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Abstract.  This paper presents a novel method to carry out monitoring of transport infrastructure such as 
pavements and bridges through the analysis of vehicle accelerations. An algorithm is developed for the 
identification of dynamic vehicle-bridge interaction forces using the vehicle response. Moving force 
identification theory is applied to a vehicle model in order to identify these dynamic forces between the 
vehicle and the road and/or bridge. A coupled half-car vehicle-bridge interaction model is used in theoretical 
simulations to test the effectiveness of the approach in identifying the forces. The potential of the method to 
identify the global bending stiffness of the bridge and to predict the pavement roughness is presented. The 
method is tested for a range of bridge spans using theoretical simulations and the influences of road 
roughness and signal noise on the accuracy of the results are investigated. 
 

Keywords:  acceleration; bridge; global stiffness; inverse dynamics; road profiles; vehicle-bridge 

interaction; vehicle forces 

 
 
1. Introduction 

 

The axle forces applied by a vehicle through its wheels are a critical part of the interaction 

between vehicles, pavements and bridges. It has been found that dynamic axle forces can increase 

the average road surface damage by up to four times compared to that caused by static axle forces 

alone (Cebon 1987, Cole and Cebon 1992). Therefore, the minimisation of dynamic axle forces is 

important in order to promote long pavement life spans and ensure that bridge loads are small 

(Gillespie et al. 1992, Green and Cebon 1994, DIVINE 1997). Also, as the road surface roughness 

affects the vehicle dynamic forces (Cole et al. 1996, Kitching et al. 2000), it is generally accepted 

that the maintenance of road profiles for highways and bridges plays a major role. Sayers and 

Karamihas (1998) discuss several existing methods for the measurement of road profiles such as 

static manual methods (dipstick walking profile meters, rod and level) and more efficient dynamic 

approaches, such as inertial profile meters, which can measure profile tracks at highway speeds. 

The typical inertial profile meter consists of a vehicle equipped with a height sensing device, such 
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as a laser, which measures pavement elevations at regular intervals (Sayers and Karamihas 1996, 

1998) with the effects of vehicle dynamics removed from the elevation measurements via 

accelerometer(s). The method provides accurate, high resolution profile measurements but a 

drawback is the expense associated with laser-based technology. 

For short to medium span bridges, the dynamic axle forces are of particular importance. In 

recent years there has been a significant amount of research carried out on the use of the moving 

force identification (MFI) technique to identify the vehicle-bridge interaction forces indirectly via 

measurements on the bridge. Yu and Chan (2007) provide a comprehensive literature review of 

this research. Methods which utilise the MFI technique can typically be categorised into one of 

two groups: (a) those which use discrete bridge models and the finite element (FE) method (Chan 

and Yung 2000, Law et al. 2004, Pinkaew 2006, Pinkaew and Asnachinda 2007) and (b) those 

which are based on an exact solution method including a form of system identification (Law et al. 

1997, Chan et al. 1999, Yu and Chan 2003a, b).The results from the latter group are sensitive to 

noise and exhibit fluctuations in the identified forces at the beginning and end of the time history 

which are the result of the ill-conditioned inverse problem. To provide smoother solutions and a 

bound to the identified forces, the Tikhonov regularisation method (Tikhonov and Arsenin 1977) is 

included in the solution (Zhu and Law 1999, 2000, 2001a, 2001b, 2002, 2003a, 2003b, 2006, Law 

and Zhu 2000, Law et al. 2001, Nordström 2006, Law et al. 2007, González et al. 2008b, Deng 

and Cai 2010b, 2011). Recently, optimisation techniques have been developed for moving force 

identification which has led to methods which are based on genetic algorithms (Jiang et al. 2004, 

Au et al. 2004) (whereby interaction forces are calculated after estimating vehicle parameters) and 

simulated annealing genetic algorithms (Qu et al. 2011, Wang and Qu 2011). Also, Wu and Law 

(2011) investigate a stochastic vehicular axle load identification method, based on the 

Karhunen–Loève Expansion in which both the system parameters and excitation forces are 

assumed as Gaussian random processes. However, all of these approaches require instrumentation 

of the bridge to measure responses such as strains, displacements, accelerations and bending 

moments in order to identify the interaction forces. Also, usually it is necessary to obtain 

measurements at a number of locations and the installation of the equipment and data acquisition 

electronics can be time consuming and costly, limiting the implementation of this type of approach 

(Nagayama et al. 2007). 

This paper proposes an alternative way to identify the dynamic interaction forces between the 

vehicle, pavement and bridge which involves direct instrumentation of a vehicle. The vehicle is 

fitted with accelerometers on each axle and MFI theory is applied to the vehicle equations of 

motion to obtain the interaction forces using the measured accelerations. The approach eliminates 

the need for any equipment to be installed on the bridge. To the authors‟ knowledge, this is the first 

investigation which applies MFI theory to the equations of a vehicle. Davis and Bunker (2007) 

provide a comprehensive review of existing methods which use on-vehicle instrumentation and 

measurements to obtain the wheel-force history. Such methods include wheel hub transducers, air 

spring pressure transducer systems, tyre pressure transducer systems, laser detectors, infrared 

sensors and combinations of strain gauges and accelerometers. These methods can be accurate but 

are also expensive and in some cases difficult to install. The low-cost approach presented in this 

paper has the benefit of only requiring the vehicle to be instrumented with accelerometers. It also 

has the potential to be developed for implementation as part of a drive-by inspection system (Kim 

and Kawatani 2009) for pavements and bridges. 

For this theoretical investigation, the inverse problem is formulated as a non-linear least 

squares minimisation of the difference between measured and theoretical vehicle accelerations. 
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First order Tikhonov regularisation is used to decrease errors due to ill-conditioning and the 

recursive least-squares problem is solved using the Dynamic Programming technique (Trujillo 

1978) which has been utilised previously in force identification problems (Law and Fang 2001, 

Nordström 2006, González et al. 2008b). A coupled vehicle-bridge interaction (VBI) model is 

created in MATLAB (2005) to simulate „measured‟ accelerations. The simulations are carried out 

for simply supported bridge spans of 15, 25 and 35 metres and a vehicle speed of 80 km/h (22 m/s). 

The influence of road roughness and noise on the force identification algorithm is investigated. 

The potential application of this method to predict road profile heights and monitor bridge stiffness 

is also investigated. Favourable conditions are identified in which this method can be used with a 

good degree of accuracy. 

 

 

2. Coupled vehicle-bridge interaction model 
 

The coupling of the vehicle and bridge has been taken into account in many studies (Yang and 

Yau 1997, Henchi et al. 1998, Yang et al. 2004a, Kim et al. 2005, Deng and Cai 2010a). However it 

has been considered in only a small proportion of moving force identification problems (Chan et al. 

1999, Law et al. 2004, Pinkaew 2006, Deng and Cai 2010b, Wu and Law 2011). In this paper, the 

vehicle-bridge interaction is modelled as a coupled system as the solution is given at each time step 

and no iteration is required in the computational process. The vehicle and bridge models are outlined 

in the following sections. 

 

2.1 Vehicle model 
 

The vehicle is represented here by a 4 degree-of-freedom half-car model, i.e., nv = 4, travelling 

at constant speed c over a simply supported Finite Element (FE) beam (Fig. 1). While it is a 

simplified version of a vehicle, its response still illustrates many of the important characteristics of 

dynamic tyre forces (Cebon 1999). It is suitable for the approach presented in this paper as it 

provides measurements for two axles which enables the prediction of forces at each axle and 

displacements under each wheel. The four independent degrees of freedom correspond to sprung 

mass bounce displacement, 𝑦𝑠, sprung mass pitch rotation, 𝜃𝑠 and axle hop displacements of the 

unsprung masses at axle 1 and axle 2, 𝑦𝑢 ,1 and 𝑦𝑢 ,2 respectively. The vehicle body mass is 

represented by the sprung mass,𝑚𝑠  and the axle components are represented by un sprung 

masses, 𝑚𝑢 ,1 and 𝑚𝑢 ,2. The sprung mass connects to the axle masses via a combination of springs 

of linear stiffness 𝐾𝑠,𝑖 and viscous dampers with damping coefficients,  𝐶𝑠,𝑖  which represent the 

suspension components for the front and rear axles (𝑖 = 1, 2). The axle masses then connect to the 

road surface via springs with linear stiffnesses, 𝐾𝑡 ,𝑖  which represent the tyre components for the 

front and rear axles (𝑖 = 1, 2). 

Other parameters of note are the sprung mass moment of inertia, 𝐼𝑠, and the distance of each 

axle to the vehicle‟s centre of gravity (o), i.e., 𝐷1 and 𝐷2 in Fig. 1. All the property values of the 

half-car are listed in Table 1 and are based on values gathered from the literature (Cebon 1999, 

Harris et al. 2007, González et al. 2010). The geometry is obtained from a manufacturer 

specification for an 18 t two-axle truck (DAF 2011). The natural frequencies of vibration of the 

vehicle are given also; fv,1, fv,2, fv,3 and fv,4 which correspond to body bounce, body pitch and axle 

hop of the first and second axles respectively. It follows from Table 1 that the static axle loads of 
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the vehicle are 𝑃1 = 86293 N and 𝑃2 = 90215 N for axles 1 and 2 respectively. 

 

 

 

Fig. 1 Coupled vehicle-bridge interaction model 

 

 
Table 1 Vehicle model properties 

Property  Unit  Symbol  Value 

Body mass  kg  ms  16200 

Axle mass 
 

kg 
 mu,1  700 

  mu,2  1100 

Suspension Stiffness 
 

N m
-1

 
 Ks,1  0.4 × 10

6
 

  Ks,2  1 × 10
6
 

Suspension Damping 
 

Ns m
-1

 
 Cs,1  10 × 10

3
 

  Cs,2  20 × 10
3
 

Tyre Stiffness 
 

N m
-1

 
 Kt,1  1.75 × 10

6
 

  Kt,2  3.5 × 10
6
 

Pitch Moment of Inertia  kg m
2
  Is  93457 

Distance of axle to centre of 

gravity 

 
m 

 D1  2.375 

  D2  2.375 

Body mass frequency of vibration 
 

Hz 
 fv,1  1.00 

  fv,2  1.55 

Axle mass frequency of vibration 
 

Hz 
 fv,3  8.83 

  fv,4  10.21 
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A drive-by inspection system via vehicle moving force identification 

It is assumed that, for the purposes of force identification, all of the vehicle properties are known. 

In reality, the calibration of the vehicle model would be required before implementing the 

algorithm in order to obtain these properties. This involves the determination of the model 

properties based on measurements of the vehicle response to an excitation source, i.e., a known 

road profile or a bump using combinatorial optimisation (Harris et al. 2010), or a vibration test 

using modal analysis (Friswell and Mottershead 1995). In order to maintain a reasonable level of 

accuracy, the same calibrated vehicle would be used every time for implementation of the 

algorithm. Furthermore, in the study of a similar approach for the purpose of bridge damping 

identification, González et al. (2012) show that errors up to 5% in the assumed vehicle properties do 

not significantly affect the accuracy of this type of algorithm. 

The equations of motion of the vehicle are obtained by imposing equilibrium of all forces and 

moments acting on the vehicle and expressing them in terms of the degrees of freedom. They are 

given by 

 
𝐌𝐯𝐲 𝐯 +  𝐂𝐯𝐲 𝐯 + 𝐊𝐯𝐲𝐯 = 𝐟𝐯 (1) 

where 𝐌𝐯, 𝐂𝐯, and 𝐊𝐯 are, respectively, the mass, damping and stiffness matrices of the vehicle 

which are given in Appendix A. The displacement vector of the vehicle is, 𝐲𝐯 = {𝑦𝑠 ,𝜃𝑠, 𝑦𝑢 ,1,𝑦𝑢 ,2}
T
.   

The vector, 𝐟𝐯 contains the time varying interaction forces applied by the vehicle.  

 
𝐟𝐯 =  0 0 −𝐹𝑡 ,1 −𝐹𝑡,2 T (2) 

The term 𝐹𝑡 ,𝑖 represents the dynamic interaction force at wheel 𝑖  

 𝐹𝑡 ,𝑖 = 𝐾𝑡 ,𝑖 𝑦𝑢 ,𝑖  −  𝑤𝑣,𝑖  ;  𝑖 = 1,2 (3) 

where 𝑤𝑣,𝑖  is the total displacement under wheel 𝑖. This parameter can be defined in terms of the 

road profile displacement and bridge displacement under wheel i : 𝑟𝑖  and 𝑤𝑏 ,𝑖  respectively  

 
𝑤𝑣,𝑖 =  𝑤𝑏 ,𝑖 + 𝑟𝑖  ;    𝑖 = 1,2 (4) 

  

2.2 Road profile generation and filtering 
 

A road profile is included in simulations for the coupled VBI model and the irregularities of this 

profile are randomly generated according to the ISO standard (ISO 8608 1995). Two road profile 

types are considered; a class „A‟ road (very good profile, as expected in a well maintained highway) 

and a class „C‟ road (average profile), having geometric spatial means of 8 × 10
-6

 and 128 × 10
-6 

m
3
/cycle respectively. A 100 m approach length is included in the road profile prior to the bridge. A 

moving average filter is applied to the generated road profile heights, 𝑟𝑖 , over a distance of 0.24 m  

to simulate the attenuation of short wavelength disturbances by the tyre contact patch (Harris et al. 

2007). 

 

2.3 Bridge model 
 

The bridge is represented by a simply supported FE beam model (Fig. 1) of total span length L. It 

consists of 20 discretised beam elements with 21 nodes; the elements have constant mass per unit 

length, µ , modulus of elasticity E and second moment of area J. There are 2 degrees of freedom per 

node to allow for a vertical translation and rotation at each node. Therefore, each element has 4 

degrees of freedom and the beam model has a total of n = 42 (2 × 21) degrees of freedom. The 
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response of a discretised beam model to a series of moving time-varying forces is given by the 

system of equations 

 𝐌𝐛𝐰 𝐛 +  𝐂𝐛𝐰 𝐛 + 𝐊𝐛𝐰𝐛 = 𝐍𝐛𝐟𝐢𝐧𝐭 (5) 

where 𝐌𝐛, 𝐂𝐛 and 𝐊𝐛 are (n × n) global mass, damping and stiffness matrices of the beam model 

respectively, 𝐰𝐛,𝐰 𝐛  and 𝐰 𝐛 are the (n × 1) global vectors of nodal bridge displacements and 

rotations, their velocities and accelerations respectively, and the product,  𝐍𝐛𝐟𝐢𝐧𝐭 is the (n × 1) global 

vector of forces applied to the bridge nodes. The vector, 𝐟int  contains the interaction forces between 

the vehicle and the bridge and is described using the following (nf × 1)vector 

 𝐟𝐢𝐧𝐭 =  
𝑃1 + 𝐹𝑡 ,1

𝑃2 + 𝐹𝑡 ,2
  (6) 

The matrix, 𝐍𝐛 is an (n × nf) location matrix that distributes the nf  applied interaction forces on 

beam elements to equivalent forces acting on the nodes; for the half-car model, nf = 2. The details of 

this matrix are given in Appendix A. This location matrix can be used to calculate the bridge 

displacement under each wheel, 𝑤𝑏 ,𝑖 , in Eq. (4) using 

 
 
𝑤𝑏 ,1

𝑤𝑏 ,2
 =  𝐍𝐛

T  𝐰𝐛 (7) 

Rayleigh damping is adopted here to model viscous damping (Adhikari 2006) and it is given by 

 
𝐂𝐛 =  𝐌𝐛 +  𝐊𝐛 (8) 

where  and  are constants. The damping ratio ξ is assumed to be the same for the first two modes 

and  and  are obtained from  = 2ξ12/(1+2) and  = 2ξ/(1+2) where 1 and 2 are the first 

two natural frequencies of the bridge (Yang et al. 2004a).The properties of the three bridge spans 

used in this investigation are given in Table 2 and are based on typical concrete bridge cross-sections 

consisting of T beams, Y beams or Super-Y beams depending on the bridge span (BS5400-4 1990, 

Li 2006, Li et al. 2006, González et al. 2011). The Young‟s Modulus, E, for all spans is 3.5 × 10
10

 

N/m
2
. 

 

 
Table 2 Finite element beam properties 

Span 

Length, L 

(m) 

Type 
Stiffness, EJ (N 

m
2
) 

Mass per unit 

length, µ  (kg/m) 

Damping,  

ξ (%) 

1st natural 

frequency of 

vibration, fb,1(Hz) 

15 T beam 1.846 × 10
10

 28125 3 5.66 

25 Y beam 4.865 × 10
10

 18358 3 4.09 

35 
Super Y 

beam 
1.196 × 10

11
 21752 3 3.01 
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A drive-by inspection system via vehicle moving force identification 

The bridge properties are not required for the force identification algorithm. However, for 

purposes of the bridge stiffness identification algorithm presented in Section 5.2, it is assumed that 

the bridge span length, L, mass per unit length, µ , and damping, ξ, are known in advance. In practice, 

if these properties are unavailable or unknown, L can be easily measured while µ can be estimated 

considering the bridge material and dimensions. The damping can be estimated from acceleration 

measurement(s) on the bridge using existing techniques such as the Random Decrement Technique 

(Ibrahim 1977, Asmussen et al. 1998, Liu et al. 2011) or Logarithmic Decrement (Clough and 

Penzien 1993, Tedesco et al. 1999, Gutenbrunner et al. 2007). It would only be necessary to carry 

out these procedures once for any particular bridge in order to establish an initial benchmark 

model for that bridge. 

 

2.4 Coupling of the vehicle-bridge system 
 

The dynamic interaction between the vehicle and the bridge is implemented in Matlab using the 

models described in this section. The vehicle and bridge are coupled at the tyre contact points via the 

interaction force 𝐟𝐢𝐧𝐭 given in Eq. (6). Combining Eqs. (1) and (5), the coupled equation of motion is 

formed as 

 𝐌𝐠𝐮 + 𝐂𝐠𝐮 + 𝐊𝐠𝐮 = 𝐟 (9) 

where 𝐌𝐠 and 𝐂𝐠 are the combined system mass and damping matrices respectively, 𝐊𝐠 is the 

coupled time-varying system stiffness matrix and 𝐟 is the system force vector (see Appendix A). The 

vector, 𝐮 =  𝐲𝐯, 𝐰𝐛 
𝐓 is the displacement vector of the system. The equations of motion for the 

coupled system are solved using the Wilson-Theta integration scheme (Bathe and Wilson 1976, 

Tedesco et al. 1999). The optimal value of the parameter θ = 1.420815 is used for unconditional 

stability in the integration scheme (Weaver and Johnston 1987). 

In simulations, it is assumed that there are two measurement sources obtained as input for the 

algorithm. These are sprung mass accelerations above the suspension of each axle (Fig. 1) and are 

described using the following equation 

 𝑦 𝑠,𝑖 = 𝑦 𝑠 −  (−1)𝑖𝐷𝑖𝜃 𝑠 ;  𝑖 = 1,2 (10) 

In practice it is expected that the accuracy of measurements will be lower than in theoretical 

simulations due to errors such as random noise. Therefore the measured accelerations are 

contaminated with noise using an additive noise model based on signal-to-noise ratios (SNRs) of 20, 

10 and 5 (i.e., relative error in the measurements of 5%, 10% and 20% respectively). Noise is 

randomly added to the true accelerations by sampling a Normal distribution of zero mean with 

standard deviation equal to the standard deviation of the true acceleration data divided by the SNR 

(Harris et al. 2010). 

 

 

3. Identification of dynamic axle forces 
 

The vehicle force identification (VFI) algorithm presented in this paper involves two main steps: 

1) state space formulation of the vehicle equations of motion for the Dynamic Programming (DP) 

technique and 2) Tikhonov regularisation and the L-curve method. It has been adapted from the MFI 
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algorithm described in detail by González et al. (2008b) and only the features which are unique to 

this paper are presented. 

The (DP) technique is effectively a recurrence algorithm that may be used to solve large least 

squares problems. It was first formulated by Trujillo (1978) and it has been implemented for 

moving force identification problems which include zeroth order regularisation with the optimal 

state estimation approach (Law and Fang 2001), and in generalised solutions to moving force 

identification which use higher order Tikhonov regularisation (Nordström 2006, González et al. 

2008b). Lourens et al. (2012) propose an augmented Kalman filter (AKF) technique as an 

alternative to the DP technique. However, it was found that the AKF technique only outperforms the 

DP technique when the measurements are close to the applied force. 

 

3.1 State-space formulation of vehicle model 
 

Using a state space formulation for the vehicle model, Eq. (1) is converted into a vector matrix 

differential equation 

 𝐗 = 𝐀𝐗 + 𝐟𝐯  (11) 

with the (8 × 1) state variable vector 𝐗 defined by 

 𝐗 =  
𝐲𝐯

𝐲 𝐯
  (12) 

and where 

 𝐀 =  
0 𝐈

−𝐌𝐯
−1𝐊𝐯 −𝐌𝐯

−1𝐂𝐯
 ,         𝐟𝐯 =  

𝟎
𝐌𝐯

−1𝐟𝐯
  (13) 

The differential equation is rewritten in standard exponential matrix representation which is 

often referred to as a zeroth order system (Trujillo and Busby 1997) 

 𝐗𝑗+1 = 𝐌𝐗𝑗 + 𝐆𝐠𝑗  ;  𝑗 = 1, … , 𝑁 (14) 

where 𝐌 =  𝑒𝐀ℎ  for time step h and 𝐠𝑗  =   −𝐹𝑡,1 , −𝐹𝑡 ,2 
T
 contains the forces to be predicted. The 

scalar, 𝑁 is the total number of discrete measurements. The matrix, 𝐆 relates the forces 𝐠𝑗  to the 

system and is defined by 

 𝐆 = (𝐀−𝟏(𝐌 − 𝐈))  
𝟎

−𝐌𝐯
−1𝐋𝐯

  (15) 

with the (4 × 2) location sub-matrix 𝐋𝐯 =   𝟎 𝐈 𝐓. 

In first order regularisation, the derivative of the forces is regularised which reduces the error and 

provides a smoother solution than the zeroth order system (Busby and Trujillo 1997, González et al. 

2008b). To facilitate this, Eq. (14) is now converted into a first order system with the forces to 

predict included in a new state variable vector, 𝐗 𝑗 =  𝐗𝑗𝐠𝑗   
𝐓

, with the vector 𝐫containing the 

derivative of the forces 

 𝐗 𝑗+1 =  
𝐌 𝐆
0 𝐈

 𝐗 𝑗 +    
0
𝐈
  𝐫𝑗 ;      𝑗 = 1, … , 𝑁 (16) 
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Measurements 
 

The acceleration measurements taken on the vehicle are represented by the (m ×  1) vector 𝐝𝑗 . In 

this case, with two acceleration measurements, m = 2. They must be related to the state variables to 

allow the least squares formulation of the problem. Using a selection matrix 𝐐, the relationship 

between measurements and the state variables 𝐗 𝑗 , is given by 

 𝐝𝑗 = 𝐐𝐗 𝑗  (17) 

As 𝐗 𝑗 is a ((2nv + nf) × 1) vector, it follows that 𝐐 is of size (m ×  (2nv + nf)), i.e., it is a (2 × 10) 

matrix. 

 

3.2 Tikhonov regularisation and the L-curve method 
 

The second step of this approach involves the use of a regularisation parameter to improve the 

conditioning of the system. Tikhonov regularisation (Tikhonov and Arsenin 1977) adds an optimum 

regularisation parameter, λ, to the equations of theill-conditioned least squares problem to control 

smoothness of the solution and provide bounds to the error. The optimal value for λ is obtained using 

Hansen‟s L-Curve (Hansen 1992, Busby and Trujillo 1997). The method is described in detail by 

González et al. (2008b). For this approach the L-curve is plotted on a log-log scale using the 

following norms 

 𝐸𝑛𝑜𝑟𝑚 =     𝐝𝑘 − 𝐐𝐗 𝑘 , 𝐖  𝐝𝑘 − 𝐐𝐗 𝑘   

𝑚

𝑘=1

 (18) 

 

 𝐹𝑛𝑜𝑟𝑚 =     𝐫𝑘 ,  𝐫𝑘   

𝑚

𝑘=1

 (19) 

where 𝐖 is an (m ×  m) identity matrix and  𝐱 , 𝐲  denotes the vector product of 𝐱 and 𝐲, i.e., in this 

case, for terms corresponding to measurement 𝑘,  𝐱𝑘 , 𝐲𝑘 =   𝐱𝑘 ,𝑗𝐲𝑘 ,𝑗
𝑁
𝑗=1  .The optimal value for λ 

corresponds to the point of maximum positive curvature on the L-curve plot. If λ approaches zero, 

the least squares problem tends toward that of standard least squares minimisation; conversely, if  λ 

is very large the solution norm is small but provides a large residual norm hence the least squares 

error is large. Therefore, the optimal value of λ provides a trade-off between the residual norm and 

the solution norm. 

 

 

4. Simulation results and discussion 
 

In this section, the results of the dynamic force identification algorithm outlined in Section 3 are 

presented. 

 

4.1 Simulated acceleration measurements 
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The method proposed in this paper requires only the measurement of vehicle accelerations to 

identify the vehicle dynamic interaction forces. For the purposes of this theoretical investigation, 

„measured‟ accelerations (Eq. (10)) are simulated artificially at a sampling frequency of 1000 Hz for 

bridge spans of 15, 25 and 35 metres, very good and average road profiles and a vehicle speed of 22 

m/s (80 km/h). Fig. 2 shows an example of the simulated and noise-contaminated accelerations 

generated by the VBI model for the 15 m bridge span. Given the axle spacing of 4.75 m, the 2
nd 

axle 

enters the bridge at 0.214 seconds and the 1
st 

axle exits at 0.675 seconds. 

 

 

 

Fig. 2 „Measured‟ vehicle accelerations for vehicle travelling at 22 m/s across a 15 m bridge on a very 

good road profile; (a) true (---- ) and corrupted (---) accelerations over axle 1 and (b) true (---- ) and 

corrupted  (---) accelerations over axle 2 with SNR = 5 

 

 

 

Fig. 3 L-curve due to vehicle travelling across 15 m bridge at 22 m/s for λ values between 1.5 × 10
-8

 and 1 

× 10
-3 

and SNR = 10 on very good road profile 
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4.2 L-curve and optimal regularisation parameter 
 
Fig. 3 shows the L-curve obtained for the vehicle travelling at 22 m/s across the 15 m bridge span 

on the very good road profile. The optimal regularisation parameter λ is obtained as 2.2 × 10
-8

 and it 

is indicated in the figure at the point of maximum positive curvature at the corner of the L-curve. 

 

4.3 Identified forces for very good road profile 
 

Fig. 4 shows the identified dynamic axle forces corresponding to the L-curve shown in Fig. 3. 

It can be seen that the algorithm identifies the true forces accurately, which are dominated here by 

the axle hop frequencies. However, due to the smoothing of the solution by the regularisation 

parameter, the identified forces do not predict some of the higher frequency components of the true 

forces accurately. Nevertheless, the larger amplitude components of the true forces are predicted 

very well. These large amplitude peaks are an important factor in relation to pavement and bridge 

damage as they can indicate specific locations in pavements where damage will be concentrated 

(Cole et al. 1996, Kitching et al. 2000), a phenomenon known as spatial repeatability (Cole and 

Cebon 1992). 

 

 

 

 

Fig. 4 Identified dynamic axle forces for vehicle travelling across 15 m bridge at 22 m/s with λ = 2.2 × 

10
-8

 and SNR = 10 for very good road profile.(a) True (---- ) and identified forces (---) at axle 1 and 

(b) True (----  ) and identified forces at axle 2 (---) 
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Table 3 presents the Root Mean Square Error (RMSE) of the identified forces expressed as a 

percentage of the maximum absolute true force magnitude. The percentage RMSEs are given for 

each bridge span and SNR investigated. The RMSE for each identified axle force is calculated using 

the equation 

 RMSE =   
1

𝑁
  𝐹𝑒𝑠𝑡 ,𝑗 −  𝐹𝑡𝑟𝑢𝑒 ,𝑗  

2
𝑁

𝑗=1

 (20) 

where 𝐹𝑒𝑠𝑡 ,𝑗  and 𝐹𝑡𝑟𝑢𝑒 ,𝑗  are the predicted and true forces respectively at each point in time, 𝑗. The 

errors observed here are primarily consequences of the presence of high frequency components in 

the dynamic axle force history. However, the errors are less than 10% except for the identified forces 

at axle 1 for the lowest SNR of 5, which gives an error of 10.5%.  

In general, the results for the second axle are slightly more accurate. This is due to the properties 

of the second axle; its mass, damping and stiffness are on average twice as large as the 

corresponding properties of the first axle (Table 1). In particular, Eq. (3) shows that a larger stiffness 

value for 𝐾𝑡 ,𝑖  will result in a larger dynamic axle force as 𝑦𝑢 ,𝑖  and 𝑤𝑣,𝑖  will be of similar 

magnitude for 𝑖 = 1,2. This can be seen by examining Fig. 4 and comparing the dynamic force 

magnitudes of axle 1 and axle 2; axle 2 forces are larger. Furthermore, the absolute errors in the 

dynamic forces obtained for each axle from the algorithm are, in general, relatively closer in 

magnitude than their respective maximum absolute true dynamic force magnitudes, i.e., the absolute 

errors are less dependent than the maximum forces on the axle properties. Hence, as percentage 

RMSE is tabulated in Table 3, the percentage errors for axle 2 are typically lower. 

Nevertheless, similar accuracy is obtained for each bridge span and axle force although the 25 

m bridge span displays the least error overall for forces of the second axle. Finally, the values in 

this table suggest that the identified forces are not very sensitive to the measurement noise level as 

there are only slight increases in error as the SNR decreases. 

 

 

 
Table 3 Percentage RMSE of identified dynamic axle forces on very good road profile 

 
RMSE (%) 

 
15 m Span 25 m Span 35 m Span 

SNR Axle 1 Axle 2 Axle 1 Axle 2 Axle 1 Axle 2 

20 9.89 8.28 6.91 5.51 7.01 7.65 

10 9.94 8.37 7.20 5.55 7.22 7.86 

5 10.50 8.66 8.23 5.83 7.99 8.45 
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4.4 Identified forces for average road profile 
 

This section presents the identified dynamic axle forces with the average road profile included in 

simulations. An example of the identified forces for the vehicle crossing the 15 m bridge span with 

this road profile is given in Fig. 5. The scale of the y-axis in this figure compared to that of Fig. 4 

indicates the effect of increasing the road roughness. Despite the poorer road surface, the algorithm 

again predicts the dynamic axle forces very well. Also, similar to the results for the very good profile, 

it can be seen that the algorithm does not predict some of the higher frequency components. The 

percentage RMS errors of the identified forces, calculated using Eq. (20), are given in Table 4 for all 

bridge spans and noise levels investigated. Once again, the errors observed here can be attributed to 

high frequency components of the dynamic axle forces and the second axle is found to be more 

accurate. As this is observed for both road profiles investigated, it suggests that in general, a vehicle 

axle of greater stiffness may provide an improvement in identification accuracy. Aside from the 

forces of the first axle on the 35 m span, all of the errors are less than 10% once again which 

indicates that the identification procedure is not very sensitive to the road profile roughness. 

For the poorer road surface and the 15 m bridge span, the algorithm identifies the forces more 

accurately than for the very good road profile. This can be explained by inspecting Fig. 5. For both 

axles there is a large amplitude low frequency element in the force history which the algorithm can 

identify very well; it is clearest in Fig. 5(b) between 0.2 and 0.8 seconds, while the magnitude of the 

higher frequency components is relatively small in comparison. This low frequency corresponds to 

the body bounce and pitch of the vehicle and was not excited as much by the very good road profile 

on the 15 m bridge (Fig. 4). Although there is a small decrease in accuracy with increasing noise 

level, overall the algorithm is not very sensitive to noise, as was found from simulations with the 

very good road profile. 

 

 

Fig. 5 Identified dynamic axle forces for vehicle travelling across 15 m bridge at 22 m/s with λ = 2.4 × 

10
-8

 and SNR = 10 for average road profile. (a) True (---- ) and identified forces (---) at axle 1 and 

(b) True (----  ) and identified forces at axle 2 (---) 
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Table 4 Percentage RMSE of identified dynamic axle forces on average road profile 

 
RMSE (%) 

 
15 m Span 25 m Span 35 m Span 

SNR Axle 1 Axle 2 Axle 1 Axle 2 Axle 1 Axle 2 

20 7.74 6.30 8.86 5.91 12.06 6.62 

10 7.96 6.38 9.08 5.87 12.13 6.78 

5 8.70 6.68 9.81 5.92 12.71 7.20 

 

 

 

5. Implementation of a drive-by inspection algorithm 
 

It has been shown that the force identification algorithm presented in Sections 3 and 4 can 

accurately predict the dynamic axle forces of a vehicle as it crosses a bridge with a road surface 

roughness. These forces define the interaction between the vehicle, pavement and bridge and 

consequently will be affected by any change in the properties of the system. Therefore, in this paper 

it is proposed to develop the force identification approach further by implementing it as a tool for the 

condition monitoring of pavements and bridges.  

In recent years, a body of research has been carried out on the use of instrumented vehicles for 

the monitoring of infrastructure such as pavements and bridges, including investigations of low-cost 

approaches utilising vehicle acceleration measurements. For example, a frequency domain road 

classification method is proposed by González et al. (2008a) which is based on the relationship 

between the power spectral densities of vehicle accelerations and road profile via a transfer 

function. Harris et al. (2010) investigate a method which employs a combinatorial optimisation 

technique to identify road profile heights from the vehicle acceleration response, with only a priori 

knowledge of the vehicle dynamic properties required. 

The feasibility of extracting bridge dynamic parameters, such as damping and frequency, from 

the vehicle response has been verified theoretically (Yang et al. 2004b, McGetrick et al. 2009, 

González et al. 2010) and it has also been tested in field trials (Lin and Yang 2005, Oshima et al. 

2008, Yang and Chang 2009a). Parametric studies have been carried out which indicate favourable 

conditions for its implementation (Yang and Chang 2009b). In addition, experimental investigations 

have been conducted to check the feasibility of the approach as part of a drive-by inspection system 

for bridge monitoring (Oshima et al. 2008, Kim and Kawatani 2009, Toshinami et al. 2009). In this 

section, the drive-by approach is developed for both the characterisation of road profiles and bridge 

condition monitoring. An algorithm is developed for the purpose of monitoring bridge condition 

which aims to detect any change in behaviour of the structure which might be an indicator of some 

form of damage, e.g., corrosion or cracking. 
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5.1 Prediction of road profile heights 
 

In the force identification algorithm, the predicted force vector 𝐠𝑗  provides the dynamic forces 

applied to the vehicle, 𝐹𝑡 ,1 and 𝐹𝑡 ,2 (Eq. (3)). The axle displacements 𝑦𝑢 ,𝑖  are also predicted as 

part of the state variable vector, 𝐗 . As the tyre stiffness 𝐾𝑡 ,𝑖  is known for each tyre 𝑖, the predicted 

displacement under wheel 𝑖, 𝑤𝑣,𝑖 , can be obtained from Eq. (3). For the scenario where the vehicle 

forces are predicted as the vehicle travels over a road pavement only (i.e., 𝑤𝑏 ,𝑖 = 0 in Eq. (4)), 𝑤𝑣,𝑖  

is effectively a prediction of the road profile heights experienced by wheel 𝑖.The IRI ratings and the 

Power Spectral Densities (PSDs) of true and predicted road profiles are compared and this analysis 

is carried out using ProVAL (Profile Viewing and AnaLysis, Chang et al. 2006). 

The results of a pavement profile prediction for the very good profile are presented in Fig. 6. The 

length of the predicted profile is 100 m and the measured acceleration data is obtained from the 

approach prior to the bridge. For this result, accelerations were contaminated with noise having an 

SNR of 10.The prediction is very good overall. However, similar to the identified forces in Section 4, 

it can be seen that there are low frequency discrepancies at the beginning and end of the profile and 

some of the very small higher frequency irregularities are not identified. 

The results of a pavement profile prediction for the average-quality profile are presented in Fig. 7. 

The results are similar to those for the very good profile. Here, the low frequency, long wavelength 

error has manifested itself as a shifted estimate for the road profile under the first wheel. This type of 

error can be attributed to the acceleration measurements‟ poor sensitivity to lower frequency 

responses approaching the static frequency at 0 Hz. 

 

 

 

 

Fig. 6 Identified profile heights for very good road with SNR = 10. (a) True (---) and predicted (---) 

profiles at axle 1 and (b) True (----  ) and predicted ( ---) profiles at axle 2 
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Fig. 7 Identified profile heights for average road with SNR = 10. (a) True (---- )  and predicted (---) 

profiles at axle 1 and (b) True (----  ) and predicted (---) profiles at axle 2 

 

 

In order to assess the profile characterisation accuracy of the algorithm, the PSDs of the road 

profile heights under each wheel for the very good and average profiles are plotted on log-log 

scales in Figs. 8 and 9 respectively. The larger magnitude, low frequency discrepancies observed 

in Figs. 6 and 7 occur here as relatively small errors in terms of profile characterisation on the 

log-log scale. However, it is clear from these figures that the errors in characterising the true road 

profile heights are primarily caused by the short wavelength, high frequency errors. As has already 

been highlighted, these are a result of the regularisation in the algorithm which smoothes the 

solution. It can be inferred from the spectra that the predicted profiles characterise the true profiles 

with high accuracy for the frequency band between 0.03 cycles/m and 0.8 cycles/m approximately. 

 

 

Fig. 8 PSD of very good road profile heights under (a) wheel 1 and (b) wheel 2 for SNR = 10.True profile 

PSD (---- ) ; predicted profile PSD (○) 
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Fig. 9 PSD of average road profile heights under (a) wheel 1 and (b) wheel 2 for SNR = 10.True profile 

PSD (---- ) ; predicted profile PSD (○) 

 

 
Table 5 Predicted IRI values and percentage error for very good and average profiles 

Profile SNR 
IRI1st profile (m/km) IRI2nd profile (m/km) 

Predicted % Error Predicted % Error 

A 

20 0.97 -8.49 0.99 -6.60 

10 0.97 -8.49 0.99 -6.60 

5 0.99 -6.60 0.99 -6.60 

C 

20 4.20 -7.28 4.25 -6.18 

10 4.20 -7.28 4.25 -6.18 

5 4.24 -6.40 4.26 -5.96 

 

 

The IRI values of the predicted profiles are presented in Table 5. The percentage errors are also 

tabulated. As before, results for the profile under wheel 2 are more accurate. The errors are all less 

than 10% and underestimate the IRI values. This relates to the poor estimation of higher frequency 

components of the road profile. 

 

 

5.2 Identification of global bridge stiffness 
 

Using the forces obtained from the algorithm outlined in Section 3, a new algorithm is developed 

which aims to identify a damage sensitive bridge parameter. In particular, the global bridge stiffness, 
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EJ, is the focus of this algorithm as a reduction in stiffness would result from a loss of cross-section 

or cracking; with increased loading this decrease can worsen (MacGregor and Wight 2006, Lee and 

Yun 2008). It has been the focus of many damage assessment techniques which take direct 

measurements on the structure (Sohn et al. 2003, Carden and Fanning 2004), in part due to its 

relationship with cracking (Dimarogonas 1996).This algorithm aims to provide an alternative 

low-cost, efficient tool for widespread monitoring of overall structural changes that could warn a 

bridge operator if the bridge is becoming un safe and highlight those bridges in a network where 

more detailed inspection is required e.g., via specialised installations on the bridge. Therefore, this 

approach is aimed at achieving a preliminary assessment of bridge condition through identification 

of the global stiffness of the bridge. 

 

Stiffness Identification algorithm 
 

The stiffness identification algorithm involves an iterative procedure comprising of five main 

steps. A similar algorithm has been employed by González et al. (2012) for the purpose of bridge 

damping identification. In this study, the algorithm requires that the dynamic forces, 𝐹𝑡 ,𝑖  and the 

total displacements under each wheel, 𝑤𝑣,𝑖 , have been calculated previously using the VFI 

algorithm from Section 3. The target bridge stiffness values to be identified are given in Table 2. An 

overview of the adapted algorithm is presented in Fig. 10. 

The first step involves calculating the vector of total contact forces ( 𝐟𝐢𝐧𝐭 ) using Eq. (6). In the 

second step, a linear correction is applied to the displacements 𝑤𝑣,𝑖  to ensure that the condition 

stated in Eq. (21) is maintained. The correction is a linear function which varies with distance along 

the bridge and it is based on the true bridge displacement being zero at the entrance and the exit to 

the bridge, i.e., the only displacement a wheel experiences at these locations is the road profile 

height. This means that the (true) total displacement under wheel 1 when it is located over a support 

should be equal to the total displacement under wheel 2 when it is located over the same support.  

 
𝑤𝑣,1 𝑥𝑏 , 𝑡1 −  𝑤𝑣,2 𝑥𝑏 , 𝑡2 = 0;  𝑥𝑏 = 0, 𝐿                                                  (21) 

where 𝑥𝑏  is the distance along the bridge and 𝑡1 and 𝑡2 correspond to the times when axle 1 or axle 

2 are at support location 𝑥𝑏  respectively. Based on the axle spacing of 4.75 m and a speed of 80 

km/h, 𝑡1 - 𝑡2 = 0.214 seconds. 

In the third step, the total contact forces, 𝐟𝐢𝐧𝐭 , obtained in the first step are applied directly to the 

FE beam model described in Section 2.3. An estimate of the stiffness, EJest, is given to the beam to 

obtain the displacement vector 𝐰𝐛  due to the moving loads in  𝐟𝐢𝐧𝐭 (Eq. (5)). Then, the 

displacement response of the beam, 𝑤𝑏 ,𝑖 , under each wheel is calculated using Eq. (7). This process 

is repeated for stiffness estimates ranging from 10
5
 to 9×10

14
. These estimates can be represented by 

(a × 10
b
) N m

2
 where the coefficient a ranges from 1 to 9 in steps of 0.1. The power b ranges from 5 

to 14 in steps of 1. The true stiffness value is also included as an estimate therefore this gives a total 

of 811 stiffness estimates for the beam, which in turn provides 811 estimates of 𝑤𝑏 ,𝑖  for wheel 𝑖. 
In the fourth step, Eq. (4) is rearranged to obtain road profile height estimates, 𝑟𝑒𝑠𝑡 ,𝑖 , under each 

wheel for each stiffness estimate by subtracting each range of 𝑤𝑏 ,𝑖  (step 3) from the total 

displacements 𝑤𝑣,𝑖  obtained using the VFI algorithm 

 𝑟𝑒𝑠𝑡 ,𝑖 = 𝑤𝑣,𝑖 −  𝑤𝑏 ,𝑖 ;  𝑖 =  1,2 (22) 
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Fig. 10 Bridge stiffness identification algorithm 

 

 

2. Apply Linear Correction to Displacements under wheel, 𝒘𝒗,𝒊 (m) 

 Total displacements under each wheel, 𝑤𝑣,𝑖, are obtained using the 

VFI algorithm presented in Section 3 

1. Calculate Vector of Total Contact Forces, 𝐟𝐢𝐧𝐭(N) 

 Dynamic axle forces, 𝐹𝑡 ,𝑖, are obtained using the VFI algorithm 

presented in Section 3 

 Evaluate Eq. (6) 

3. Estimate Bridge Displacement under wheel,𝒘𝒃,𝒊 (m)  

 Apply total contact forces 𝐟𝐢𝐧𝐭 to FE beam for stiffness estimates, 

EJest, ranging from 10
5
 to 9×10

14
 in steps of 0.1, and solve Eq. (5) 

 Evaluate Eq. (7) to obtain 𝑤𝑏 ,𝑖  

4. Calculate Estimated Road Profile Heights 𝒓𝒆𝒔𝒕,𝒊(m) for all EJest using 

Eq. (22) 

 Apply band pass filter to the profile estimates,𝑟𝑒𝑠𝑡 ,𝑖 , with cutoff  

frequencies of 1 Hz and 40 Hz 

 

5. Identification of Global Bridge Stiffness 

 Identify stiffness which minimises the error between road profile 

estimations under wheels 1 and 2 using Eq. (23) 
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As it has been shown that the VFI algorithm is most accurate for a particular band of frequencies, 

a band pass filter, with lower and upper cut-off frequencies of 1 and 40 Hz respectively, is applied to 

the profile estimates, 𝑟𝑒𝑠𝑡 ,𝑖 . 

In the fifth and final step, the global bridge stiffness is identified. As the wheels follow each other 

along the same wheel path, the profile estimates under each wheel ( 𝑟𝑒𝑠𝑡 ,1and 𝑟𝑒𝑠𝑡 ,2) should be very 

close for the correct stiffness value. A least squares error minimisation process is used to identify the 

optimal stiffness value from the range of estimates investigated. It consists of a summation over all 

measurements in time, t. The optimal solution is identified as the stiffness estimate which provides 

the minimum least squares error between the profile estimates under each wheel (Eq. (23)).  

 
 

2

,1 ,2error est est
t

r r r 

 

(23) 

The average computational time required for this algorithm is only 30 seconds with a 3 GHz 

processor, 6 MB cache and 3072 MB SDRAM running on Matlab. 

 
Results of simulation 
 

The algorithm is tested for the three bridge spans given in Table 2, very good and average road 

profiles and for SNRs of 20, 10 and 5. An example of the least squares error between the profile 

heights under the first and second wheels (Eq. (23)) is plotted on a log-log scale against the stiffness 

estimates in Fig. 11 for the very good road profile simulation. This illustrates that the minimum, as 

expected, corresponds to the true stiffness value for the 15 m bridge span. The percentage errors of 

the algorithm in estimating the bridge stiffness value for each of the three bridge spans investigated 

are given in Table 6. 

 

 

 

  

Fig. 11 (a) Least squares error, 𝑟𝑒𝑟𝑟𝑜𝑟  (▪▪▪▪ ) versus global stiffness estimates (EJest) for 15 m bridge span 

with SNR = 20 and (b) same graph, zoomed in at minimum (). Target stiffness value is 1.846 × 

10
10

 N m
2
 (▪▪▪) 
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For the very good (Class A) profile the algorithm is very accurate, especially for lower levels of 

noise. This high accuracy is maintained for all noise levels for the 15 m bridge span while a 

decrease in accuracy occurs with increasing noise level for the 25 m and 35 m spans. This suggests 

that, for a very good road profile, this approach could be very effective. For the average (Class C) 

profile the algorithm accuracy decreases, considerably for the 15 m span, which suggests that this 

approach is sensitive to road roughness. Also, the trend with increasing noise is not repeated for 

this profile, except for the predicted stiffness values of the 35 m span, which are very good for low 

and medium noise levels. 

 

 
Table 6 Percentage error in identified bridge stiffness values 

 
Span (m) 

 
15 25 35 

SNR 
% Error 

Class A 

% Error 

Class C 

% Error 

Class A 

% Error 

Class C 

% Error 

Class A 

% Error 

Class C 

20 0 -45.8 0.3 -17.8 0 0 

10 0.2 -34.9 -2.4 -17.8 -1.3 0.4 

5 0.2 -13.3 -7.5 -17.8 10 17.1 

 

 

The sensitivity to road roughness can be explained by the contribution of the bridge displacement, 

𝑤𝑏 ,𝑖 , to the predicted displacements under each wheel, 𝑤𝑣,𝑖 . Referring to Eq. (4), the road profile 

heights, 𝑟𝑖 , form a larger proportion of the total displacement under each wheel, relative to the 

bridge displacements, 𝑤𝑏 ,𝑖 . As the roughness of the road profile increases, the ratio of the road 

profile heights to the bridge displacements increases. Hence the predicted 𝑤𝑣,𝑖  is less sensitive to 

changes in the bridge response. Therefore, for increased road roughness, the algorithm is less 

sensitive to changes in stiffness. This is confirmed in Table 6 - bridge displacement increases with 

bridge span length and for the average road profile, in general, the stiffness errors decrease with 

bridge span length. To improve the accuracy for rougher road profiles, a heavier vehicle could be 

used to increase the bridge displacement relative to the road profile heights (the vehicle used for this 

study is 18 t). 

 

 

6. Conclusions 
 

This paper first presents a novel method for the identification of dynamic vehicle forces from 

vehicle acceleration measurements. Moving force identification theory is applied to the equations of 

motion of the vehicle in order to obtain the dynamic forces. The method is numerically validated for 

a range of bridge spans, measurement noise levels and road profiles. In the case of simulations for 

very good and average road profiles, the method identifies the forces very well. Due to the 

smoothing of the solution by regularisation, some higher frequency components of the forces are not 
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predicted well. Overall, it is found that the vehicle force identification method is insensitive to noise 

which is an advantage of the approach.  

The implementation of this approach as a drive-by inspection tool for bridges and pavements is 

also presented. It is found that the method is quite accurate in detecting road profile heights and is 

insensitive to the road roughness. However, as for the identified forces, errors at high frequency 

occur. Some errors at very long wavelength/low frequency occur also so an intermediate frequency 

band within which the approach is very accurate, is established. 

An algorithm for the identification of global bridge stiffness using the identified vehicle forces 

from a bridge crossing is presented. It is found to be very accurate for a very good road profile; with 

a signal to noise ratio of 20 the stiffness estimation errors are less than 0.5%. The accuracy decreases 

with increasing noise level but for the highest SNR of 5, estimates are within 10% of the true 

stiffness value. For the average road profile the algorithm is not as accurate and it is dependent on 

the bridge span length and the ratio of the road profile heights to the bridge deflection. 

In the field it is likely that there are a number of factors that will reduce the accuracy of the 

algorithms presented in this paper (e.g., inaccuracies in the assumed bridge or vehicle model). 

Nevertheless, the positive results in this theoretical investigation suggest that it has the potential to 

be implemented as a sensitive low-cost method of identifying dynamic vehicle axle forces. It also 

has the potential to be used for condition monitoring of pavements and the identification of global 

bridge stiffness in short to medium span bridges.  
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Appendix A 

 

𝐌𝐯 =   

𝑚𝑠 0 0 0
0 𝐼𝑠 0 0
0 0 𝑚𝑢 ,1 0

0 0 0 𝑚𝑢 ,2

  

𝐂𝐯 =  

 
 
 
 
 

𝐶𝑠,1 +  𝐶𝑠,2 𝐷1𝐶𝑠,1 −  𝐷2𝐶𝑠,2 −𝐶𝑠,1 −𝐶𝑠,2

𝐷1𝐶𝑠,1 −  𝐷2𝐶𝑠,2 𝐷1
2𝐶𝑠,1 +  𝐷2

2𝐶𝑠,2 −𝐷1𝐶𝑠,1 𝐷2𝐶𝑠,2

−𝐶𝑠,1 −𝐷1𝐶𝑠,1 𝐶𝑠,1 0

−𝐶𝑠,2 𝐷2𝐶𝑠,2 0 𝐶𝑠,2  
 
 
 
 

 

𝐊𝐯 =  

 
 
 
 
 

𝐾𝑠,1 +  𝐾𝑠,2 𝐷1𝐾𝑠,1 −  𝐷2𝐾𝑠,2 −𝐾𝑠,1 −𝐾𝑠,2

𝐷1𝐾𝑠,1 −  𝐷2𝐾𝑠,2 𝐷1
2𝐾𝑠,1 +  𝐷2

2𝐾𝑠,2 −𝐷1𝐾𝑠,1 𝐷2𝐾𝑠,2

−𝐾𝑠,1 −𝐷1𝐾𝑠,1 𝐾𝑠,1 0

−𝐾𝑠,2 𝐷2𝐾𝑠,2 0 𝐾𝑠,2  
 
 
 
 

 

𝐊𝐯𝐯 =  

 
 
 
 
 

𝐾𝑠,1 +  𝐾𝑠,2 𝐷1𝐾𝑠,1 −  𝐷2𝐾𝑠,2 −𝐾𝑠,1 −𝐾𝑠,2

𝐷1𝐾𝑠,1 −  𝐷2𝐾𝑠,2 𝐷1
2𝐾𝑠,1 +  𝐷2

2𝐾𝑠,2 −𝐷1𝐾𝑠,1 𝐷2𝐾𝑠,2

−𝐾𝑠,1 −𝐷1𝐾𝑠,1 𝐾𝑠,1 + 𝐾𝑡,1 0

−𝐾𝑠,2 𝐷2𝐾𝑠,2 0 𝐾𝑠,2 +  𝐾𝑡 ,2 
 
 
 
 

 

𝐊𝐛𝐯 =   0 0 −𝐍𝐛  
𝐾𝑡 ,1 0

0 𝐾𝑡,2
  

𝑛  ×  4

 , 𝐊𝐯𝐛 =  𝐊𝐛𝐯
T 

𝐊𝐛𝐛 =   𝐍𝐛  𝐍𝐛  
𝐾𝑡 ,1 0

0 𝐾𝑡 ,2
  

T

 
𝑛  ×  𝑛

 

𝐌𝐠 =  
𝐌𝐯 0
0 𝐌𝐛

 ,𝐂𝐠 =  
𝐂𝐯 0
0 𝐂𝐛

 ,𝐊𝐠 =  
𝐊𝐯𝐯 𝐊𝐯𝐛

𝐊𝐛𝐯 𝐊𝐛 + 𝐊𝐛𝐛
  

𝐟 =

 
 
 

 
 

0
0

𝐾𝑡 ,1𝑟1

𝐾𝑡 ,2𝑟2

𝐍𝐛  
𝑃1 −  𝐾𝑡 ,1𝑟1

𝑃2 −  𝐾𝑡 ,2𝑟2
 
 
 
 

 
 

 

𝐍𝐛 =  

0 0
𝑁1 0
0 𝑁2

0 0

 

𝑛  ×  2
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The location matrix 𝐍𝐛will contain zero entries everywhere bar the locations of the degrees of 

freedom which correspond to the nodal displacements and rotations of the beam elements the 

vehicle is in contact with. It should be noted that entries corresponding to the boundary conditions 

will also be zero. The Hermitian shape function 𝑁𝑖  for the 𝑖th interaction force located on an 

element 𝑗 can be written in global coordinates as  

 

𝑁𝑖 =  

 
 
 
 
 
 

 
 
 
 
 1 − 3  

𝑥𝑖 −  (𝑗 − 1)𝑙

𝑙
 

2

+  2  
𝑥𝑖 −  (𝑗 − 1)𝑙

𝑙
 

3

(𝑥𝑖 −  (𝑗 − 1)𝑙) −  2
 𝑥𝑖 −  (𝑗 − 1)𝑙 2

𝑙
 +  

 𝑥𝑖 −  (𝑗 − 1)𝑙 3

𝑙2
 

3  
𝑥𝑖 −  (𝑗 − 1)𝑙

𝑙
 

2

−  2  
𝑥𝑖 −  (𝑗 − 1)𝑙

𝑙
 

3

−  
 𝑥𝑖 −  (𝑗 − 1)𝑙 2

𝑙
 +  

 𝑥𝑖 −  (𝑗 − 1)𝑙 3

𝑙2
 

 
 
 
 
 
 

 
 
 
 
 

 

 

where 𝑙 is the length of the beam element and  𝑗 − 1 𝑙 ≤ 𝑥𝑖 ≤ 𝑗𝑙. 
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