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Abstract.    The natural frequency of a bridge is an important parameter in many engineering applications 
such as bridge seismic design and modal-based bridge health monitoring. The natural frequency of a bridge 
vibrating alone may differ from that vibrating along with a vehicle. Although such vehicle-induced 
variability in bridge frequency is revealed in several experimental and numerical simulation studies, few 
attempts have been made on the theoretical descriptions. In this study, both theoretically and experimentally, 
the variability in the bridge frequency induced by a parked vehicle is verified, and is therefore suggested to 
be considered in bridge-related engineering, especially for those cases with near vehicle-bridge resonance 
conditions or with large vehicle-to-bridge mass ratios. Moreover, the variability ranges could be estimated 
by an analytical formula presented herein. 
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1. Introduction 
 

The natural frequency of a bridge is an important parameter in the field of bridge engineering. 
For bridge dynamics, the natural frequency primarily dominates the dynamic responses of a bridge 
under dynamic loadings, especially under seismic loadings. Also, for modal-based bridge health 
monitoring, the natural frequency serves as a preliminary damage indicator (Doebling et al. 1998, 
Carden and Fanning 2004, Fan and Qiao 2011).   

The natural frequency of a bridge vibrating alone may differ from that vibrating along with a 
vehicle, due to the fact that the presence of the travelling or parked vehicles on the bridge 
introduces additional mass and interaction effects to the bridge. Such vehicle-induced frequency 
variability is of equal importance for the bridge dynamics and health monitoring. Under seismic 
loadings, the varied bridge frequency may cause the bridge responses deviate from the design 
responses wherein usually no existing vehicle is taken into consideration (Kim and Kawatani 
2006). In modal-based bridge health monitoring, the bridge frequencies are altered due to changes 
in stiffness, mass, or supporting conditions caused by damages, and those alters are supposed to be 
identified from the bridge dynamic responses. However, the damage-induced frequency variability 
may be masked by the vehicle-induced frequency variability to a certain extent that the former is 
difficult to be identified, even is identified with false alarms. Therefore, the vehicle-induced 
variability in the bridge frequency should be made clear so that it can be removed from the 
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measured data to avoid any misjudgment in bridge health conditions (Kim and Kawatani 2008). 
The variability in the bridge frequency is revealed in several experimental studies (Zhang et al. 
2002, Kim et al. 2003, Macdonald and Daniell 2005, Sohn 2007, Zhang and Xiang 2011, Kim and 
Lynch 2012) and numerical simulation studies (De Roeck et al. 2002, Macdonald and Daniell 
2005, Zhang and Xiang 2011). However, few attempts have been made on their theoretical 
descriptions. Once the theoretical descriptions are established, the variability in bridge frequency 
can be evaluated explicitly and the dominant factors and their sensitivity can be realized.   

This study is thus to explore the vehicle-induced variability in the bridge frequency, both 
theoretically and experimentally, and to investigate the sensitivity of the factors that dominate the 
frequency variability. As an initial attempt, a parked vehicle is considered. In the theoretical study, 
an analytical formula for estimating the varied bridge frequencies induced by a parked vehicle is 
derived, in consideration of a simplified two-degree-of-freedom vehicle-bridge interaction model. 
In the experimental study, a field experiment on a highway bridge and a laboratory experiment on 
a scaled bridge are conducted for verifying both the vehicle-induced variability in bridge 
frequency and the accuracy and applicability of the derived analytical formula. In addition, a 
sensitivity analysis is performed utilizing the analytical formula to illustrate how the key factors 
dominate the vehicle-induced variability in the bridge frequency. Finally, several concluding 
remarks are drawn regarding the potential engineering applications. 

 
 

2. Theoretical derivation 
 

Fig. 1 shows a simplified vehicle-bridge interaction model for a bridge along with a vehicle 
parked at its midspan. In the model, the vehicle is modeled as a sprung mass mv of single degree of 
freedom (DOF) supported by a spring of stiffness constant kv, and the bridge as a Euler-Bernoulli 
beam of length L, constant rigidity EI, and constant mass density m* per unit length. Since only 
frequency characteristics are of our concern, the damping effects for both vehicle and bridge are 
neglected without losing generality and the road surface roughness is not taken into consideration 
for its non-contribution to the frequency characteristics when a vehicle is parked on the bridge. 
Moreover, no other location besides the midspan of the bridge is considered to park a vehicle, 
because midspan is the location most affected by the presence of the vehicle as the variability of 
the system frequency is of concern; the above reason is especially dominant in conducting 
verification experiments efficiently within a limited amount of budget. 
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Fig. 1 Vehicle-bridge interaction model 
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Fig. 2 Two-DOF model 
 
 
The interaction model can be further represented by a two-DOF system as shown in Fig. 2, 

where the vehicle is represented by the same sprung mass as in Fig. 1 and the bridge by another 
sprung mass with the generalized mass mb and generalized stiffness kb given by the following 
formulas (Clough and Penzien 1993) 

  2*

0

L

bm m x dx  ,  2

0
''

L

bk EI x dx      (1,2) 

where  x  is the shape function of the bridge, and a prime is the derivative with respect to the 

longitudinal coordinate x. Considering only the first mode of most significance, the shape function 
for a simply supported beam is sin(x/L). mb and kb in Eqs. (1) and (2)are thus obtainable as  
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The equations of motion for vehicle and bridge can be expressed as 

   0v v v v bm q k q q    (5) 

   0b b v v b b bm q k q q k q     (6) 

where qv and qb are displacements of vehicle and bridge, respectively. The above equations can 
then be assembled in a matrix form as 
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q q

q q

 
  

       
                 




  (7) 

where ωv,0 and ωb,0 respectively denote the natural frequencies of the vehicle and bridge when they 
vibrate independently, and μ denotes the mass ratio of the vehicle to the bridge, as defined as 
follows. 
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When the vehicle is parked at the midspan of the bridge, it may interact with the bridge when 
vibrating. In other words, those two systems act dependently as a so-called vehicle-bridge 
interaction system. For the interaction system, its natural frequency ω can be obtained by solving 
the corresponding eigen-problem  

 | [K] –ω2 [M] | = 0 (11) 

where [M] and [K] are normalized mass and stiffness matrices, respectively, and are expressed as 
follows 

   1 0

0 1
M

 
  
 

,  
2 2
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2 2 2
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v v
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 (12) 

The solutions in square form to Eq. (11) are 

  22 2 2 2 2 2 2
,0

1
1 1 4

2b                
 (13) 

where β denotes the frequency ratio of the vehicle to bridge, i.e.  

 
,0

,0

v

b





  (14) 

It is then easy to obtain ω simply by taking the positive squared root of Eq. (13). For general 
uses, the above frequencies, ω, ωv,0 and ωb,0, in angular terms (rad/s) can be converted into cyclic 
terms, f, fv,0 and fb,0, respectively, by dividing them by 2π. It is clearly shown in Eq. (13) that the 
eigen-frequency of the vehicle-bridge interaction system is a product ofωb,0 and the factor in the 
bracket, rather than ωv,0 or ωb,0, indicating that the system frequency observed at the bridge may 
shift from the bridge frequency to the interaction-system frequency with a certain level as the 
presence of the parked vehicle.  

The solution contains two expressions: one with the positive sign and the other with the 
negative sign in the bracket. Physically speaking, the expression that gives larger value should 
correspond to either the original vehicle or bridge frequency which has larger natural frequency 
when vibrating alone, and the expression that gives smaller value should correspond to that which 
has smaller natural frequency. To be more specific, for the case where the original bridge 
frequency is larger than the original vehicle frequency, the expression with positive sign should 
correspond to the bridge frequency and the expression with negative sign to the vehicle frequency. 
The reverse is also true. Generally, the bridge-corresponded natural frequency should dominate the 
responses of the vehicle-bridge interaction system since the bridge is larger in mass than the 
vehicle. For the sake of brevity and also for the topic of our major concern, the natural frequency 
of the interaction system will refer to the bridge-corresponded natural frequency without further 
indication. 

The above theoretical formula can be used to calculate the natural frequencies of the 
vehicle-bridge interaction system once the mass ratio μ and frequency ratio β are given. Its 
accuracy is examined in the following experimental studies. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 3 Field experiment bridge and vehicle: (a) elevation and plane views of the test span, with 
instrumentation layout, (b) cross-section view of the test span, (c) photo of the test span and (d) 
photo of the experiment vehicle. (Partly adopted from original design drawings) 

759



 
 
 
 
 
 

K.C. Chang, C.W. Kim and Sudanna Borjigin 

Experiment bridge    
The experiment bridge was one span of an Entrance Viaduct, Hanshin Expressway No.4, 

located at the eastern edge of Osaka Bay, in Sakai City, Osaka Prefecture. It was a 
simply-supported steel box girder bridge of 62 m in span length, as shown in Fig. 3. According to 
the original design, the total mass of the bridge m*L was about 620Mg.  
Experiment vehicle    

The experiment vehicle (see Fig. 3(d)) was a cargo truck of model LKG-CD5ZA, produced by 
UD Trucks Corp. The total weight, including the truck body and additional cargo loading, was 
about 250 KN (25.5 Mg in mass). To realize the dynamic properties of the truck, an independent 
free vibration test was performed, by letting the truck drop from a brick. From the test, the natural 
frequency of the truck is obtained as 2.86 Hz in vehicle body bounce motion, measured from the 
vehicle body right above the rear axle.  
Instrumentation 

The acceleration responses of both bridge and vehicle were measured with one-dimensional 
transducers of model ARF-10A and ARS-10A, and transmitted to and recorded by a data 
acquisition system of model DC-204R, both produced by Tokyo Sokki Kenkyujo Co., Ltd.. The 
nominal capacity of transducers is 10 m/s2.   

The shaker was 4905 N in weight (500 kg in mass) and was held by a set of jigs of 6180 N (630 
kg in mass). The forced frequency was applied from 1.54 Hz to 1.60 Hz for bridge system alone 
(1st stage) and from 1.50 to 1.60 Hz for vehicle-bridge interaction system (2nd stage), both with 
an increment of 0.01 Hz. For each case, the actuating amplitude remained 18 mm, and the duration 
of actuating was kept more than 30 seconds to ensure the systems reach their steady states. 
Layout    

Fig. 3(a) shows the instrumentation layout of the field experiment. The field experiment was 
performed in two stages. For the 1st stage, the acceleration of the bridge system without the 
vehicle was measured. The shaker was installed at the midspan of the bridge and actuates vertically, 
and a vertical acceleration transducer was also mounted at the midspan. For the 2nd stage, the 
acceleration of bridge with the cargo truck parked at its midspan was measured. Besides the above 
mentioned shaker and acceleration transducer remaining at the same location, another vertical 
acceleration transducer was mounted at the vehicle body right above the rear axle of the 
experiment vehicle. Ideally the shaker should be mounted at the center of the longitudinal lane to 
avoid any possible torsion vibration induced by the shaker’s asymmetric input, but herein the 
shaker was mounted at the side of the lane due to the practical constraint: the center was parked by 
the experiment vehicle, therefore allowing no space for the shaker. Even so, the possible torsion 
vibrations were supposed to couple little with the bending vibrations. 
Experiment results 

Fig. 4 shows an interval of the steady acceleration response recorded on the bridge under the 
shaker excitation with a forced frequency of 1.56 Hz at the 1st stage, along with its corresponding 
Fourier spectrum. It can be identified from the spectrum that the dominant frequency of this 
response is 1.56 Hz and the corresponding amplitude is 0.0774 m/s2. 

By the same way, the time histories, including the acceleration responses of the experiment 
bridge recorded at the 1st stage and those of the experiment bridge and vehicle recorded at the 2nd 
stage for every forced frequency increment, are performed with Fourier transform to obtain their 
corresponding Fourier spectra. From those spectra, the dominant frequencies and corresponding 
amplitudes can be identified, as summarized in Table 1. It is observed that the identified bridge and 
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vehicle frequencies are entirely consistent with the forced frequencies actuated by the shaker. Such 
a consistency offers a preliminary verification of the reliability of the recorded responses. 

 
 

 

Fig. 4 An interval of the steady acceleration response recorded of the bridge (upper) and its 
corresponding Fourier spectrum (lower) 

 
 

Table 1 Identified frequencies and amplitudes for bridge and vehicle responses 

Bridge responses Vehicle responses 
Stage 1  Stage 2 Stage 2 

ff fi A  ff fi A ff fi A 

1.54 1.54 0.0398  1.50 1.50 0.0451 1.50 1.50 0.0549 
1.55 1.55 0.0603  1.51 1.51 0.0688 1.51 1.51 0.0810 
1.56 1.56 0.0774  1.52 1.52 0.0754 1.52 1.52 0.0875 
1.57 1.57 0.0671  1.53 1.53 0.0705 1.53 1.53 0.0842 
1.58 1.58 0.0594  1.54 1.54 0.0547 1.54 1.54 0.0650 
1.59 1.59 0.0449  1.55 1.55 0.0396 1.55 1.55 0.0525 
1.60 1.60 0.0371  1.56 1.56 0.0327 1.56 1.56 0.0420 

 1.57 1.57 0.0263 1.57 1.57 0.0320 
 1.58 1.58 0.0241 1.58 1.58 0.0314 
 1.59 1.59 0.0202 1.59 1.59 0.0217 
 1.60 1.60 0.0177 1.60 1.60 0.0211 

Note: ff and fi denote the forced frequency and identified frequency (Hz), respectively, and A denotes the 
corresponding amplitude (m/s2). 
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(a) 

 
(b) 

Fig. 5 Fourier amplitude vs. forced frequency for (a) the bridge and (b) the vehicle 
 
 
Then, the amplitudes corresponding to the forced frequencies are plotted for both bridge and 

vehicle, as shown in Fig. 5. The natural frequency of the systems is identified as the frequency 
corresponding to the peak of respective curve. By this way, the natural frequency for the bridge 
alone (1st stage) is identified as 1.56 Hz, while that for the vehicle-bridge interaction system (2nd 
stage) is 1.52 Hz. The latter frequency can be identified from either bridge or vehicle response, and 
the values identified from those two responses are identical, mutually verifying their reliability. 
More importantly, as the presence of the parked vehicle, a decrease in the bridge frequency, say of 
about 2.6% herein, is obviously illustrated.  
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Comparison with analytical results 
The field-experiment results can be adopted to examine the validity of the analytical expression 

of the natural frequency in Eq. (13). With the identified natural frequencies of the bridge and 
vehicle, the value of the frequency ratio β is calculated from Eq. (14) as 2.86 / 1.56 = 1.833. 
Another parameter, the mass ratio μ, is calculated from Eq. (10) as 25.5 / (620 / 2) = 0.082. 
Substituting the above two parameters into Eq. (13), the analytical natural frequency f of the 
interaction system is obtained as 1.48 Hz, which matches rather well with that identified from the 
field experiment (1.52 Hz), merely with a deviation of 2.6%.  

The slight deviation may be acceptable since the simplification is made in the analytical 
derivation: the vehicle was idealized as a SDOF system, with which the distribution pattern of the 
vehicle mass was not considered. Despite the simplification, the analytical formula in Eq. (13) is 
still qualified to preliminarily estimate the variability of the bridge frequency. Note that the mass 
of the shaker was neglected because it was too small compared to that of the bridge and therefore 
affect little to the accuracy of the analytical results.  
 

3.2 Laboratory experiment on a scaled bridge 
 
For the same purposes of verifying the variability of the bridge frequency experimentally, a 

laboratory experiment was performed on a scaled steel bridge. The experiment bridge and vehicle 
adopted herein were designed to offer similar frequency characteristics of real ones, rather than 
scaled down from a real bridge and vehicle following the scaling rule. 

Similar to the field experiment, the bridge frequencies were measured at two stages: the 1st 
stage was for the bridge alone, and the 2nd stage was for the bridge along with a scaled vehicle 
parked at its midspan. The natural frequency of either the bridge system or the vehicle-bridge 
interaction system was measured by free vibration tests. During the experiments, the interaction 
system was firstly subjected to an initial displacement and then released suddenly, and the 
acceleration responses of the system were recorded during its free vibration. By performing a time 
domain analysis to the free-vibration responses, the natural frequencies of both the bridge system 
alone and vehicle-bridge interaction system can be identified. The details of the laboratory 
experiment and the experiment results are given as follows. 
Experiment bridge    

The experiment bridge was a simply-supported steel beam with a span length of 5.4 m (see Fig. 
6). The density of steel is known as 7.8×10-3 kg/cm3, and the designed cross-sectional area was 
66.56 cm2. Accordingly, the total mass of the scaled bridge m*L was about 280kg. 
Experiment vehicle    

The experiment vehicle was a two-axle vehicle, assembled by a steel plate as vehicle body, four 
springs as suspension system, and four plastic wheels (see Fig. 6). The stiffness of the vehicle 
suspension system was able to be adjusted by replacing different springs, and the mass of the 
experiment vehicle was able to be adjusted by attaching steel blocks on it. The natural frequency 
of the experiment vehicle, as a function of vehicle stiffness and mass, varied accordingly. Two 
vehicle models, designated as V1 and V2 respectively, were adopted in this study. Both vehicles 
weighed 212 N (21.6 kg in mass), and the natural frequencies of V1 and V2 were measured as 
3.023 Hz and 3.646 Hz, respectively. 
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(a) 

(b) 

(c) 

(d) 

Fig. 6 Experiment scaled bridge and vhielce: (a) vertical longitudinal section of the bridge, with 
instrumentation layout, (b) vertical transverse section of the bridge, (c) photo of the bridge, and 
(d) photo of the vehicle 
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Layout    
Similar to the field experiment, the laboratory experiment was also performed in two stages. 

For the 1st stage, no vehicle was placed on the bridge. A vertical acceleration transducer was 
mounted at the midspan of the experiment bridge. For the 2nd stage, the experiment vehicle, either 
V1 or V2 model, was placed at the midspan of the experiment bridge. The vertical acceleration 
transducer remained at the midspan, and another transducer was mounted above the rear axle of 
the experiment vehicle. To be brevity, the vehicle-bridge interaction system involving the 
experiment vehicle V1 was referred to as the V1-VBI system and that involving V2 as V2-VBI 
system.  
Experiment results   

One typical free-vibration response of the scaled bridge for the 1st stage is shown in Fig. 7, and 
those of the scaled bridge vibrating with the experiment vehicle V1 and V2 for the 2nd stage are 
shown in Figs. 8 (a) and 8(b), respectively. Those free-vibration responses clearly show that the 
experiment systems vibrate approximately in a SDOF manner with their respective fundamental 
mode. Preliminarily compared with the free-vibration response for the 1st stage (Fig. 7), the 
oscillation numbers of the responses for the 2nd stage (Fig. 8) are reduced in a fixed time span, 
implying that the oscillation frequencies are reduced in the 2nd stage. To be more precise, the 
natural frequencies of the experiment systems are identified by the following method. 

Herein, the natural frequency of the experiment system is identified in time domain by taking 
the reciprocal of the natural period of the system, which can be theoretically defined as the time 
span between adjacent peaks or troughs of a free-vibration response. In practice, the natural period 
thus obtained may not be constant even within one single free-vibration response in some cases. In 
those cases, the natural period can be obtained in an average manner that the time span of several 
peaks/troughs is divided by the number of peaks/troughs. Opting for such a time domain analysis 
is to avoid poor resolutions in frequency domain analysis (e.g., fast Fourier transform) due to short 
analysis intervals available from free-vibration responses of the interaction systems which decay 
quickly. 
 
 

 

Fig. 7 Free-vibration response of the scaled bridge for the 1st stage 
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(a) 

 
(b) 

Fig. 8 Free-vibration response of the scaled bridge for the 2nd stage: (a) V1-VBI system, and (b) V2-VBI 
system 

 
 
Taking the free-vibration response recorded of the bridge in the 1st stage for example (see Fig. 

7), the natural period is identified as 0.40 sec; correspondingly, its natural frequency is calculated 
as 2.500 Hz. By the same way, the natural frequencies of V1-VBI and V2-VBI interaction systems 
can be identified for the 2nd stage, as listed in Table 2.For each case, 5 rounds of test are 
performed to ensure sample precisions. The precision of the identified frequency for the 1st stage 
is higher than that for the 2nd stage, indicated by the fact that the identified frequencies of 5 runs 
are identical for the 1st stage but those are slightly different for the 2nd stage, probably because 
the structural system in the 1st stage (a simple bridge) is much simpler and thus has less stochastic 
factors than that in the 2nd stage (a VBI system). From the bridge responses, the average natural 
frequency of V1-VBI interaction system is identified as 2.240 Hz, and that of V2-VBI system is 
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2.275 Hz. Besides from the bridge responses, the natural frequency of the above interaction 
systems can also be identified from the vehicle responses. The values identified from bridge and 
vehicle responses are approximately identical, mutually verifying their reliability. 

 
 
Table 2 Identified system frequencies in the laboratory experiment 

 Stage 1  Stage 2 

 Bridge system 
 V1-VBI  

interaction system 
V2-VBI  

interaction system 
Round Bridge  Bridge V1 Bridge V2 

1 2.500  2.230 2.254 2.271 2.286 
2 2.500  2.247 2.258 2.278 2.270 
3 2.500  2.222 2.194 2.275 2.275 
4 2.500  2.251 2.198 2.279 2.282 
5 2.500  2.251 2.210 2.271 2.292 

Average 2.500  2.240 2.223 2.275 2.281 
Unit: Hz

Note: Values in “Bridge” columns are frequency values identified from the bridge responses, while those in 
“V1” and “V2” columns are identified from the V1 and V2 responses, respectively 

 
 

Table 3 Comparison of analytical and experimental natural frequencies for the laboratory experiment 

Model fa (Hz) fe (Hz) dev. (%) 

V1-VBI 2.176 2.240 2.9 

V2-VBI 2.238 2.275 1.6 

Note: fa denotes the analytical frequency estimated by Eq. (9), fe the natural frequency of the interaction 
system identified from the laboratory experiment, and dev. the deviation of  fa from  fe 

 
 
What is more important is that the variability of the bridge frequency is readable from Table 2: 

as the vehicle V1 is placed at the midspan of the bridge, the natural frequency of the bridge is 
shifted from 2.500 Hz to 2.240 Hz with a decrease of 10.4%; similarly, as the vehicle V2 is placed 
at the midspan of the bridge, the natural frequency is shifted from 2.5 Hz to 2.275 Hz, with a 
decrease of 9%.   
Comparison with analytical results    

The above experiment results are then taken to examine the accuracy of the analytical 
expression of the natural frequency in Eq. (13). The analytical and experimental results for V1- 
and V2-VBI systems are summarized in Table 3. In considering the V1-VBI system first, the value 
of the frequency ratio β is calculated from Eq. (14) as 3.023 / 2.500 = 1.209 and the mass ratio μ 
from Eq. (10) as 21.6 / (280 / 2) = 0.154.Substituting the above two parameters into Eq. (13), the 
analytical frequency f of theV1-VBI system is obtained as 2.176 Hz, which matches quite well 
with the natural frequency obtained from the laboratory experiment, with a deviation of 2.9%. 
Next, in considering the V2-VBI system, the value of the parameter β is calculated as 3.646 / 2.5 = 
1.458 and μ remains 0.154. Then the substitution of those two parameters into Eq. (13) yields the 
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analytical frequency f of the V2-VBI system as 2.238 Hz. Such an analytical value also matches 
rather well with the value obtained from the laboratory experiment, with a deviation of as little as 
1.6 %.   

The little deviation between the analytical and experimental values of the natural frequency of 
the scaled vehicle-bridge interaction system verifies again the accuracy of the analytical formula in 
Eq. (13). It is indicated that this equation is qualified to preliminarily estimate the variability of the 
bridge frequency even though it was derived according to a simplified vehicle and bridge model. 

 
 

4. Sensitivity analysis 
 

It was verified that the natural frequency of the bridge with a parked vehicle may differ 
from that of the bridge alone, and that the natural frequency of the said vehicle-bridge 
interaction system can be preliminarily estimated by Eq. (13). One may then be interested 
in the sensitivity of the factors that dominate the variability in the natural frequencies of 
the interaction system. 

From Eq. (13), it is observed that the natural frequency of the interaction system is a 
function of two parameters: the frequency ratio β and mass ratio μ of the vehicle to the 
bridge. The sensitivity of those two parameters is explored as follows. 

 
 

 
Fig. 9 Bridge-corresponded natural frequency fb of the interaction system v.s. frequency ratio β 

 
 
4.1 Frequency ratio 
 
Calculated with Eq. (13), the bridge-corresponded natural frequency fb (= ωb/2) of the 

vehicle-bridge interaction system is plotted with respect to the frequency ratio β in Fig. 9. In this 
figure, the natural frequency fb,0 (= ωb,0/2) of the bridge alone is set equal to that of the scaled 
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bridge in laboratory experiment, i.e., 2.5 Hz. The mass ratio μ is selected as 0.01, 0.05, 0.154, 0.25, 
and 0.5, where the case with μ = 0.01 represents a special case that the vehicle mass is relatively 
small compared to the bridge mass, the case with μ = 0.154 is analogous to the above laboratory 
experiment, and the other cases are assigned with specific intervals. In addition, the experimental 
values are plotted with (*) in the same figure as well, showing good agreement with the analytical 
values. 

Several general trends can be observed from Fig. 9. Firstly, as the frequency ratio β approaches 
0, i.e., as the bridge frequency is relatively larger than the vehicle frequency, the natural frequency 
fb of the interaction system approximately remains the natural frequency fb,0 of the bridge alone. It 
is indicated that a bridge with relatively high frequency may not affect the natural frequency of the 
interaction system. Secondly, in the interval of 0 <β<1, fb is larger than fb,0; as β increases from 0 to 
1, fb monotonously increases from ωb,0 with a larger and larger slope, reaching its maximum at the 

point 1  . On the other hand, in the interval of β>1, fb is smaller than fb,0; as β decreases from a 

value larger than 1, fb monotonously decreases with a larger and larger slope, reaching its 
minimum at the point β = 1+. A discontinuity exists at the point β = 1. Thirdly, such trends are 
more obvious with larger mass ratio μ. In the special case with relatively small vehicle mass, say 
μ= 0.01 herein, fb is approximately equal to fb,0 regardless of the β value, indicating that a vehicle 
with relatively small mass may hardly affect the natural frequency of the interaction system. With 
the same β value, the larger the μ value, the more the fb deviates from fb,0. As far as the variability 
in the natural frequency of the interaction system is concerned, the largest deviation of fb from fb,0 
occurs at near resonance conditions. 

 
 

 
Fig. 10 Vehicle-corresponded natural frequency fv of the interaction system v.s. frequency ratio β 

 
 
The vehicle-corresponded natural frequency fv of the interaction system is plotted with respect 

to the frequency ratio β as Fig. 10, with the same parameter values fb,0 = 2.5 Hz and μ= 0.01, 0.05, 
0.154, 0.25, and 0.5. For the case with relatively small μ value, say μ = 0.01, fv approximately 
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remains linearly proportional to β as was defined, indicating that the vehicle system with small 
mass hardly affect the natural frequency of the interaction system. Such a case can be regarded as 
the reference case for other cases with larger μ values, where deviations may occur. In the interval 
of 0 <β< 1, fv deviates downwards from the reference line; as β increases, the deviation of fv also 
increases. In the interval of β> 1, fv deviates upwards from that the reference line; as β increases, 
the deviation of fv almost remains constant. Those observations can be useful for the approach of 
using a test vehicle to indirectly extract the bridge frequencies (Yang et al. 2004, Lin and Yang 
2005). 

From the engineering point of view, the application of the variability in bridge frequency can be 
preliminarily illustrated as follows. According to the statistical expression given by Tilly (1986), 
the natural frequency fb,T (in Hz) of a concrete highway bridge is related to the span length L (in 
meter) as 

  0.9
, 82    Hzb Tf L   (15) 

For highway bridges of span lengths within 30 to 50 m, whose estimated natural frequencies 
range from 2.43 Hz to 3.84 Hz, they may have higher probability of near resonance with roadway 
vehicles, whose natural frequencies in body bounce motion mostly fall within this range. It follows 
that they may have higher probability of large frequency variability induced by the roadway 
vehicles. For bridges of span lengths over 50 m, whose estimated natural frequencies are smaller 
than 2.43 Hz, they may have lower probability of large vehicle-induced frequency variability. 

 
 

 
Fig. 11 Bridge-corresponded natural frequency fb of the interaction system v.s. mass ratio μ 

 
 
4.2 Mass ratio 
 
The bridge-corresponded natural frequency fb of the vehicle-bridge interaction system is plotted 

with respect to the mass ratio μ in Fig. 11. In this figure, the natural frequency fb,0 of the bridge 
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alone remains 2.5 Hz. The frequency ratio β is selected as 0.01, 0.5, 0.99, 1.01, 1.209, 1.458, and 4, 
where the case with β= 0.01 represents the special case that the frequency of the vehicle alone is 
extremely smaller than that of the bridge alone, the cases with β= 0.99 and 1.01 represent ones 
near resonance, and the cases with β= 1.209 and 1.458 are analogous to the laboratory experiments. 
Plotting the experimental values in the same figure as well, good agreement with analytical values 
is shown. 

For the special case with β= 0.01, fb is approximately identical to fb,0, which can be regarded as 
the reference case for other cases with larger β values. The effect of μ on fb can be obviously 
illustrated in Fig. 11: fb deviates more from fb,0 as μ goes larger for the same β value. When μ 
approaches 0, fb approximately remains fb,0,indicating again that a vehicle with relatively small 
mass hardly affect the natural frequency of the interaction system. As far as the variability in the 
natural frequency of the interaction system is concerned, larger deviations of fb from fb,0 occur at 
the conditions with larger μ values, say the conditions that a heavy vehicle is parked on a light 
bridge. In addition, such effects are more significant in near resonance conditions, say β = 0.99 and 
1.01 herein, as was discussed earlier.  
 

 
Fig. 12 Natural frequencies of the interaction system v.s. mass ratio μ in resonance case 

 
 
The resonance case should be paid a special attention. It is the case that the natural frequency fv 

of the vehicle alone is identical to the natural frequency fb of the bridge alone, namely β = 1. The 
natural frequencies of the vehicle-bridge interaction system in resonance are plotted with 
respective to mass ratio μ in Fig. 12. It is observed that the natural frequencies of the two modes 
deviate symmetrically from the original one of vehicle or bridge alone. In comparison with 
non-resonance conditions, the deviation amounts in the resonance condition are larger for the same 
μ value. Similar to other non-resonance cases, the natural frequencies of the resonant interaction 
system deviates more as μ goes larger.   

From the engineering point of view, bridges of shorter span may face larger vehicle-induced 
frequency variability, since they are generally lighter than those of longer span and a larger 
vehicle-to-bridge mass ratio can be expected. The reverse of the above statement is also true.  
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5. Conclusions 
 

As the presence of a parked vehicle on a bridge, the bridge frequency may vary from the 
vehicle-bridge interaction system to the bridge system alone. Such variability is verified both 
theoretically and experimentally in this study. In the theoretical study, an analytical formula is 
presented for preliminarily estimating the varied natural frequencies of the vehicle-bridge 
interaction systems, based on a simplified two-degree-of-freedom system. In the experimental 
study, a field experiment was performed on a highway bridge and a laboratory experiment is 
performed on a scaled bridge. The experiment results are summarized as follows.  

In the field experiment, a decrease of 2.6% in bridge frequency is observed when a truck with 
mass ratio of 0.082 and frequency ratio of 2.231 to the experiment bridge is parked at the midspan 
of the bridge. In the laboratory experiments, a decrease of 10.4 % is observed when a model 
vehicle with mass ratio of 0.154 and frequency ratio of 1.209 to the scaled bridge is parked at the 
midspan of the bridge, and a decrease of 9% is observed when another model vehicle with mass 
ratio of 0.154 and frequency ratio of 1.458 is parked on the same bridge. The above experiment 
results match rather well with the analytical results estimated with the present formula, with 
deviations of no more than 3%. Therefore, two major points are illustrated in the experimental 
study: one is to verify the variability in bridge frequency induced by a parked vehicle, and the 
other is to verify the accuracy and applicability of the present analytical formula.  

With the analytical formula, the sensitivity of the major factors that dominate the variability in 
bridge frequency is studied. For the vehicle-to-bridge frequency ratio, the natural frequency of the 
interaction system deviates from that of the original bridge alone the most at near resonance 
conditions, namely those with close natural frequencies of the vehicle and bridge alone. As for the 
vehicle-to-bridge mass ratio, the larger the ratio, the larger the deviation from the natural 
frequency of the bridge system alone is observed. In contrast, a vehicle with relatively small 
vehicle-to-bridge frequency or mass ratio may hardly affect the natural frequency of the interaction 
system.  

Such variability in bridge frequency is suggested to be considered in bridge-related engineering, 
say bridge seismic design or vibration-based health monitoring, wherever the variability range 
could be estimated by the present analytical formula or its derivatives. For health monitoring 
applications, for example, the estimated variability range of the bridge frequency induced by the 
presence of the vehicle can be removed so that the damage-induced frequency variability can be 
made clearer. Special attentions should be paid to those cases with near vehicle-bridge resonance 
conditions or with large vehicle-to-bridge mass ratios. 

The conclusions drawn herein are based on a limited number of experiments of vehicles and 
bridges with simple boundary conditions. How to extend the analytical formula to estimate the 
varied natural frequency of interaction systems comprised of vehicles and bridges of various types 
and how to incorporate it into the existing frameworks of engineering applications are the next 
steps for this study. In addition, a more comprehensive numerical model can be utilized to verify 
the results derived herein with a simple model. 
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