘a’, ‘b’, ‘c’, and ‘d’, the parameters for FIS are then 
updated according to the real cable force data. Feeding this parameter into the FIS engine, the total 
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score is 87, and the status is judged as ‘healthy’, this reflects the true cable status of the Donghai 
Bridge, indicating the validity of the updated online evaluation system. 

 
 

Fig. 11 Cable force index history over one month 
 
 

Fig. 12 The cumulative distribution function of the distance of cable force index 
 
 

6. Conclusions 
 
In this paper, the development a fuzzy inference system with an analytical hierarchy process 

(AHP) based online evaluation technique is described. AHP hierarchical tree architecture was 
introduced for graded evaluation of a complete 32-km bridge. The fuzzy inference system is 
applied here to successfully realize evaluation computing at the lowest level nodes of the tree-like 
architecture. The initial thresholds of each index are set to an initial value obtained from structural 
damage and performance evolution analysis of the bridge from the first year online evaluation 
using the DHBHMS, and is updated by actual monitoring-data based feature patterns and 
corresponding threshold systems. A fuzzy clustering approach helps to give a reasonable feature 
space division. The case study of the DHBHMS shows its validity and that the technique 
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developed in this paper can be used to update an online FIS system in the DHBHMS. The modal 
parameter-based feature pattern modal flexibility matrix is an important evaluation item.  

The application results show that the techniques this paper used are reasonable and reliable, 
fulfilling the online evaluation requirements of the Donghai Bridge Health Monitoring System and 
acting as a long term online evaluation system. 
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