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Abstract.  The paper presents a multi-objective optimization strategy for a multi-type sensor placement for 
Structural Health Monitoring (SHM) of long span bridges. The problem is formulated for simultaneous 
placement of strain sensors and accelerometers (heterogeneous network) based on application demands for 
SHM system. Modal Identification (MI) and Accurate Mode Shape Expansion (AMSE) were chosen as the 
application demands for SHM. The optimization problem is solved through the use of integer Genetic 
Algorithm (GA) to maximize a common metric to ensure adequate MI and AMSE. The performance of the 
joint optimization problem solved by GA is compared with other established methods for homogenous 
sensor placement. The results indicate that the use of a multi-type sensor system can improve the quality of 
SHM. It has also been demonstrated that use of GA improves the overall quality of the sensor placement 
compared to other methods for optimization of sensor placement. 
 

Keywords:  long span bridge; sensor placement optimization; mode shape expansion; modal identification; 

modal clarity index; genetic algorithm 

 
 
1. Introduction 
 

The significant increase in the demands of the built environment observed over the last three 

decades, together with the limiting financial and natural resources have led towards the 

development of innovative techniques for monitoring the performance of structures. The 

methodology to monitor a structure through the evaluation of its in-service performance is known 

as Structural Health Monitoring (SHM). 

A proper SHM system can trigger alarms of structural deterioration early enough so as to 

schedule maintenance actions well in advance, thus reducing maintenance costs, and more 

importantly avoid severe structural deterioration that can lead to collapse. This realization has led 

to partial acceptance of the SHM systems for deployment on important infrastructure. The major 
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hindrance in the widespread acceptance of SHM systems is the high cost of the SHM equipment 

(Uhl 2009). The aim of the bridge owners is to minimize the cost of the SHM system thus putting 

a restriction on the number of sensors used. This restriction makes the optimization of sensors a 

necessity for maximum information quality.  

Damage detection is a significant component of the function of the SHM. The traditional SHM 

systems mainly focus on monitoring the vibration characteristics of the structure like mode shapes 

and frequencies through the use of accelerometers for damage detection. Due to the global nature 

of these properties, these systems are sensitive to damages of large extent only (Doebling et al. 

1998). In order to improve the sensitivity of the SHM system to small scale, local damage the use 

of local level sensors is necessary. Strain sensors are inexpensive and robust for damage detection 

at the local level but the range of detection is limited (Chakraborty and DeWolf 2006). If the 

damage occurs outside the immediate vicinity of the strain sensors, it might be missed. Thus 

multi-type sensing making use of accelerometers for global damage diagnosis and strain sensors 

for local damage detection is required to ensure detection of damage in the structure (Law et al. 

2005, Sim et al. 2011).  

The optimized sensor placement (OSP) problem has been investigated by many researchers in 

the field of mechanical, aerospace and civil engineering (Heo et al. 1997, Fedorov and Hackl 1994, 

Talebjinad et al. 2011). The work in the area of OSP has been largely restricted to the use of one 

type of sensors (homogenous network). So when the network consists of multi-type sensors these 

approaches yield a sub-optimal solution. Hence in order to maximize the use of sensors, the 

problem of multi-type sensor placement should be treated as one optimization problem.  

The optimization problem has been solved through many approaches. Papadimitriou (2004) 

uses the Backward and Forward Sequential Sensor Placement where the sensors are removed/ 

added in order to improve the information content sequentially. Kammer (1991) tries to improve 

the information content, through the use of Effective Independence Method (EFI) by removing the 

sensor which contributes the least to a norm of Fisher Information Matrix (FIM). Both of these 

approaches are difficult to be implemented to large structures where there is a large number of 

possible sensor locations, and deleting of sensor positions one at a time is computationally 

expensive. When more than one sensor is removed at a time, the solution is sub-optimal. Worden 

and Burrows (2001) proposed the Simulated Annealing and Genetic Algorithm (GA) technique for 

OSP for damage detection of plate structures. These methods are known to give near-optimal 

solutions and work well even when the problem size is large e.g., on bridge structures.  

In SHM the commonly used principles for sensor placement are the Kinetic Energy Methods 

(Heo et al. 1997), the FIM based methods (Kammer 1991) and many other derivatives of these 

norms. The primary function of these SHM systems is Modal Identification (MI), and in turn 

accurate damage detection (Worden and Burrows 2001). The performance of the damage detection 

methodology depends on the location of the sensors on the structure. In order to improve the 

damage detection resolution, Mode Shape Expansion (MSE) can be used (Levine et al. 1994). In 

addition, the MSE allows the estimation of the stresses and the displacements which occur at 

degrees of freedom which are not instrumented. MSE is essentially an interpolation process based 

on the collected data. This interpolated data should be as close to the real values as possible. Hence 

Accurate Mode Shape Expansion (AMSE) becomes a valid principle to optimize the sensor 

placement in order to achieve higher resolution of damage localization.  

The present study aims at optimizing the sensor placement for joint optimization of multi-type 

sensor network for MI and AMSE. Due to the large size of the optimization problem when applied 

to a real structure, the integer Genetic Algorithm (Haupt and Haupt 2004) has been employed for 
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optimizing the selected principles. In addition, the results obtained from the optimization are 

compared with homogenous sensor placements and sensor placement using established methods 

for OSP.  

The rest of the paper is organised as follows. Section 2 provides the theoretical formulation of 

the problem. It elaborates the different application demands and their mathematical treatment. 

Section 3 covers the numerical modelling aspects of the long span bridge which was used for the 

validation of the methodology. Section 4 presents the sensitivity studies and the simulated results 

for the selected application demands. Finally, Section 5 discusses the key conclusions and the 

envisaged future work in the area. 

 

 

2. Optimization of sensor placement 

 
A schematic of the optimization process is given in Fig. 1.  

 

 

 

 

Fig. 1 Schematic of Optimization Process 
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The multi-objective optimization process starts, with the selection of the optimization 

principles, based on the application at hand. In order to simplify the optimization algorithm, the 

application demands are combined into a single metric through scalarization. Different optimized 

results are obtained by varying the scalarizing factor. These results may then be presented in a 

concise form through the use of a Pareto-front. The optimization process can be achieved through 

any optimization algorithm like the GA (Haupt and Haupt 2004), Simulated Annealing (Worden 

and Burrows 2001) etc. For the present case keeping in mind the large problem size and need for 

multi-objective optimization, GA was selected as the optimization algorithm. In order to overcome 

the problems associated with heterogeneous sensor networks, slight customization of the 

optimization algorithm for the combination of different sensor measurements is necessary. Each of 

the steps of the optimization process are explained in detail in the following sections. 

 

2.1 Application demands 
 

The optimization of sensor placement needs to be carried out with a particular application in 

mind. The application for which the optimization is carried out then can be expressed in the form 

of a qualitative metric for comparison. The application demand commonly used for placement of 

accelerometers is modal identification. But in the present scenario, as the methodology tries to 

improve the resolution of damage detection, accurate mode shape expansion is also a key demand 

for the sensor placement optimization. The numerical formulation of each of these demands is 

explained here. 

 

2.1.1Modal identification 
In order to perform accurate modal analysis it is important to identify the mode shapes and 

distinguish them from each other. This process of identification and distinction is known as Modal 

Identification. A widely accepted method for distinction of the mode shapes is the use of Modal 

Assurance Criterion (MAC) (Ewins 2000). MAC makes use of the orthogonality of the mode 

shapes with respect to the system mass matrix and allows us to qualitatively assess the distinction 

between different modes. However, in the case of heterogeneous network consisting of strain 

sensors and accelerometers, the orthogonality of the mode shapes to each other is lost. Thus, MAC 

cannot be used and therefore Modal Clarity Index (MCI)is employed (Natarajan et al. 2006).  

The MCI is based on the least squares method. The best-fit amplitude matrix λ is constructed 

making use of Eq. (1) 

𝜆𝑝,𝑞 =  
 𝛼𝑖,𝑝𝛼𝑖,𝑞

𝑛
𝑖=1

 𝛼𝑖,𝑞
2𝑛

𝑖=1

                   (1) 

where p and q are the modes being compared, n is the total number of sensors deployed, α is the 

scaled modal matrix comprising of strain measurements and displacement measurements. 

The Modal Clarity Index can then be obtained as the difference between the excited mode p 

and the best fit mode q (Natarajan et al. 2006). 

𝑀𝐶𝐼𝑝,𝑞 =  [𝛼𝑝 − (𝜆𝑝,𝑞 ∙ 𝛼𝑝)]𝑇 ∙  [𝛼𝑝 − (𝜆𝑝,𝑞 ∙ 𝛼𝑝)]           (2) 

where p, q,α have the same definitions to the corresponding parameters used in Eq. (1). 

The MCI matrix is a square matrix with dimensions equal to the modes of interest. Ideally, the 

matrix should have zeros along diagonal elements and high values at off-diagonal locations. A 

higher value at an off-diagonal location indicates good distinction between the mode shapes. In 
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order to maximize the identification of different mode shapes the sum of off-diagonal elements 

should be as high as possible. A threshold for the lower values of the off-diagonal elements can be 

incorporated in the optimizing algorithm to ensure good identification of all mode shapes. 

 

2.1.2 Accurate mode shape expansion 
 

SHM is deployed primarily for Level 2 damage detection (determining existence and location 

of damage) (Rytter 1993). The resolution of the isolation of damage is often restricted by the 

density or spread of the sensor on the system and hence in most cases is not used by bridge owners. 

There is a need to improve this resolution of damage location determination. One way of achieving 

this is by performing MSE. MSE is used to estimate the response of the structure at the degrees of 

freedom (dofs) which are not equipped with a sensor, based on the measurements at few dofs. The 

MSE needs to be undertaken in order to improve the effectiveness of the damage detection 

methods. Many MSE methodologies have been proposed in the literature based on expansion 

methods like the Guyan Reduction (Guyan 1965), the Dynamic Reduction (Kidder 1973), and the 

System Equivalent Reduction Expansion Process (SEREP) (O’Callahan et al. 1989). The SEREP 

method is based on mode shapes as opposed to the other methods which are based on system 

stiffness and system mass matrices. SEREP method does not make use of orthogonality of the 

mode shapes and hence can be applied to the integrated modal matrix formed by the combination 

of strain sensors and accelerometers. 

The SEREP method can be applied using the Eq. (3) 

𝑦𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 =  𝛤 ∙   𝛤𝑚
𝑇𝛤𝑚 

−1
  ∙ 𝛤𝑚

𝑇 ∙ 𝑦𝑚             (3) 

where, yestimate is the estimated response, Γ is the system modal matrix, Γm is the modal matrix for 

the measured dofs, and ym is the measured response of the structure. 

 A full scale expansion is possible from a limited number of measured dofs using this method. 

The accuracy of the expansion depends on the number of the sensors used, as well as on their 

location. The accuracy of the expansion is assessed by taking the mean of the absolute relative 

error between the predicted responses and the actual response obtained from finite element 

simulations. The equation for the mean relative error is given in Eq. (4). 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟 =
 𝑦𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 −𝑦𝑎𝑐𝑡𝑢𝑎𝑙  

 𝑦𝑎𝑐𝑡𝑢𝑎𝑙  
             (4) 

A low value of mean relative error (MRE) signifies an accurate prediction, and hence it should 

be as low as possible. 

 

2.2 Combination of measurements 
 

The combined modal matrix consists of strain and displacement data for the elements and 

nodes respectively. The combined modal matrix is highly ill-conditioned due to the large 

difference in the order of magnitudes and any operation on this will lead to wrong results. Thus, to 

overcome the problem of the ill-conditioning, scaling of the quantities is required. Mathematically, 

the scaling matrix should be the covariance of the measurement noise of individual sensors. The 

measurement noise can be assumed as a zero-mean stationary Gaussian noise (Kammer 1991). The 

noise is uncorrelated, giving a diagonal matrix. But it is difficult to estimate the measurement 

noise before deployment. Hence, a scaling matrix, which is independent of the measurement noise, 
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is employed.  

The scaling matrix should have similar characteristics to the covariance of the measurement 

noise; it should reflect the order of magnitude of the measurement and also the confidence level in 

the quality of sensors. The order of magnitude can be captured through the normalization for each 

degree of freedom, with all the mode shapes considered.  

Thus, given the combined modal matrix 𝛼 , Eq. (5) 

 𝛼  =   

 
 
 
 
 
 
 
 
 
𝐴1,1 . . 𝐴1,𝑚

. . . .

. . . .
𝐴𝑛,1 . . 𝐴𝑛,𝑚

𝐵1,1  . . 𝐵1,𝑚

. . . .

. . . .

. . . .
𝐵𝑠,1 . . 𝐵𝑠,𝑚  

 
 
 
 
 
 
 
 

 𝑛+𝑠 × 𝑚

             (5) 

where, 𝛼  is the combined modal matrix, Ai,j=modal strain for the j
th 

mode and i
th 

dof, Bi,j=modal 

displacement for the j
th 

mode and i
th 

dof, n is the number of strain sensors, s is the number of 

accelerometers, and m is the measured mode numbers, we can compute the scaling matrix, Eq. (6) 

𝑆 =   

 
 
 
 
 
 
max 𝐴1 × 𝑀𝐶 . . . . .

. . . . . .

. . max 𝐴𝑛 × 𝑀𝐶 . . .

. . . max 𝐵1 . .

. . . .  . .

. . . . . max 𝐵𝑠  
 
 
 
 
 

 𝑛+𝑠 ×  𝑛+𝑠 

             (6) 

where, MC, is the relative confidence in the measurement of strain to that of displacement mode 

shape based on accelerometer data. 

For the present study, the MC is taken to be equal to1 as the confidence in the measurements of 

FE-based values is 100% for both types of measurements. In case of actual experimental data, the 

relative confidence in measurements can be incorporated. In the study undertaken by Unger et al. 

(2005) the error in measurement of natural frequency, strain and mode shapes were found to be 

1:4:5. This trend is also reflected in (Ortel et al. 2012). This relative ratio can be found from the 

data sheet of the sensor manufacturer and or some basic studies prior to full scale deployment on 

the structure. 

 
2.3 Comparison of different sensor placements 
 

In a multi- objective optimization problem, it is likely to have more than one optimum solution. 

There are also cases where the objectives of optimization are contradictory to each other, and 

improving one objective might lead to relaxing the other. So there is a need to select the proper 

trade-off before the decision for an OSP can be taken. One way to achieve this trade-off is to 

integrate the two objectives into one objective through the use of linear scaling factor. In this study, 

the two objectives are Accurate Mode Shape Expansion, and Modal Identification with the MRE 

and the MCI serving as the corresponding metrics respectively. The MCI should be as high as 
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possible, while MRE should be as low as possible. These two contradictory principles can be 

scalarized and combined linearly through the use of Eq. (7). 

g = [β×(MCI) – (1-β) MRE]                     (7) 

Thus, the cost function for each of the sensor placements can be computed easily and compared 

in a subjective way. The results can be presented in the form of a Pareto-front for different values 

of β ranging between 0 and 1 based on the relative weights assigned to each of the optimization 

principles. 

 

2.4 Optimization 
 

The optimization problem can be treated as a minimization problem where, the sensor 

placement with a combined metric of AMSE and MI is combined using a suitable weighing factor. 

This factor is decided on the basis of the application demands specific to the case at hand. Also, for 

a long span bridge structure, the possible locations of sensor placement and the available number 

of sensors makes the problem size large, and in order to reduce the computational load, a 

meta-heuristic approach of optimization is necessary. Meta-heuristic approaches allow a better 

search of the sample space in order to find near optimal solutions and hence cannot guarantee the 

absolute optimum solution. This tradeoff is especially important in case of large problem size and 

non-linearity in the cost function, which make the computations very expensive. 

The Integer GA was chosen as the optimization tool due to the simplicity it brings to the 

problem formulation and ability to combine different metrics for multi-objective optimization 

(Haupt and Haupt 2004). 

 

 

3. Numerical modelling of a long span bridge 
 

For the validation of the proposed methodology, the Great Belt East Bridge was used. The 

Great Belt Bridge, shown in Fig. 2 is a suspension bridge in service since 1997.  

 

 

 

Fig. 2 Main Dimensions of Great Belt East Bridge 
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The bridge spans the navigation channel connecting the Danish islands of Zealand and Funen. 

It has a central span of 1624m and two side spans of 535m each. The entire length of the girder is 

suspended using two massive pylons which by that scale a height of 254m. The bridge uses a 

continuous bridge girder without supports at the pylons (Weight, 2009). 

The bridge was modeled in the commercial software ABAQUS v.6.11. A fish-bone model 

(Chan et al. 2006) was employed for the modeling, which is simple to construct and fulfills the 

accuracy demands for our application of validation. The bridge deck mass was concentrated in 

three locations, two equal masses were assumed at the locations where the hangers are attached, 

and one mass below the neutral axis to preserve the location of the neutral axis and the center of 

gravity.452 beam elements (Element type: B31) with equivalent properties to the bridge girder 

were used to model the spine of the girder. The main cables and the hangers were modeled as 

beam elements with very low stiffness in compression and bending and suitable mass density as 

indicated in the design drawings. 

The pylons were modeled using 30 beam elements for each tower. Fig. 3 shows the finite model 

of the bridge along with the specific support conditions. The end conditions were based on the 

design drawings and the model updating carried out based on experimental data available in 

literature (Larsen 1993). A static analysis was initially carried out in to determine the pretension in 

the cable. Non- linear analysis was performed to incorporate the geometric non- linearity of the 

main cable due to its sag. The natural frequencies of the first two lateral, two longitudinal and two 

torsional modes of vibration obtained through FE analysis were compared to the corresponding 

experimentally obtained natural frequencies, found in literature (COWI internal report 2000) for 

model validation. From Table 1 it can be observed that the corresponding natural frequencies are in 

good agreement as their difference is less than 3.3%. 

 

 

 

Fig. 3 FE model of Great Belt East Bridge 

 

 

62



 

 

 

 

 

 

Multi-type, multi-sensor placement optimization for structural health monitoring… 

 
Table 1 Dynamic Validation of FE model 

FEM Predicted 

(Hz) 

Target Frequency 

(Hz)* 
Difference 

(%) 
Mode Specification 

0.0537 0.052 3.269 Lateral Sway 

0.103 0.100 3.000 Longitudinal Bending 

0.115 0.113 1.770 Longitudinal Bending 

0.123 0.121 1.653 Lateral Sway 

0.278 0.278 0.000 Torsion 

0.382 0.383 -0.261 Torsion 

*Larsen, A. (1993) 

 
Table 2 Performance of optimization principles with change in number of sensors (accelerometers and strain 

sensors) 

Number of Sensors Distribution Sum of MCI Mean Error 

905 Every DOF 1.9302 × 10
4 

9.9561 × 10
-5

 

454 Every other DOF 9.6801× 10
3
 1.0889 × 10

-4
 

305 Every 3 6.4916× 10
3
 1.3217 × 10

-4
 

228 Every 4 4.8524× 10
3
 1.4489 × 10

-4
 

184 Every 5 3.9226× 10
3
 1.4002 × 10

-4
 

154 Every 6 3.2676× 10
3
 1.5042 × 10

-4
 

133 Every 7 2.8330× 10
3
 1.6167 × 10

-4
 

116 Every 8 2.4648× 10
3
 1.6482 × 10

-4
 

104 Every 9 2.2098× 10
3
 2.0764 × 10

-4
 

94 Every 10 1.9636× 10
3
 2.8395 × 10

-4
 

85 Every 11 1.7797× 10
3
 2.9328 × 10

-4
 

79 Every 12 1.6700× 10
3
 2.1074 × 10

-4
 

73 Every 13 1.5483× 10
3
 2.7683 × 10

-4
 

 

 

4. Sensitivity Study 
 

The robustness of the methodology with changing parameters has been studied. The effect of 

changing number of sensors, the number of monitored natural frequencies, and the comparative 

study of the new proposed method to the existing OSP methods are presented in this section. 

 

4.1 Effect of number of sensors on optimization variables 
 

The number of sensors affects the quality of information which is collected by the sensors. 

Intuitively, the MRE, as well as the MCI are expected to be improved by increasing the number of 

sensors. Table 2 presents the results obtained for different number of evenly placed strain sensors 

(at the mid-point of beam elements) and accelerometers (at the element nodes) along the girder of 

the long span bridge presented in Section 3. The expected trend of improvement can be observed 
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in the table with few exceptions (e.g., reduction from 228 sensors to 184 sensors and also 

reduction from 85 to 79sensors). The inconsistency in the increase of the mean error with the 

decrease of the number of strain sensor reflects that the location of the sensors is just as important 

as the number of sensors deployed. This inconsistency is not seen in the MCI index. The MCI 

index is used to differentiate between 10 modes of interest, using a large number of sensors, which 

introduces redundancy in the system, making the dependence of selection of appropriate sensor 

locations for the modal identification slightly less important. This indicates the importance of 

performing sensor placement optimization in achieving good quality of modal identification as 

well as improved extrapolation. 

 

4.2 Effect of modes of interest on accuracy of interpolaton 
 

The SEREP method makes use of the modal matrices for predicting the response of the 

structure at un-instrumented locations. This accuracy of interpolation is directly related to the 

number of vibration modes used for the reconstruction of the structure response. The purpose of 

this study was to ascertain the number of modes that are to be extracted for a realistic interpolation 

of the response of the structure at locations without any sensors. 

Table 3 gives the performance of SEREP method for the case of 184 evenly placed sensors 

(both accelerometers and strain sensors) for different number of modes of interest. This specific 

case with 184 sensors was chosen as it gives the least mean relative error metric per sensor. A 

similar performance of the SEREP method is expected when different number of sensors is used. 

As can be seen from the Table 3, the mean error is reduced as the number of modes used for 

SEREP increases. A higher number of modes allows more accurate depiction of the deformed 

shape and allows a better estimate. Thus there is a need to extract as many modes of vibration as 

possible to allow accurate expansion. But, the accurate extraction of the higher modes is a 

challenge using the ambient excitations due to wind or traffic loading. The energy content of the 

higher modes is masked by the measurement noise and may lead to inaccuracies. So the number of 

modes extracted is limited to the first few modes, more specifically the first 10 bending modes of 

vibration, for the purpose of this study. 

 

 

 
Table 3 Performance of SEREP method for different number of modes 

Number of modes Sum of MCI per mode Mean Error 

2 1.1635 × 10
2 

3.8520 

3 1.7634 × 10
2
 2.1364 

4 2.3321× 10
2
 0.9638 

5 2.6524× 10
2
 2.3789× 10

-2
 

6 3.1226× 10
2
 6.4002 × 10

-2
 

7 3.2676× 10
2
 7.3942 × 10

-3
 

8 3.4330 × 10
2
 1.1167 × 10

-3
 

9 3.7648× 10
2
 8.8382 × 10

-4
 

10 3.9226× 10
2
 1.4002 × 10

-4
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4.3 Comparitive study of sensor placement strategies 
 

The proposed methodology of sensor placement was compared with some established methods 

of sensor placement optimization. This study allows us to ascertain the effectiveness of the 

proposed methodology. The study was carried out keeping the upper limit of the number of sensors 

at 200. Similar results are expected for other number of sensors as well. The number 200 was 

chosen, as the optimized sensor placement gives a mean relative error below 1 × 10
-4

. Table 4 

gives a comparison of the performance of the sensor placements for integrated sensor placement 

(combined strain sensors and accelerometer), strain sensors alone and accelerometers alone.  

It can be seen that for the same number of sensors the combined sensor placement results in 

improved Modal Clarity Index and reduced Mean Relative Error both, thus highlighting the need 

for the integrated treatment of the OSP problem. The combined sensor GA method yields better 

ratio than the individual methods. It can be seen that compared to the individually optimized strain 

sensor placement, the mean relative error in the joint optimized case is higher. However, this loss 

in accuracy has led to a better MCI value. Similarly in the case of the individually optimized 

accelerometers, the MCI performance is better than the combined placement method, but the mean 

error is much higher. Thus, the combined sensor placement optimization is recommended for 

optimal use of sensors. 

It should also be noted that the optimization methods where both types of sensors are used yield 

better results than when a single type of sensors is used. This trend is apparent even in the evenly 

placed sensor configuration, where no optimization is undertaken. This gives more support to the 

idea of joint optimization. 

For the convenience of presentation the Bridge is divided in to five sections as shown in Fig. 4. 

Fig. 5 indicates the candidate sensor locations for the strain sensors and the accelerometers. The 

strain was measured at the bottom of the girder at the middle of the elements, while the 

accelerations were measured at the nodes. The Sensor Deployment for each of the optimization 

strategies is shown in Fig. 6. The number of sensors of different types in each of the sections 

shows a definite trend, which is expected. 

 
Table 4 Comparative Performance of Sensor Placement Strategies 

Strategy MCI Mean Relative Error Ratio (MCI/MRE) 

Combined Sensor GA 0.73 6.56 1 

Combined Sensors EFI 0.78 13.83 0.68 

Only Accelerometers 1 22.65 0.27 

Only Strain Sensors 0.07 1 0.19 

Evenly Placed 0.26 11.27 0.53 

 

 

Fig. 4 Bridge Section Nomenclature 
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Fig. 5 Candidate locations for strain and accelerometer sensors 

 

 

 

Fig. 6 Sensor Deployment using different strategies, (a) Combined Sensor Placement, (b) Combined Sensors 

EFI, (c) Only Accelerometers, (d) Only Strain Sensors and (e) Evenly Placed 
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Fig. 7 Pareto Front for Normalized Modal Clarity Index v/s Normalized Mean Relative Error 

 
 
4.4 Effect of scalarizing factor on the optimization metrics 
 
The multi-objective optimization is simplified through the use of a scalarizing parameter. The 

two optimization principles are linearized and then combined to form one metric for optimization. 

This optimization through scalarizing allows faster convergence and makes easy decision making 

on the trade-offs between the contradicting optimization principles. The results of this optimization 

need to be generated for all relative weighing values for the scalarizing parameter ranging from 0 

to 1. The optimised solution for the different values of the scalarizing parameter (β) can be best 

shown through the use of Pareto front. Fig. 7 shows one such plot for the different values of β 

ranging from 0 to 1 at intervals of 0.1. Based on this Pareto-front and knowing the application 

demands, the bridge owners may make the decision on the sensor placement which needs to be 

deployed for the fulfilment of the specific application demands. The Pareto-front generated is not 

optimal but in fact near-optimal as the GA was used for the optimization. 

 

 

5. Conclusions 

 
The paper proposes a methodology to optimize the location of multi-type sensors (strain 

sensors and accelerometers), for maximum modal identification (modal clarity) and minimum 

mean error (error in mode expansion). The methodology incorporates four significant steps, 

namely selection of application demands, combination of heterogeneous quantities (strain data and 

accelerometer data in the form of deflection mode shapes), comparison of different heterogeneous 

sensor placements and optimization for a selected fitness function.  

The application demands chosen for this study are Modal Identification which is commonly 

used for sensor deployment to ensure that spatial aliasing does not take place. SEREP based 

extrapolation is used to improve the resolution of damage detection. In order to ensure accurate 
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expansion, mean error is chosen as the principle for optimizing. These principles not only do they 

ensure proper modal identification but they also aid in the accurate damage detection. 

The combination of the measured quantities is carried out through the use of a scaling factor to 

overcome the ill-conditioned nature of the modal matrix. The scaling factor is chosen keeping in 

mind the theoretical formulation of the least squares approach and the practical limitations of 

measuring the noise variance of the sensors before the actual deployment. Once the combined 

modal matrix is formed the sensor placements are compared based on two metrics derived from 

the application demands. The proposed metrics are Modal Clarity Index for Modal Identification 

and Mean Error for the accurate expansion of mode shapes. In order to facilitate the use of GA the 

two objectives are combined through scalarizing parameter to give one fitness function which is 

used in the optimization. The scalarizing parameter works like a weighing parameter, and hence, 

the relative importance of the two conflicting optimization principles can be varied. By changing 

the weighing factor, many sensor placements are obtained, which can be best presented in the form 

of a Pareto- front. The Pareto-front allows an informed decision making. The application demands 

often dictate the thresholds for the modal identification and the mode shape expansion and as such, 

through the Pareto-front one can make the decision for the best sensor deployment given the 

requirements and the thresholds for the application at hand. 

The paper first presents some sensitivity studies, for the effect of number of sensors on the 

optimization principles and the effect of extracted mode shapes on the accuracy of interpolation.  

From these studies it is evident that the optimization of the location of the sensors is an essential 

step in order to ensure optimal use of the resources. In addition, it also corroborates the intuition 

that the accuracy of the extrapolation will increase with the increase in the mode shapes extracted. 

Based on these studies and practical limitations in exciting the higher modes, the number of modes 

extracted was decided to be 10. The parameters obtained from the sensitivity studies are then 

applied for a specific case to ascertain the improved performance of the proposed methodology. 

The study shows that the use of integrated heterogeneous network allows optimal use of the 

resources. Furthermore, the use of heterogeneous networks gives a better fitness value than the 

optimized placements achieved through some established methods for sensor placement for 

homogenous sensors. 

The paper shows the merits of treating the placement of different types of sensors as one 

optimization problem as the information acquired through the use of these sensors is 

complementary. In addition it outlines a methodology which allows to overcome the issues 

combining different measurements through the proper use of statistical tools. The results obtained 

through the combination are still comparable to real quantities like error in estimation and the 

similarity or difference in modal vectors.  

Furthermore, a promising methodology using GA for multi-objective optimization of sensor 

placement for SHM using strain sensor and accelerometers is presented.  This research points at a 

wide area of research in the multi-type sensor placement optimization where data from different 

sensors can be seamlessly fused to give more information on the condition of the structure.  

The proposed methodology needs to be validated on an experimental setup. Once the validation 

is carried out it has promise in studying the effect of ambient condition changes, like the 

temperature, wind, humidity on the performance of the structure. In addition the study can be 

further extended to include other principles for optimization and applied to fatigue estimation and 

corrosion assessment through appropriate selection of the cost function. 
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