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Abstract.    The purpose of this paper is to investigate the flexible structure of parabolic shell using 
photostrictive actuators. The analysis is made to know its dynamic behavior and light-induced control forces 
for coupled parabolic shell. The effects of an actuator location as well as membrane and bending 
components under the control action have been analyzed considering the approximate spherical model. The 
parabolic membrane shell accuracy is being mathematically approximated and validated comparing the light 
induced control forces using approximate equivalent spherical shell model. The parabolic shell with kapton 
smart material and photostrictive actuators has been used to formulate the governing equation in the 
transverse direction. The Kirchhoff-Love assumptions are used to obtain the governing equation of shell 
with actuator. The mechanical membrane forces and bending moments for parabolic thin shell with actuator 
is used to analyze the dynamic effect. The results show that membrane control action is much more 
significant than bending control action. Photostrictive actuators oriented along circumferential direction 
(actuator-2) can give better control effect than actuators placed along longitudinal direction (actuator-1). The 
slight difference is observed between spherical and parabolic shell for a surface with focal length to the 
diameter ratio of 1.00 or more than unity. Space applications often have the shape of parabolical shells or 
shell of revolution, due to their required focusing, aiming, or reflecting performance. The present approach is 
focused that photostrictive actuators can effectively control the vibration of parabolical membrane shell. 
Also, the actuator's location plays an important role in defining the control force. 
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1. Introduction 
 

Over the last few decades, studying the dynamic behaviors of an inflatable membrane structure 
has proven to be a challenging job. Many researchers have been studied the dynamic 
characterization of membranes (Gajbhiye et al. 2012, Jenkins 1996, Jha et al. 2002, Saigal et al., 
1986) using numerical methods such the pre-stress effects on the membrane, wrinkling effects due 
to pressure loading, surface deviations, and when possible, experimental approaches (Leyland et al. 
2005, Jenkins and Korde 2006) to compute vibration modes and frequencies of an inflatable 
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Fig. 3 Spherical approximation to the parabolic shell 
 
 
It is found to be truth that the curvature of a parabola deviates by less than 1% from the 

equivalent spherical shape once the radius of the aperture has not exceeded 20% of the radius of 
the curvature (Glaese 2003). In other words, the difference between a spherical shell and a 
parabola is under 1% for surface with a focal length to the diameter ratio (F/D) of one more than 
unity. This can be critical for optical purposes but not believed to be a source of significant change 
in dynamic behavior. Therefore, to govern the simplicity of the dynamic performance of the 
parabolic shell, an equivalent spherical shell is considered in which the spherical shell of radius R 
coincides with parabolic surface both at the apex and at the edge (Tan and Pellegrino 2004), as 
shown in Fig. 3. 

For a parabolic shell, from ΔLPN 
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Since the both Δ’s are equal, therefore the spherical shell radius can be found as 
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Now, from ΔOQN 
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*sin
2
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                    (5) 

From Eqs. (3) and (4), the subtended angle *α  in terms of focal length can be found as 

*

2
4 16

D

DF F

 
   

                (6) 

 
 
3. Parabolidal membrane shell modeling with photostrictive actuators 

 
In the fields of mechanical, architectural and aeronautical engineering, the parabolidal shells 

are mostly utilized to expose good dynamical behaviors and its focusing characteristics. The 
mathematical modeling of parabolidal shells with photostrictive is presented in this section. 
Parabolidal shells are fabricated as flexible and low damping components which need to be 
micro-controlled. Parabolic shells of revolution are common components for reflectors, mirrors, 
etc. Photostrictive materials produce mechanical strain when irradiated by ultraviolet light, thus 
can be used in wireless control of structures.  

Under the domain of global coordinate system (X,Y,Z), the parabolic shell is defined along the 
meridional, circumferential and transverse directions (Fig. 3), denoted respectively by α, β and γ 
for tri-orthogonal curvilinear coordinate system (α,β,γ). The radial distance and meridian height at 
the pole respectively, be denoted by R and M’. The constant ӊ represented by ' 2 / 'H R M . The 

two principal radii of double curvature are 
3cos

R



   and 



 cos
R . Membrane 

approximation is applied for parabolidal membrane shells in which the rotary inertial effects and 
the transverse shear deformations are neglected in thin shells revolution. The lame’s parameters 

can be defined as iA R   and sin
cosjA
 


 . The fundamental system equation of the 

parabolidal shell (Tzou 1993) can be written as  
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Imposing the Kirchhoff-Love assumptions and neglecting the twisting in the plan effect of the 
shells, the some membrane and bending strains can be defined as follows  

 γγ αγ βγ 0m m ms s s                                (12) 
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Using the relations from Eqs. (12) to (18) as, the mechanical membrane forces and bending 
moments for thin shell can be followed as  
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Noting that 
2(1 )

m Eh
K





and 

2

*
12

b m h
K K ; The different assumptions from flexible 

membrane approximation (Soedel 1981) have been followed to avoid the complication in the 
fundamental equation as thin parabolidal shell has non-constant double curvature. The system 
equations i.e., Eqs. (7)-(24) for the parabolidal shell shall be reduced to  

2
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                   (27) 

In the dynamic analysis, the transverse oscillation of the paraboloidal shell dominates the entire 
system and hence controlled by the photostrictive actuators. The photostrictive actuators are 
introduced on both upper and lower surface of the parabolic structure to control the moments 
induced by the actuators. The actuators should be placed either along meridional or circumferential 
direction. If the actuator systems are supposed to provide control force Nαα then the actuators 
should be placed in α-direction (actuator-1). If the system needs to control force Nββ, the 
photostrictive actuators should be oriented in β-direction (actuator-2). 

The governing equation of the flexible parabolic membrane shell with actuator(s) in the 
transverse direction can be given as 

   
23 3

1
αα ββ αα2

cos cos cos
ρh

' ' '

u
N N N

H H t H
  
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23 3
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  
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  


            (for A-2)    (29) 

where, the actuator’s controlling force induced given by (Shih and Tzou 2007) 

1 * * * *
αα 1 2 1 2[ ( ) ( )][ ( ) ( )]a a s s s sN h Y s u u u u                   (for A-1)    (30) 

2 * * * *
ββ 1 2 1 2[ ( ) ( )][ ( ) ( )]a a s s s sN h Y s u u u u                  (for A-2)    (31) 

In the above expression, even though the nomenclature looks same, but the numeric value 
depends on the actuators properties and their shape and size. Since the transverse response is the 
combination of the multiple modes, using the model expansion method (Tzou 1993), the kth model 
equation of the parabolidal shell in the transverse direction can be obtained as 

2
2

2
2 ( ) ck k

k k n k kF
t t

     
   

 
                     (32) 

and the control force can be obtained as 
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where, * is meridional angle of boundary rim. 
 
 

4. Control action of photostrictive actuator patches 
 
The parabolidal shell can be actively controlled by the photostrictive actuators. The 

photostrictive actuators can be activated under high energy light illumination. The light intensity 
can be decided according to some control laws, called as control input. Since, light intensity is 
related to model velocity, and hence the kth model governing equation Eq. (31) of the parabolidal 
shell for the instant time t can be reframed as   

22 ( )
kj

c
k k kj n k kjF                                (36) 

Where, suffix j denotes for the time instant tj and solved using Newmark-β method. In this 
paper, the constant light intensity control is used. The amplitude of light intensity is constant and 
can be determined (Wang 2011) as  

1( ) [max | |]j kI t G t                               (37)  

It is assumed, when light direction get changed the remnants strain and electric field of an 
actuator, disappear immediately. Since, both the actuators are laminated with the parabolidal shell, 
light direction should be alternatively applied to the top and bottom of the photostrictive actuators 
depending on velocity direction. When the parabolidal shell oscillates downward, light should be 
applied to the bottom actuators so that positive control force can be induced; when the parabolidal 
shell oscillates upward then light should be applied to the top actuators, and negative control force 
can be induced.  

 
 

5. Result and discussion 
 
Since the placement of actuators, is one of the critical problems in structural active control, hence 

the effects of the actuator’s location along the meridional and circumferential direction have been 
analyzed. The parabolic shell is taken which is made up of kapton smart material having young’s 
modulus as 2.55x109 N/m2, density as 1420 kg/m3 and Poisson’s ratio of 0.36. The geometric 
parameters are R = 0.1 m, M’= 0.1 m and h = 1x10-3 m. The shell is controlled by the photostrictive 
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actuators whose geometric parameters are of length 2x10-2 m, width 0.75 x 10-2 m and uniform 
thickness of 1x10-4 m, and the material properties of photostrictive actuators are listed in Table 1 
(Shih 2005b). 
 
Table 1 Material properties of photostrictive actuators 

No. Material properties Value 

1 Saturated electric field 2.4x105 V.m-1 

2 Young’s modulus 6.30x1010 N/m2 

3 Optical actuator constant 2.772x10-3 m2W-1s-1 

4 Voltage leakage constant 0.01 Vs-1 

5 Power of absorbed heat 0.023 m2s-1 

6 Piezoelectric strain constant 1.79x10-10 mV-1 

7 Heat capacity 16 WoC-1 

8 Heat transfer rate 0.915 WoC-1s-1 

9 Stress-temperature constant 6.808 6x104 N·m-2C-1 

10 Pyroelectric constant 0.25x10-4 C·m-2C-1 

11 Electric permittivity 1.65x10-8 Fm-1 

 
 
The two different orientations have been chosen for both actuators. The actuator-1 is placed 

along α-direction and its polarity also kept in the same direction. Similarly, the actuator-2 lies along 
β-direction with polarity in the same direction. In all four mode shape, the deflection of the edge due 
to model control action for free parabolic membrane shell is clearly observed corresponding to the 
actuator’s orientation. From the set of figure 4, it is concluded that the control action of an induced 
force of actuator-2 is more than that of actuator-1. The control action induced by photostrictive 
actuator along meridional direction is larger than that of the actuator along the circumferential 
direction. It is so because the locations of actuators are closed and equally dense due to the light 
intensity towards the rim of the shell as compared to the location of actuator-2. 

The Fig. 5 shows the bending and membrane effect corresponding to actuator-2’s location at its 
mid-point where this actuator is located at the bottom of the rim of the spherical shell. In this 
figure, the first mode shows the variation of actuation force along the spherical shell surface in the 
meridional direction. This remarked that the membrane force dominates the overall control effects. 
Figs. 5 and 6 respectively, expose the same conclusion to that of the spherical shell and the 
parabolic shell with the actuator-2 at the bottom rim for the first mode shape. 

The first four mode shapes have been shown in Fig. 6, indicating the comparison of the 
magnitude of actuator force induced by the intensity of light. As the actuator patch location moved 
away from the rim, the control forces may get decreased. This figure reveal that the control action 
increases from the pole to the boundary and the mode number increases as the actuation force 
decreases, this may conclude that the membrane effect gradually diminishes as the mode increases. 
The F/D ratio for the control induced force have been calculated and plotted for the three F/D ratio 
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of 0.50, 0.75, 1.00 and 1.25. as shown in Fig. 7. This figure shows good agreement for both 
models as the comparison of F/D ratio are equivalent. This may conclude that the difference 
between spherical shell and parabola shell become minimize with F/D of unity or more than unity. 
 

(a) Edge deflection for mode-1 (b) Edge deflection for mode-2 

(c) Edge deflection for mode-3 (d) Edge deflection for mode-4 

Fig. 4 Model control action of free parabolidal membrane shell with (a) edge deflection for mode-1, (b) 
edge deflection for mode-2, (c) edge deflection for mode-3, and (d) edge deflection for mode-4 

 
 

Fig. 5 Induced Force effect of actuator-2 at various positions for spherical shell showing membrane and 
bending effect for first mode shape 
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Fig. 6 Induced Force effect of acturator-2 at various positions for parabolic shell showing 
membrane effect for first four mode shape 

 
 

Fig. 7 Spherical and parabolic shell model comparison in terms of F/D 
 
 

6. Conclusions 
 
The dynamics behavior of the inflated parabolidal structure is of practical interest to spacecraft 

system and structural design as the parabolic shaped element is one of the key component of many 
inflated structure design due to their required focusing, aiming, or reflecting performance. In this 
work, mathematical modeling with actuator patch, dynamic characteristics and mode shape 
functions of flexible parabolidal membrane shells are presented. The actuation force with control 
effects and the actuator locations have been evaluated. The accuracy of the parabolic shell is done 
by using spherical approximation. The following observations are carried out: 

a) The control action of an induced force of actuator-2 is more than that of actuator-1 i.e., the 
control action induced by photostrictive actuator along meridional direction is larger than that of 
the actuator along the circumferential direction. 
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b) Membrane effects dominate much more compare to that of the bending effect. As the actuator 
patch location moved away from the rim, the control forces may get decreased. This Fig. 6 
reveals that the control action increases from the pole to the boundary and the model actuation 
force gradually decreases at higher modes; this may conclude that the membrane effect gradually 
diminishes as the mode increases.  
c) A parabolic shell is very complicated to analyze due to its non-constant radius, hence the 
accuracy of approximating a parabolic shell is done using spherical shell prediction. Figs. 5 and 6, 
reveals the same results for the first mode in the membrane effect.  
d) To analyze the flexible parabolic shell, the results of the equivalent spherical shell have been 
compared and optimize the parabolic shell results if the focal length with diameter ratio should be 
kept unity or more than unity.   
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