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Abstract.    In this study, an indirect approach is developed for assessing the state of a bridge on the basis of 
mode shapes estimated by the responses of passing vehicles. Two types of damages, i.e., immobilization of a 
support and decrease in beam stiffness at the center, are evaluated with varying degrees of road roughness 
and measurement noise. The assessment theory’s feasibility is verified through numerical simulations of 
interactive vibration between a two-dimensional beam and passing vehicles modeled simply as sprung mass. 
It is determined that the damage state can be recognized by the estimated mode shapes when the beam 
incurs severe damage, such as immobilization of rotational support, and the responses contain no noise. 
However, the developed theory has low robustness against noise. Therefore, numerous measurements are 
needed for damage identification when the measurement is contaminated with noise. 
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1. Introduction 
 

Modal parameters such as frequency and mode shape are important to the monitoring of bridge 
health because variations in these parameters may indicate bridge damage. Among these 
parameters, frequency is the most fundamental in terms of assessing bridge damage. Bridge 
frequencies can be identified from records of vibration directly obtained by sensors installed on the 
bridge; this method is hence referred to as a direct approach method. An excellent review of 
frequency identification by this direct approach was reported by Salawu and William (1995) and 
Salawu (1997). In addition, Doebling et al. (1996) presented a research summary on 
frequency-based damage detection. Time–frequency analysis has also been applied for bridge 
damage assessment to enhance the accuracy of assessment (Nguyen and Tran 2010). However, 
such direct approaches carry limitations regarding efficiency improvement. Although vibration 
data is collected by quick and easy methods such as the use of wireless sensors (Gangone et al. 
2012), their installation requires one to spend time being physically present at the bridge, which is 
impractical considering the large number of bridges under evaluation. To maintain such a large 
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number of bridges properly, more rapid, simpler and easier methods are needed even if the 

accuracy of assessment decreases. Such methods can be referred as a screening technique in which 

the bridges are roughly assessed to select the bridges having suspected damages. Such a technique 

can significantly reduce inspection time because the remaining structures can be evaluated in the 

next planned review.  

To achieve this, an additional concept of an indirect approach to identify bridge frequency has 

recently been proposed by Yang et al. (2004). The basic concept of this approach involves 

extracting the natural frequency of the bridge from the dynamic responses of vehicles passing over 

it. Although natural frequency is not so sensitive to damage, this approach can be used for 

screening technique. Several studies have verified the basic concept of this approach both 

theoretically (Yang and Lin 2005, Yang and Chang 2009a, b, Siringoringo and Fujino 2012) and 

experimentally (Lin and Yang 2005). Several researchers have recently extended this approach to 

damage identification. Yin and Tang (2011) applied this technique to identify cable tension loss 

and deck damage in a cable-stayed bridge by utilizing principle component analysis on the vehicle 

responses to extract the index for these damages. Kim and Kawatani (2008) and Bu et al. (2006) 

proposed an algorithm to identify flexural stiffness reduction in beams on the basis of vehicle 

responses. In addition, the damping effect has been evaluated by using the responses of passing 

vehicles (McGetrick 2009, Gonzalez et al. 2012).  

Among other modal parameters, mode shape is more preferable for damage detection because it 

is more sensitive to structural damage (Yong et al. 2002). Zhang et al. (2012) introduced the 

possibility of identifying mode shape information from vehicle responses by using a tapping 

device. They determined that a passing vehicle equipped with a sensor and a tapping system can 

induce several sinusoidal forces on the bridge mode shape, where by squares or operating 

deflection shape curvatures can be evaluated by the response of the vehicle (Zhang et al. 2013). 

However, this promising method requires specific tapping devices for enhancing bridge vibration. 

Thus, this study aims to develop an indirect approach for assessing the state of a bridge on the 

basis of mode shape estimated by the responses of passing vehicles without a special device. Two 

types of damages are examined with varying degrees of road roughness and measurement noises. 

The assessment theory’s feasibility is verified by numerical simulations of interactive vibration 

between a two-dimensional beam and passing vehicles modeled simply as sprung mass. This paper 

is organized into the following sections: Section 2 presents a theoretical explanation on the 

proposed method, Section 3 describes numerical verification, and Section 4 presents conclusions. 

In Section 3, an outline of numerical simulation is first described, and the appropriate number of 

vehicles is determined taking into consideration standard parameters of roughness, velocity, and 

mass. The effects of surface roughness, velocity, and vehicle mass are then discussed. Finally, the 

influence of noise on the estimation results is discussed, and a technique for eliminating the noise 

effect is presented. 

 

 

2. Formulation of theory 
 

2.1 Outline of theory 
 

In our basic estimation theory, more than four monitoring vehicles and two heavy trucks are 

used, and the following indications are assumed: 
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 Monitoring vehicles move at a constant velocity; two heavy trucks are located before and 

after the monitoring vehicles at constant intervals in a convoy, as shown in Fig. 1. 

 Heavy vehicles and monitoring vehicles are simplified as a sprung mass model. 

 The bridge is modeled as a simple beam. 

 Bridge displacement can be decomposed into uncorrelated generalized coordinates and 

orthogonal mode shape functions. 

It should be noted that the heavy trucks are required for amplifying the bridge vibrations; 

however, their responses are not used in the estimation. Furthermore, although it is not necessary 

the distance and velocity of these trucks as constant, this assumption is nonetheless made for 

simplicity. With regard to the assumed convoy of vehicles, one example is such that cargos with 

one axle are towed by a heavy vehicle.  

 

 

 

Fig. 1 Convoy of monitoring vehicles and heavy trucks passing over a bridge 

 

 

The sequence of the estimation theory, consisting of four steps, is illustrated in Fig. 2. In 

general, a vehicle moving on the road with roughness vibrates due to the interaction between the 

road surface and vehicle’s axle. The surface roughness can be regarded as a forced displacement 

applying to the axle. Especially on a bridge, the road surface varies due to the bridge displacement 

as well as the surface roughness itself. Thus, in the first step, forced displacement including road 

roughness and bridge displacement is estimated from the acceleration of sprung mass and the 

relative displacement between the mass and road surface. In the second step, bridge displacement 

is obtained by simply subtracting the forced displacement of one vehicle from that of another, both 

of which move exactly on the same path. In the third step, the obtained displacement is converted 

to that observed on a fixed location because the displacement in the second step is that observed 

from the moving vehicles, and thus the displacement is a function of the moving coordinate. For 

conversion from moving to fixed coordinates, mode shape is interpolated by using base functions 

such as polynomial functions. Finally, mode shape is estimated from the obtained deformations 

with a fixed coordinate by singular value decomposition of the converted deformations. Then, the 

obtained mode shapes are compared with base line mode shapes to evaluate the state of the bridge. 

When the initial results of the estimated mode shapes are determined, these shapes are utilized for 

base line, and the difference between the initial and current states can be identified by comparison 

with these mode shapes. If no information is available on the initial state, ideal mode shapes such 

as sine curves should be assumed for the base line. In the following sections, the estimation theory 

is described in detail. 
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Fig. 2 Sequence of the four steps performed in our estimation 

 

 

 

 

Fig. 3 Placement of laser distance meter and accelerometer on the vehicle axle 
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2.1 Step 1: estimation of forced displacement 
 

To estimate the forced displacement applied to the vehicle system, the relative displacement 

between the vehicle body (or axle) and road surface and the acceleration of the body (or axle) are 

recorded at the same location. For example, relative displacement can be measured by a laser 

distance meter installed on an axle, as shown in Fig. 3, and acceleration is recorded by an 

accelerometer. 

Let the forced displacement, relative displacement, and acceleration of a vehicle 𝑖 (=
1,… , 𝑛𝑣𝑒)  be 𝑢𝑖(𝑡𝑘) , 𝛿𝑖(𝑡𝑘) , and �̈�𝑖(𝑡𝑘)  ( 𝑡𝑘 = 𝑘𝛥𝑡, 𝑘 = 0,… , 𝑛𝑡 ), respectively. Then, the 

vertical displacement of the vehicles 𝑧𝑖(𝑡𝑘) and can be obtained by numerically integrating the 

acceleration as 

𝑧𝑖(𝑡𝑘) =∑(𝑧𝑖(𝑡𝑘  )  �̇�𝑖(𝑡𝑘  ) 𝑡  
1

 
(2�̈�𝑖(𝑡𝑘  )  �̈�𝑖(𝑡𝑘)) 𝑡

 )

𝑘

𝑖  

 (1) 

where 

�̇�𝑖(𝑡𝑘) =∑(�̇�𝑖(𝑡𝑘  )  
1

2
(�̈�𝑖(𝑡𝑘  )  �̈�𝑖(𝑡𝑘))𝛥𝑡)

𝑘

𝑖  

 (2) 

The forced displacement applied to vehicle𝑖,𝑢𝑖(𝑡𝑘), can be given as 

𝑢𝑖(𝑡𝑘) = 𝛿𝑖(𝑡𝑘)  𝑧𝑖(𝑡𝑘)  (3) 

Note that the initial values for the system are assumed to be 0, which indicates that the vehicle 

is stopped at the moment of initial measurement. 
 

2.2 Step 2: reduction of road roughness 
 
To obtain bridge displacement, road roughness is subtracted from the forced displacement 

obtained in the first step. Now, let the location of vehicle 𝑖 at the time of 𝑡𝑘 be 𝑥 = �̃�𝑖(𝑡𝑘) and 

the bridge deformation and road roughness along vehicle i be 𝑦(�̃�𝑖 , 𝑡𝑘) =  �̃�𝑖(𝑡𝑘) and 𝑟(�̃�𝑖) =
�̃�𝑖(𝑡𝑘), respectively, as shown in Fig. 4. Note that 𝑦(𝑥, 𝑡) indicates the bridge displacement at 

position 𝑥 and time 𝑡, and 𝑟(𝑥) indicates the roughness at position 𝑥. Note also that �̃�𝑖 and �̃�𝑖 
are functions of position �̃�𝑖 which is also a function of time; thus, 𝑡𝑘 is explicitly described in 

these expressions. Then, the forced displacement of vehicle 𝑖 can be given by 

𝑢𝑖(𝑡𝑘) = �̃�𝑖(𝑡𝑘)  �̃�𝑖(𝑡𝑘) (4) 

When all vehicles move on the exact same path, the roughness contained in the forced 

displacement is identical for all vehicles at the same location, whereas bridge displacement differs, 

i.e., 

𝑟𝑖(𝑡 ) = 𝑟𝑖  (𝑡   )or �̃�𝑖(𝑡 ) = �̃�𝑖  (𝑡   ) (5) 

 

735



 

 

 

 

 

 

Yoshinobu Oshima, Kyosuke Yamamoto and Kunitomo Sugiura 

 

 

Fig. 4 Geometric relationship of beam displacement and roughness 

 

 

Eq. (5) is drawn on the assumption that vehicle 𝑖 is followed by vehicle 𝑖  1 with a time 

difference of 𝜏 ,and vehicle 𝑖  and 𝑖  1 pass the same location at 𝑡 = 𝑡  and 𝑡 = 𝑡   , 

respectively. Thus, by simply subtracting the forced displacement of vehicle 𝑖 from that of 

vehicle 𝑖  1, roughness can be eliminated 

𝑢𝑖(𝑡 )  𝑢𝑖  (𝑡   ) = �̃�𝑖(𝑡 )  �̃�𝑖  (𝑡   ) 
(6) 

= 𝑦(�̃�𝑖, 𝑡 )  𝑦(�̃�𝑖  , 𝑡   )   �̃�𝑖(𝑡 ) 

where  �̃�𝑖(𝑡 ) is the difference in bridge displacement at 𝑥 = �̃�𝑖(𝑡 ), which is a moving coordinate. 

The vehicle location �̃�𝑖 is then regarded as a locus of moving observation points; thus, the number of 

moving observation points becomes 𝑛𝑚𝑜𝑣, i.e., 𝑛𝑣𝑒  1. Hereafter, �̃�𝑖 (𝑖 = 1,… , 𝑛𝑚𝑜𝑣) indicates the 

moving observation point of  �̃�𝑖(𝑡𝑘). To reduce the accumulated errors in the double integral at the 

first step, the following boundary condition is considered: when vehicle 𝑖  enters the bridge at 

𝑡 = 𝑡 (𝑥 = 0) and leaves the bridge at = 𝑡𝑛𝐿(𝑥 = 𝐿) 

 �̃�𝑖(𝑡 ) = 𝑢𝑖(𝑡 )  𝑢𝑖  (𝑡  𝜏) = 𝑦(0, 𝑡 )  𝑦(0, 𝑡  𝜏) = 0 

and  �̃�𝑖(𝑡𝑛𝐿) = 𝑢𝑖(𝑡𝑛𝐿)  𝑢𝑖  (𝑡𝑛𝐿  𝜏) = 𝑦(𝐿, 𝑡𝑛𝐿)  𝑦(𝐿, 𝑡𝑛𝐿  𝜏) = 0 
(7) 

are valid because the bridge displacements at 𝑥 = 0  and  𝑥 = 𝐿 are always 0. Thus, the 

accumulative errors at 𝑡 = 𝑡𝑛𝐿 due to the double integral are linearly redistributed to the value of 

 �̃�𝑖(𝑡𝑘) from 𝑥 = 0 to 𝑥 = 𝐿. The most difficult step is to synchronize all data obtained by an 

individual monitoring vehicle. However, synchronization is necessary because the roughness can 

be deleted at the exact same location, and the data should be strictly allocated to the position. For 

example, such information can be realized by counting the tire cycles to determine the exact 

distance from the start point. 

 

2.3 Step 3: conversion from moving to fixed observation 
 
Because the monitoring vehicle moves over the bridge, the deformation obtained in the second 

step is along the moving vehicle, which is a function of the moving coordinate. Thus, in this step, 

the obtained deformation,  �̃�𝑖(𝑡𝑘), is converted into that at the fixed position, so that it becomes 

the function of a fixed coordinate. 
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To convert the moving coordinate into a fixed one, we adopt the concept of modal 

superposition. The vertical deflection 𝑦(𝑥, 𝑡) for a two-dimensional beam in a series form can be 

expressed as 

𝑦(𝑥, 𝑡) =∑ 𝑙(𝑥) 𝑙(𝑡)

𝑛 

𝑙  

 (8) 

where  𝑘(𝑡) and  𝑘(𝑥) denote the generalized coordinate and shape function of the 𝑙th vibration 

mode, respectively, and 𝑛𝑑 is the maximum degree of assumed modes. By using this expression, 

the differences of bridge displacement  �̃�𝑖(𝑡𝑘) can be also obtained in the form 

 �̃�𝑖(𝑡𝑘) =∑ 𝑙(�̃�𝑖(𝑡𝑘))

𝑛 

𝑙  

* 𝑙(𝑡𝑘)   𝑙(𝑡𝑘   )+ (9) 

Then, by assuming that the number of moving observation points 𝑛𝑚𝑜𝑣(= 𝑛𝑣𝑒  1) is equal 

to 𝑛𝑑, the mode shape matrix, which is a function of time, can be given by 

 (𝑡𝑘) = [

  (�̃� (𝑡𝑘))   𝑛 (�̃� (𝑡𝑘))

   

  .�̃�𝑛 (𝑡𝑘)/   𝑛 .�̃�𝑛 (𝑡𝑘)/
] (10) 

and the difference of generalized coordinates can be expressed in the form 

  (𝑡𝑘) = {

  (𝑡𝑘)    (𝑡𝑘  𝜏)
 

 𝑛 (𝑡𝑘)   𝑛 (𝑡𝑘  𝜏)
} (11) 

Thus, the difference in bridge displacement obtained by 𝑛𝑚𝑜𝑣 moving observation points can 

be expressed by 

  ̃(𝑡𝑘) = {

 �̃� (𝑡𝑘)
 

 �̃�𝑛 (𝑡𝑘)
} =  (𝑡𝑘)  (𝑡𝑘) (12) 

The above equation can be used instead of bridge displacement for mode estimation because 

this equation excludes roughness. Note that the number of observation points determines the 

maximum degree of mode shapes to be estimated. 

Now let us assume fixed observation points at 𝑥𝑗(𝑗 = 1,… , 𝑛𝑓𝑖𝑥), as shown in Fig. 5, with 

constant intervals. Note that although fixed observations can be at any location, for simplicity, they 

are allocated equivalently in this study. 
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Fig. 5 Conversion from moving to fixed coordinates 

 

 

Then let us also assume that  𝑙(𝑥) is interpolated by 𝑛𝑑 base functions, 𝑁𝑠(𝑥), as follows 

 𝑙(𝑥) =∑ 𝑠𝑙𝑁𝑠(𝑥)

𝑛 

𝑠  

 (13) 

where  𝑠𝑙  is a constant coefficient with respect to 𝑁𝑠(𝑥), which is selected to satisfy the following 

conditions 

𝑁𝑠(𝑥𝑗) = {
1 … ( = 𝑗)
0 … (  𝑗)

 (14) 

This equation indicates that the value of the𝑗th base function becomes 1 at the fixed point 

for 𝑥𝑗 and 0 at other fixed points. Generally, several base functions can be used to satisfy the above 

equation. However, in this study, a Lagrange base function is adopted such as 

𝑁𝑠(𝑥) = ∏
𝑥  𝑥𝑙
𝑥𝑠  𝑥𝑙

𝑛

𝑙  
(𝑙 𝑠)

 (15) 

Other functions such as sinusoidal functions can be adopted for the base function, and the 

highest accuracy can be attained for the estimation of an ideal state. However, robustness against 

noise decreases dramatically when sinusoidal functions are used. The Lagrange function is adopted 

because the robustness against noise is higher than that in the other functions tested by the authors. 

With regard to Lagrange base function, it is obvious that fitting performance itself increases as the 

number of base functions increases. However, when the number of functions increases, the number 

of observation points also increases, which leads to ill-conditioning, as discussed subsequently. 

Thus, the proper number of functions, i.e., observation points, should be determined by 

considering the accuracy of mode shape estimation. Note that other adequate functions that can 

improve the estimation performance may exist, but these are not tested herein. 

By substituting 𝑥 = 𝑥𝑗 into Eq. (13), the following relationship can be obtained 

Moving coordinate

Fixed coordinate

Conversion
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 𝑙(𝑥𝑗) =∑ 𝑠𝑙𝑁𝑠(𝑥𝑗) =

𝑛

𝑠  

 𝑗𝑙 (16) 

This equation indicates that the coefficients of base functions are equal to the mode shapes that 

are to be estimated. Because the maximum degree of mode shapes is 𝑛𝑑, the number of fixed 

observation points, 𝑛𝑓𝑖𝑥,should be equal to 𝑛𝑑. 

On the other hand, from Eqs. (9), (13), and (16), the differences of bridge deformation 

at 𝑥 = �̃�𝑖(𝑡𝑘) can be expressed as 

 �̃�𝑖(𝑡𝑘) =∑ 𝑙(�̃�𝑖(𝑡𝑘))

𝑛

𝑙  

* 𝑙(𝑡𝑘)   𝑙(𝑡𝑘   )+ 

=∑∑ 𝑙(𝑥𝑗)𝑁𝑠(�̃�𝑖(𝑡𝑘))

𝑛

𝑠  

𝑛

𝑙  

* 𝑙(𝑡𝑘)   𝑙(𝑡𝑘  𝜏)+ 

(17) 

where 𝑗 = 1,… , 𝑛𝑑. Thus, from Eqs. (12) and (17), the bridge deformation vector along the 

moving coordinates (𝑥 = �̃� (𝑡𝑘), , �̃�𝑛(𝑡𝑘)) can be given by 

  ̃(𝑡𝑘) =  (𝑡𝑘)  (𝑡𝑘) =   (𝑡𝑘) ̂  (𝑡𝑘) (18) 

where  (𝑡𝑘) is defined by 

 (𝑡𝑘) = [

𝑁 (�̃� (𝑡𝑘))  𝑁𝑛 (�̃� (𝑡𝑘))

   

𝑁 .�̃�𝑛 (𝑡𝑘)/  𝑁𝑛 .�̃�𝑛 (𝑡𝑘)/
] (19) 

and   ̂ is defined by 

 ̂ = [

  (�̂� )   𝑛 (𝑥 )

   
  (𝑥𝑛 )   𝑛 (�̂�𝑛 )

] (20) 

Then, by multiplying Eq. (18) by the inverse matrix  (𝑡𝑘) to the left, the following equation 

can be obtained 

 (𝑡𝑘)
    ̃(𝑡𝑘) =  ̂  (𝑡𝑘) =

{
  
 

  
 
∑ 𝑙(�̂� )

𝑛 

𝑙  

* 𝑙(𝑡𝑘)   𝑙(𝑡𝑘   )+

 

∑ 𝑙(�̂�𝑛 )

𝑛 

𝑙  

* 𝑙(𝑡𝑘)   𝑙(𝑡𝑘   )+
}
  
 

  
 

 

           = {

𝑦(𝑥 , 𝑡𝑘)  𝑦(𝑥 , 𝑡𝑘  𝜏)
 

𝑦(𝑥𝑛 , 𝑡𝑘)  𝑦(𝑥𝑛 , 𝑡𝑘  𝜏)
}  {

 �̂� (𝑡𝑘)
 

 �̂�𝑛 (𝑡𝑘)
} =   ̂(𝑡𝑘) 

(21) 
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This equation indicates that the differences in bridge deformation at the fixed position 𝑥𝑗 and 

time 𝑡𝑘 , i.e.,   �̂�𝑖(𝑡𝑘) = 𝑦(𝑥𝑗, 𝑡𝑘)  𝑦(𝑥𝑗, 𝑡𝑘  𝜏) , can be obtained by multiplying    ̃(𝑡𝑘) by 

 (𝑡𝑘)
   to the left. Note that  (𝑡𝑘) can be defined while the vehicles are in the section of 

,𝑥 , 𝑥𝑛-, as shown in Fig. 6, because interpolation by the Lagrange base function is defined in the 

node section ,𝑥 , 𝑥𝑛-, and the boundary condition should be satisfied in this section. Both ends at 

the support location can be considered as observation points. To include these two points, dummy 

moving observation points, which are always 0, are added only into the first and last component of 

  ̃(𝑡𝑘). In this case, the entire span can be covered by interpolation, although the final accuracy of 

mode estimation is not significantly related to the interpolation of these end sections. Moreover, 

the estimation accuracy is nearly identical to the case that considers two points, even without 

considering the end sections. With regard to the time section, let 𝑡𝑎 (=   𝑡) be the time at which 

the last vehicle reaches 𝑥 , and let 𝑡𝑏(= 𝑏 𝑡) be the time at which the second vehicle reaches 𝑥𝑛. 

Then, the total number of data for analysis becomes 𝑏    1 ( 𝑚). 

 

 

 

Fig. 6 Definition of measured section 

 

 

2.4 Step 4: estimation of mode shape and its evaluation 
 

In this step, mode shape is estimated on the basis of the converted deformation of the bridge. 

Using the obtained deformation of   ̂(𝑡𝑘) =  (𝑡𝑘)
    ̃(𝑡𝑘) (𝑘 =  ,… , 𝑏), let the matrix, 𝐃, be 

given by 

𝐃 = ,  ̂(𝑡𝑎)    ̂(𝑡𝑏)- = , (𝑡𝑎)
    ̃(𝑡𝑎)   (𝑡𝑏)

    ̃(𝑡𝑏)- (22) 

The matrix 𝐃 ∈ R𝑛 ×𝑚 can be decomposed by singular value decomposition as 

𝐃 =      (23) 

where  ∈ R𝑛 ×𝑛  and  ∈ R𝑚×𝑚 are orthogonal matrices and  ∈ R𝑛 ×𝑚 is given by 
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            = [

  0 0  0

   
0  𝑛 0  0

] = ,   - (24) 

where   ∈ R
𝑛 ×𝑛  is a matrix comprising 𝑛𝑑  columns of  , and   , ,  𝑛  are singular 

values in descending order. Then,   is normalized so that the maximum values of the element in 

each column are determined as 

            ̅ =      (25) 

where  ∈ R𝑛 ×𝑛  is the orthogonal matrix with the maximum values of each column of   as an 

orthogonal element, and  ̅ is the normalized matrix of  . Now, if    ∈ R
𝑚×𝑛  is defined as the 

matrix consisting of 𝑛𝑑 columns of  , Eq. (22) can be expanded as 

        𝐃 =     =      
 =  ̅     

 =  ̅  ̅ (26) 

where 

          ̅ =      
  ,  ̅(𝑡𝑎)    ̅(𝑡𝑏)- (27) 

On the other hand, 𝐃 can be expressed directly by Eq. (21) in the form 

𝐃 = ,  ̂(𝑡𝑎)    ̂(𝑡𝑏)- = , ̂  (𝑡𝑎)   ̂  (𝑡𝑏)- =  ̂  , (28) 

where    ,  (𝑡𝑎)    (𝑡𝑏)-. Thus, from Eqs. (27) and (25), when the generalized 

coordinates are uncorrelated and the mode shape functions are orthogonal, the mode shape matrix 

 ̂ corresponds to  ̅, and the generalized coordinate   (𝑡𝑘) corresponds to   ̅(𝑡𝑘). Thus, if the 

above assumption is valid, the matrix of  ̅ can be regarded as the mode shape matrix. 

Finally, the state of the bridge is evaluated by comparing base line mode shapes with those 

estimated by the above theory on the basis of the averaged mode assurance criterion (MAC) values 

given by  

   ̅̅ ̅̅ ̅̅ =
1

𝑛𝑑
∑

.∑  ̅𝑙(�̂�𝑗) 𝑙(�̂�𝑗)
𝑛 
𝑗  /

 

.∑  ̅𝑙
 (�̂�𝑗)

𝑛 
𝑗  / .∑  𝑙

 (𝑥𝑗)
𝑛 
𝑗  /

𝑛 

𝑙  

 (29) 

where  𝑙(𝑥𝑗) is the 𝑙th order of the base line mode shape at 𝑥𝑗, and  ̅𝑙(𝑥𝑗) is the 𝑙th order of 

mode shape obtained by the proposed theory defined as the component of matrix,  ̅, in the form 

 ̅ = [

 ̅ (�̂� )   ̅𝑛 (�̂� )

   
 ̅ (�̂�𝑛 )   ̅𝑛 (𝑥𝑛 )

]  (30) 

Note that although this theory is formulated in a two-dimensional beam, the theory can be 

extended to a three-dimensional beam by considering shear rotation, 𝛾(𝑥, 𝑡), expressed by 
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𝛾𝑠(𝑥, 𝑡) =∑ 𝑙(𝑥) 𝑙(𝑡)

𝑙

 (31) 

where  𝑙 is a shape function for shear mode, and  𝑙 is a generalized coordinate for 𝑖th shear 

mode. On the basis of this model, shape function for rotation can also be approximated by base 

functions in the same manner as that for vertical displacement. Then, shear rotation and vertical 

displacement are obtained independently. In this case, monitoring vehicles should be located three-

dimensionally to interpolate the horizontal curves of mode shapes. 
 

 

3. Numerical verification 
 

3.1 Verification outline 
 
Numerical simulation was conducted to verify the proposed theory. In this simulation, the 

vehicles and bridge were assumed to be a mass–spring system and a simple beam consisting of 

two-dimensional finite elements, respectively. In particular, monitoring vehicles were regarded as 

single-axle models and heavy trucks as double-axle models (Fig. 7). Bridge displacement, which is 

expressed by modal superposition with the maximum degree of 𝑚𝑠, can be discretized into 𝑛𝑠 
nodes (𝑥 = 𝑥 , … , 𝑥𝑛𝑠) in the form  

                                 (𝑡) =   (𝑡) (32) 

where  (𝑡) = {𝑦(𝑥 , 𝑡), , 𝑦(𝑥𝑛𝑠 , 𝑡)}
𝑇

 is the bridge displacement vector, 

 (𝑡) = {  (𝑡), ,  𝑚𝑠
(𝑡)}

𝑇
is the general coordinates vector, and  ∈ 𝐑𝑛𝑠×𝑚𝑠  is the mode shape 

matrix given by 

 = [

  (𝑥 )   𝑚𝑠
(𝑥 )

   
  (𝑥𝑛𝑠)   𝑚𝑠

(𝑥𝑛𝑠)
] (33) 

Note that mode shape matrix is obtained in advance by eigenvalue analysis for the non-

damping system of the assumed beam. 

 

 

 

Fig. 7 Assumed model for verification 
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When total 𝑛𝑥 contact forces of 𝑷(𝑡) = {𝑃 (𝑡), , 𝑃𝑛𝑥(𝑡)}
𝑇
 including single- and double-

axle vehicles are acting on the bridge, the equation of motion of the bridge can be expressed by a 

discrete model as 

   ̈(𝑡)     ̇(𝑡)     (𝑡) =  
  (𝑡)𝑷(𝑡) (34) 

where   =  
  B ,   =  

  B , and   =  
  B  are normalized modal mass, damping, 

and stiffness matrices, respectively, and  (𝑡) ∈ 𝐑𝑛𝑠×𝑛𝑥  is a transformation matrix. Note that 

 B ∈ 𝐑
𝑛𝑠×𝑛𝑠, B ∈ 𝐑

𝑛𝑠×𝑛𝑠, and  B ∈ 𝐑
𝑛𝑠×𝑛𝑠  are diagonal matrices with the components 𝑀𝑖, 𝐶𝑖, 

and 𝐾𝑖 at the ith element, respectively. 

On the other hand, the equation of motion of moving vehicles can be given by 

   ̈(𝑡)     ̇(𝑡)     (𝑡) =    ̇(𝑡)     (𝑡) (35) 

where   ∈ 𝐑
𝑛𝑥×𝑛𝑥 ,  ∈ 𝐑

𝑛𝑥×𝑛𝑥, and   ∈ 𝐑
𝑛𝑥×𝑛𝑥are the mass, damping, and spring stiffness 

matrices of the vehicles, and  (𝑡) = {𝑧 (𝑡), , 𝑧𝑛𝑥(𝑡)}
𝑇

 and  (𝑡) = {𝑢 (𝑡), , 𝑢𝑛𝑥(𝑡)}
𝑇

are 

vehicle responses and forced displacement, respectively. The details of the matrix are described in 

Table 1 (Ihsan et al. 2009). 
 
Table 1 Matrix for double-axle model 

Mass Damping Stiffness 

[
 
 
 
𝐿 𝑚𝑠

𝐿  𝐿 

𝐿 𝑚𝑠

𝐿  𝐿 
 𝑠

𝐿  𝐿 
 

 𝑠
𝐿  𝐿 ]

 
 
 

 0
    
𝐿    𝐿   

1 [
𝑘 𝑘 
𝐿 𝑘  𝐿 𝑘 

] 

*Isis inertia moment 
 
 

Then, by using transformation matrix  (𝑡) and roughness vector 𝒓(𝑡) = {𝑟 (𝑡),  , 𝑟𝑛𝑥(𝑡)}
𝑇
, 

forced displacement can be expressed by 

 (𝑡) =   (𝑡)  (𝑡)  𝒓(𝑡) (36) 

and the contact force of 𝑷(𝑡)can be expressed by 

𝑷(𝑡) =   (   ̈(𝑡)) (37) 

where   ∈ R
𝑛𝑥×𝑛𝑥 is a mass matrix of vehicles for contact force, and   and  ̈(𝑡) are the 

vectors of gravity acceleration and acceleration responses of the vehicle, respectively. Note that 

   is common to    in the part of the matrix regarding the single-axle model, but the part 

regarding the double-axle model is diagonal and has components of 
𝐿2𝑚𝑠

𝐿1 𝐿2
  and  

𝐿1𝑚𝑠

𝐿1 𝐿2
  for the first 

and second axles, respectively. 

Thus, to simulate bridge–vehicle vibration, the following equation of motion was solved by the 

Newmark- 𝛽 method with time increments of 1/1000 s, 𝛽 = 1  ⁄ , and 𝛾 = 1 2⁄  
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[
     (𝑡)  
   

] {
 ̈(𝑡)

 ̈(𝑡)
}  [

   

    
 (𝑡)   

] {
 ̇(𝑡)

 ̇(𝑡)
}

 [
   

    
 (𝑡)   

] {
 (𝑡)

 (𝑡)
} 

= {
   (𝑡)   

  �̇�(𝑡)    𝒓(𝑡)
}  

(38) 

Here, the number of beam elements is 300 with lengths of 0.1 m, and the first to fifth modes are 

considered in the simulation. Vehicle parameters and bridge properties are assumed as stated in 

Tables 2 and 3, respectively. Note that the first eigenfrequency of the assumed bridge is 3.96 Hz, 

and that of the measuring vehicle is 1Hz, as determined by previous research (Lin and Yang 2005). 

In the estimation theory, four to six monitoring vehicles at 1-m intervals were considered. The 

shorter distance was preferable for interpolation. However, the inverse of the matrix   became ill 

posed as the distance decreased; the shorter interval led to a significant decrease in estimation 

accuracy. Thus, the above condition was adopted for damage evaluation. 

Road roughness was also given in the Monte Carlo simulation on the basis of the following 

power spectrum (Okabayashi 1979) 

 𝑝 =
 

     
, (39) 

where  (m
−1

) is the surface frequency (the number of peaks per meter), and α, , and 𝜉are 

parameters determining surface conditions. As shown in Fig. 8, three grades of roughness were 

assumed by following ISO criteria, and three different roughness types were simulated for each 

grade. The surfaces of EG1 to EG3 correspond to “extra good,” the surfaces of GD1 and GD3 

correspond to “good,” and the surfaces of ST1 and ST3 correspond to “standard,” according to 

ISO standards (Kawatani et al. 1997). The parameters used in this simulation are also listed in 

Table 4. 

 
Table 2Properties of vehicles assumed in the simulation 

Heavy vehicle    

Mass (kg) 𝑚𝑠 10000 

Damping (kg/s)  𝑠 ,  𝑠  74000 

Spring Stiffness (kg/s
2
) 𝑘𝑠 , 𝑘𝑠  760000 

Inertia    90000 

Length (m) 𝐿 , 𝐿  3.0 

Measuring vehicles    

Number  𝑁𝑣𝑒 4 

Mass (kg) 𝑚𝑖 100 

Damping (kg/s)  𝑖 50 

Spring Stiffness (kg/s
2
) 𝑘𝑖 3950 

Natural Frequency (Hz) 𝑓 = √𝑘𝑖 𝑚𝑖⁄ 2π⁄  1.00 

Damping Coefficient  𝜉 = 2 𝑖√𝑚𝑖𝑘𝑖 0.30 

Interval Distance (m) 𝑑 1.0 

Common    

Run Speed (m/s) 𝑣 10.0 

Distance (m) 𝐷 5.5 
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Table 3Bridge properties assumed in the simulation 

Physical parameters 

Length Mass per Length Flexural Stiffness 

(m) (kg/m) (Nm) 

𝐿 𝜌𝐴 𝐸  
30.0 3000 1.56×10

10
 

 

   
(a) Extra Good (b) Good (c) Standard 

Fig. 8 Assumed model for verification 

 
Table 4 Assumed parameters for road roughness types. 

Name ISO standard   𝑏 𝜉 

EG1, EG2, EG3 Extra Good 0.001 0.05 2.00 

GD1, GD2,GD3 Good 0.003 0.02 2.50 

ST1, ST2, ST3 Standard 0.0098 0.08 1.92 

 
 

   
(a) Intact state (b) Damage 1 (c) Damage 2 

Fig. 9 Mode shapes of intact and damage states 

 

 

Two different types of damage were assumed. For damage 1, one of two supports was fixed in 

rotation, representing a loss of rotational function of support; for damage 2, the stiffness of the 

beam at the center decreased by 40% with a length of 1 m. The mode shape of damage 1 differed 

from that of the intact state; however, the mode shape of damage 2 was nearly identical to that of 

the intact state, as shown in Fig. 9. The velocity of the vehicles also varied from 5 m/s to 15 m/s, 

and two different masses of heavy vehicles were also assumed. White noises of 1%, 3%, and 5% 

measurement of standard deviation were added into the measurement values in the first step.  
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3.2 Estimation results and discussion 
 

3.2.1 Effect of vehicle number 
Fig. 10 shows the estimated results of mode shapes considering four, five, and six monitoring 

vehicles, each at a speed of 10m/s, over an intact beam with a surface of GD1. The noise effect is 

not considered. Note that the number of observation points and the maximum degree of modes to 

be estimated are determined according to the number of monitoring vehicles. For example, when 

the number of monitoring vehicles is four, three fixed observation positions are assumed, 

indicating that the mode shape is also estimated by only three given points.  

As indicated in Fig. 10, the estimation accuracy of mode shape itself decreases as the number 

of vehicles increases, which may be attributed to ill-conditioning of the inverse matrix,  (𝑡𝑘)
  , 

used in Step 3. If the matrix is illposed, a small error in calculation becomes significant in the final 

solution. Such ill-conditioning becomes critical as the number of vehicles increases or the intervals 

of vehicles decrease. To represent the accuracy of the result in a numerical calculation of matrix 

inversion, the condition number can be given by 

 ( ) =
    ( )

    ( )
 (40) 

where  ( ) is the condition number of matrix  , and     ( ) and     ( ) are the maximum 

and minimum of the singular value of  , respectively (Pyzara et al. 2011). Fig. 11(a) shows the 

relationship between the condition number and the number of vehicles. From this figure, it is 

evident that the condition number decreases as the number of vehicle increases. This result 

indicates that an increase in the number of vehicles may lead to a decrease in accuracy. However, 

from the perspective of mode shape construction, additional nodes (i.e., additional vehicles) are 

preferable. Thus, vehicle number should be determined so that the effect of ill-conditioning is 

balanced with the enhancement of accuracy by increasing nodes in mode shapes.  

Fig. 11(b) shows the averaged MAC in the intact and damage cases in which four, five, and six 

vehicles are used for estimation. From this figure, the averaged MAC decreases as the number of 

vehicles increases in any case. For any number of vehicles, the averaged MAC values in the intact 

and damage-2 cases are nearly identical; however, those in the damage-1 case are smaller than 

those in the other cases. The small value of MAC in the damage-1 case is attributed to the 

significant difference between the real mode shapes in the damage-1 case and those in the intact 

case; in other words, the MAC values based on sine functions for the estimated shapes become 

small. Because the averaged MAC values of exact solution for damage-1 and damage-2 cases 

are0.9379 and 0.9999, respectively, the value estimated by using four vehicles is closer to the exact 

solution than those by the other vehicles. Thus, in this study, the number of monitoring vehicles is 

set to four. 

Fig. 11(c) shows the MAC values corresponding to each degree of mode in the intact and 

damage cases using four vehicles. In the first mode, the MAC values for all cases are closer to 1.0 

than those in the other modes. For the second and third modes, the MAC values in the damage-1 

case are lower than those in the damage-2 and intact cases. Thus, to recognize the differences in 

these states, the MAC value of the second and third modes should be used for damage evaluation. 

However, this relationship may vary when the other profile and velocity are considered. Thus, the 

averaged MAC value can be appropriate for the index of damage evaluation. 

 

 

746



 

 

 

 

 

 

Damage assessment of a bridge based on mode shapes estimated by responses… 

 

 

 

 
(a) Four vehicles (b) Five vehicles (c) Six vehicles 

Fig. 10 Estimated mode shapes in cases of four, five, and six vehicles 

 

 

   
(a) Condition number (b) Averaged MAC value (c) MAC values in the case of 

four vehicles 

Fig. 11 Mode shapes of intact and damage states 

 

 
 

3.2.2 Effects of surface roughness, vehicle velocity, and vehicle mass 

In this section, the effects of surface roughness and the velocity and mass of the vehicles are 

discussed. In the fourth step of our theory, singular value decomposition is applied to the converted 

responses of the bridge with the assumption that the generalized coordinate of each mode is not 

correlated and mode shape vectors are orthogonal. Therefore, the performance of decomposition 

strongly depends on the correlation of actual generalized coordinates, which may vary with the 

conditions of roughness, as well as with vehicle velocity and mass. Thus, the MAC values of 

several cases are subsequently discussed from the perspective of correlation of the generalized 

coordinates. 

The averaged MAC values of nine roughness types including three grades in the intact and 

damage-1 cases are plotted in Fig. 12(a) with respect to the correlation of the modes of the 
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generalized coordinates. In this figure, the degree of correlation is evaluated by  

𝐹( ,  ) =∑   (𝑥𝑖𝑦𝑖)           

𝑖

 (41) 

where 𝐹( ,  ) is the degree of correlations of  (= 𝑥 , … , 𝑥𝑛) and  (= 𝑦 , … , 𝑦𝑛), and   is a 

matrix withthe component 𝑥𝑖𝑦𝑗  in the𝑖th row and 𝑗th column. This equation represents the 

diagonal degree of   (Kawamoto et al. 1997). This function is always larger than zero or equal to 

zero when   is a diagonal matrix. Moreover, the function becomes infinity when every 

component of the matrix is identical. The matrix is a covariance matrix of   and  , and these two 

series vectors are completely uncorrelated; thus, the matrix becomes diagonal. This equation also 

denotes the degree of correlation between   and  . As indicated in the figure, in both cases of 

intact and damage, the correlation strengthens as the grade of roughness increases, which may be 

attributed to the fact that rough profiles generally exhibit lower correlation owing to the 

randomness of the profiles. Moreover, the MAC value decreases as the correlation increases. This 

tendency can be confirmed much more clearly in the damage-1 case than in the intact case. In 

general, the MAC values of the intact case are larger than those in the damage-1 case. The MAC 

values on the basis of sine functions may decrease when the mode shape to be estimated changes 

from the intact mode shape. Moreover, the accuracy of mode estimation partly depends on the 

performance of curve fitting by the Lagrange base function in the third step. Simple and symmetric 

shapes can generally be fitted with small errors by the base function. The difference between the 

MAC values of the two states may be attributed to these two factors. Thus, the difference between 

the bridge states in the intact and damage-1 cases can be recognized by the proposed method. 

 

 

   
(a) Roughness (b) Velocity (c) Mass 

Fig. 12 Relationship between averaged MAC value and correlation of the generalized coordinates 

 

 

Fig. 12(b) shows the relationship between the correlation and MAC values with different 

velocities in the intact and damage-1 cases. As confirmed above, it is also evident in this figure 

that the MAC value generally decreases as the correlation increases and that the MAC values in 

the intact cases are larger than those in the damage-1 case. In addition, the correlation essentially 

increases as velocity decreases partly because higher velocity vehicle may yield more randomness 

of bridge vibration. Fig.12(c) also shows the relationship between the correlation and MAC values 

with different weights in the intact and damage cases. From this figure, the same tendency can be 

confirmed for different weights. In addition, the vehicle weight increases with the correlation. This 
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result may be attributed to the fact that light vehicles equally excite much higher components of 

bridge vibration. 

Therefore, when four monitoring vehicles at 1-m intervals pass over a bridge and yield the 

converted bridge responses by our theory without noise, the state of the bridge can be recognized 

by the averaged MAC values.  

 

 

 

   
(a) 1% (b) 3% (c) 5% 

Fig. 13 Occurrence frequency of MAC values with 1%, 3%, and 5% noise 

 

 

3.2.3 Effect of noise 
The above analysis was conducted on the assumption that the responses were obtained without 

noise. To evaluate the effect of noise, we assumed that four monitoring vehicles at a velocity of 10 

m/s pass over an intact and a damaged beam, each having the surface of GD1. Because the 

responses with random noise can be regarded as stochastic processes and the estimated MAC 

values strongly depend on the noise characteristics, 1000 measurement data with 1%, 3%, and 5% 

noise with respect to the standard deviation of the responses were produced. All measurement data 

were produced by adding different random noise with a given percent to a fixed measurement 

dataset without noise that delivered MAC of 0.999. Fig. 13 shows the occurrence histogram of 

averaged MAC in the cases with 1%, 3%, and 5% noise. In this figure, the data were fitted by 

lognormal distributions. The MAC values were widely distributed even for the intact and damage 

states, and the difference between these states decreased as noise increased. Even if the 

measurement data contained same amplitudes of noise, the obtained MAC values differed widely.  

A decrease in the MAC value due to noise may be caused by a violation of the assumption in 

mode decomposition, which is sensitive to the correlation and orthogonality of the measurement 

data. If the noises have same amplitude but different phases, the nature of the signals differed from 

the perspective of decomposition and the MAC values obtained were different. Thus, the 

dispersion due to noise is much larger than the difference between the intact and damage states, 

and the proposed theory is not robust against noise. However, despite the dispersion of the MAC 

values, the mean values of the two distributions clearly differed in the case of 1% noise: the mean 

values of the intact and damage states were 0.83 and 0.70, respectively. In the case of 1% noise, 16 

measurements were required to recognize the difference of 0.05 in the mean value of MAC with a 

significance level of 95%. The merit of our theory is its ease and rapidity of measurement: 16 

measurements can be accommodated. However, in the case of 3% noise, 287 measurements are 

needed to recognize the difference of 0.01; for 5% noise, 755 measurements are needed to obtain a 
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difference of 0.005. These numbers are not appropriate for practical application; thus, robustness 

against noise should be improved. 
 

 

4. Conclusions 
 
To identify the damage state of a bridge such as immobilization of rotational support, bridge 

mode shapes estimated by vehicle responses were evaluated. The feasibility of the identification 

theory was verified by numerical simulation of interactive vibration between a two-dimensional 

beam and passing vehicles modeled simply as sprung mass. Different mode shapes corresponding 

to different levels of damage with several degrees of road roughness and measurement noise were 

examined. As a result, it was determined that in the cases without noise, the averaged MAC values 

estimated by passing vehicles clearly differed between the intact and damage states with 

immobilization of rotational support. However, the proposed theory does not have robustness 

against noise, and numerous measurements are needed to recognize the differences between these 

states. 
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Notations 
 

 

 𝑠𝑙 
Coefficients of interpolation with base function 𝑁𝑠(𝑥) for mode shape 

 𝑙(𝑥) 
𝐹( ,  ) The degree of correlations of  (= 𝑥 , … , 𝑥𝑛) and  (= 𝑦 , … , 𝑦𝑛) 
𝐿 𝐿  Distance of axles from the centroid of a vehicle 

𝐿 The length of a bridge 

𝑚 The total number of data for analysis (=𝑏    1) 

𝑚𝑒 Maximum degree of assumed modes in the modal superposition 

𝑚𝑠 Mass of heavy vehicle (two axles) 

𝑛𝑣𝑒 Number of vehicle 

𝑛𝑡 The maximum number of time index 

𝑛𝑚𝑜𝑣 The number of moving observation points of  �̃�𝑖(𝑡𝑘) 
𝑛𝑑 The maximum degree of assumed modes 

𝑛𝑓𝑖𝑥 The maximum number of the fixed observation points 

𝑛𝑥 Number of contact force 

𝑛𝑒 Number of beam element 

𝑁𝑠(𝑥) Base function 

   ̅̅ ̅̅ ̅̅  The averaged max value 

 𝑙 Generalized coordinate for 𝑙th shear mode 

𝑃𝑖(𝑡) Contact force of i th axle 

 𝑙(𝑡) The generalized coordinate of the 𝑙th vibration mode 

�̃�𝑖(𝑡𝑘) The road roughness at �̃�𝑖(𝑡𝑘) 
𝑟(𝑥) The roughness at position 𝑥 

𝑡 Time 

𝑡𝑎 The time when the last vehicle reaches 𝑥  (=   𝑡) 

𝑡𝑏 The time when the second vehicle reaches 𝑥𝑛  𝑥(= 𝑏 𝑡) 

𝑡  The time when vehicle i enters the bridge 

𝑡𝑛𝐿 The time when vehicle i leaves the bridge 

𝑡  The time of interest when the vehicle i is on the bridge 

𝑡    
The time when the vehiclei+1 is on the location where the vehicle i was at 

the time of 𝑡  
𝑡𝑘 Discrete time (=𝑘𝛥𝑡) 

𝑢𝑖(𝑡𝑘) Forced displacement of vehicle i at 𝑡 = 𝑡𝑘 

𝑥 Position 

𝑥𝑗 The location of the fixed observation points 

�̃�𝑖(𝑡𝑘) The location of vehicle𝑖at the time of 𝑡𝑘 

𝑦(𝑥, 𝑡) The bridge displacement at position 𝑥 and time 𝑡 

 �̃�𝑖(𝑡 ) 
The difference of bridge displacement between the times of 𝑡  and 

𝑡   at 𝑥 = �̃�𝑖(𝑡 ) 

 �̂�𝑖(𝑡𝑘) 
The differences of bridge deformation between the times of 𝑡𝑘 and𝑡𝑘  at 

the fixed position 𝑥𝑗 

�̃�𝑖(𝑡𝑘) The bridge deformation at �̃�𝑖(𝑡𝑘) 
𝑧𝑖(𝑡𝑘) The vertical displacement of the vehicle 
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      𝜉 Parameters for roughness spectrum 

 ( ) The condition number of matrix   

    ( )    ( ) The maximum and minimum of the singular value of  , 

𝛿𝑖(𝑡𝑘) Relative displacement of vehicle i at 𝑡 = 𝑡𝑘 

 𝑙(𝑥) The shape function of the 𝑙th vibration mode 

𝛾𝑠(𝑥, 𝑡) Shear rotation of a beam at position 𝑥 and time 𝑡 
 𝑙 Shape function for 𝑙th shear mode 

𝜏 Time difference between adjacent two vehicles  

   The damping matrix of the vehicles 

𝐃 
Matrix of the difference of bridge displacement in terms of fixed 

observation points 

  Gravity vector 

   The stiffness matrix of the vehicles 

 (𝑡) The transformation matrix 

 (𝑡𝑘) Matrix of base function  

   The mass matrix of the vehicles 

   a mass matrix of vehicles for contact force 

𝑷(𝑡) Vector of contact force with a component 𝑃𝑖(𝑡)in the𝑖th row 

 (𝑡) The general coordinates vector for FE analysis 

  (𝑡𝑘) The difference of generalized coordinates 

  ̅(𝑡𝑘) Pseudo general coordinates composing the matrix   ̅ 

   Matrix with a component   (𝑡𝑘)in the𝑘th column 

  ̅ Matrix obtained by multiplying  ,    and   

  The orthogonal matrix with the maximum values of each column of   

 (𝑡) Vector of forced displacements to the vehicles for FE analysis 

   Orthogonal matrices of singular value decomposition of 𝐃 

   The matrix consisting of 𝑛𝑑 columns of   

  ̂(𝑡𝑘) Vector of with a component  �̂�𝑖(𝑡𝑘) in the 𝑖th row 

 (𝑡) The bridge displacement vector for FE analysis 

  
The mode shape matrix with a component  𝑗(𝑥𝑖)in the𝑖th row and 𝑗th 

column 

 (𝑡) Vector of vehicle responses for FE analysis 

 ̈(𝑡) Vector of acceleration responses of the vehicles for FE analysis 

 (𝑡𝑘) Matrix of mode shape 

 ̅ Normalized matrix of   

 ̂ Matrix with a component  𝑗(𝑥𝑖)in the𝑖th row and 𝑗th column 

  The matrix having singular values of 𝐃 

   Matrix comprising 𝑛𝑑 columns of   

       Normalized modal mass, damping, and stiffness matrix, respectively 

 B B B 
Diagonal matrices with the components𝑀𝑖, 𝐶𝑖, and𝐾𝑖at the i th element, 

respectively 
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