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Abstract.  This paper presents a dynamic analysis of three-dimensional beams. Structures made of 
functionally graded materials are considered. Several higher-order as well as classical theories are derived by 
means of a compact notation for the a-priori expansion order of the displacement field over the beam 
cross-section. The governing differential equations and boundary conditions are obtained in a condensed 
nuclear form that does not depend on the kinematic hypotheses. The problem is, then, exactly solved in 
space by means of a Navier-type solution, whereas time integration is performed by means of Newmark’s 
solution scheme. Slender and short simply supported beams are investigated. Results are validated towards 
three-dimensional FEM results obtained via the commercial software ANSYS. Numerical investigations 
show that good accuracy can be obtained through the proposed formulation provided that the appropriate 
expansion order is considered. 
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1. Introduction 
 

Functionally Graded Materials (FGMs) represent very attractive solutions due to the continuous 
and gradual change of their properties along desired spatial directions. A multi-functional 
structural response can be obtained by means of a proper combination of the different material 
components resulting in a broadened structural design space. As far as structures are concerned, 
beams play an important role in research since they can be used to idealise many primary and 
secondary structural elements, such as aircraft wings, helicopter rotor blades or robot arms. In 
particular, their dynamic behaviour is of major concern in several applications. The dynamic 
response of three-dimensional FGM beam structures is, therefore, an important and up-to-date 
research topic.  

A brief overview of some recent works about FGMs and their dynamic analysis follows. An 
interesting historical overview on FGMs can be found in Koizumi (1997). A general account of 
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FGMs (design, fabrication and applications) was presented by Suresh and Mortensen (1998), 
Miyamoto et al. (1999), Watanabe et al. (2003) and Birman and Byrd (2007). A review of classical 
micro-mechanical approaches such as self-consistent schemes, see Hill (1965), differential 
schemes, Mori-Tanaka’s (1973) method and concentric cylinder models can be found in 
Aboudi (1991), Nemat-Nasser and Hori (1993) and Zuiker and Dvorak (1994). To the best of 
authors’ knowledge, one of the first micro-mechanical approaches for FGMs was proposed by 
Wakashima and Tsukamoto (1990). Pindera et al. (1995) demonstrated that classical methods 
cannot be profitably applied to FGMs since they decouple the local response from the global one. 
A higher-order theory for FGMs based on a volumetric averaging approach that explicitly couples 
micro- and macro-scale with spatially varying micro-structures in one, two and three orthogonal 
directions was presented by Aboudi et al. (1994, 1996, 1999).  

As far as structural mechanics is concerned, Bui et al. (2013) investigated the free and forced 
vibration of sandwich beams embedding a FGM core using a radial point interpolation meshless 
method. The Cartesian transformation method was used for computing the integrals over the beam 
spatial domain. Newmark’s (1959) time discretisation scheme was employed. A non-linear forced 
vibration analysis of FGM clamped beams was carried out by Shooshtari and Rafiee (2011). 
Geometric non-linearities were considered in a von Kármán sense and the external load was 
harmonic. An analytical solution was presented. Temperature dependent material properties were 
considered by Azadi (2011) for the free and forced vibration of FGM beams. Na et al. (2009) 
investigated the dynamic response of functionally graded blades. Rotating thin-walled beams with 
a box cross-section subjected to thermo-mechanical loads were considered. Analyses were carried 
out considering several geometric (taper ratio, twisting and setting angle), material (volume 
fraction) and load (temperature gradient) parameters. Şimşek et al. (2009, 2012) studied the 
dynamic behaviour of through-the-thickness and axially graded beams by means of 
Euler-Bernoulli classical model accounting for moving harmonic loads. The load amplitude was 
considered to vary harmonically. Elastically connected double-functionally graded beam systems 
were investigated in Şimşek and Cansiz (2012). Şimşek (2010) applied Euler-Bernoulli’s, 
Timoshenko’s and third-order shear deformation theories to the study of the forced vibrations of 
FGM beams due to a moving mass. Khalili et al. (2010) considered the dynamic response of FGM 
Euler-Bernoulli beams under moving loads where spatial and time derivatives were approximated 
by means of Rayleigh-Ritz and differential quadrature methods, respectively. The load was 
represented by a mass moving along the beam axis to introduce a further inertial contribution. 
Results were compared with solution obtained using Newmark’s and Wilson’s algorithms. Yang et 
al. (2008) considered the free and forced vibrations of FGM cracked beams by means of analytical 
solutions. Euler-Bernoulli’s kinematic model was used. The beams were loaded by an axial 
compressive force and a transversal one that was moving along the axial direction. Several 
boundary conditions were accounted for. The forced response was obtained via the modal 
expansion method.  

The forced vibrations of three-dimensional FGM beams are investigated within this paper by a 
unified formulation. This formulation has been previously derived for plates and shells, see 
Carrera (2003) and Carrera and Giunta (2009a, b, 2011), and extended to three-dimensional beam 
structures in Carrera and Giunta (2010), Carrera et al. (2010, 2011) and Giunta et al. (2010, 2011a, 
2013a, b). To the best of authors’ knowledge, the proposed formulation was first applied to the 
dynamic analysis of homogeneous and isotropic beams in Carrera et al. (2013). The present article 
stems from the free-vibration analysis of FGM beams presented in Giunta et al. (2011b). The 
variation of the material stiffness coefficients and density with respect to the cross-section 
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coordinates is expressed as a bi-dimensional Lagrange approximation using Newton’s series 
expansion and Chebyshev points, see Philips (2003). In such a manner, the derivation does not 
depend on the particular material gradation law. The Principle of Virtual Displacement is used for 
deriving the governing differential equations and the corresponding boundary conditions. They are 
obtained as a “fundamental nucleo” that does not depend on the displacement field approximation 
order. Higher-order beam theories accounting for non-classical effects, such as transverse shear 
and cross-section in- and out-of-plane warping, are formulated straightforwardly. The governing 
equations in the spatial domain are solved exactly using a Navier-type strong form solution. 
Simply supported beams are, therefore, investigated. As far as the time domain problem is 
concerned, several procedures have been developed to carry the integration out. A thorough 
discussion on analytical procedures, semi-discretisation processes and single- as well as multi-step 
algorithms is presented in Bathe (2006), Zienkiewicz et al. (2005) and Hughes (2000). Time 
discretisation is here done by means of the well-known Newmark scheme (1959). Slender and 
deep beams are investigated. Cross-sections are made of a bi-dimensional FGM. A power law 
function is assumed for the material gradation. The proposed models are validated towards 
three-dimensional FEM solutions. Numerical results show that very accurate results can be 
obtained with a reduced computational effort when compared with traditional three-dimensional 
FEM solutions. 

 
 

2. Preliminaries 
 
A beam is a structure whose axial extension ( l ) is predominant when compared with any other 

dimension orthogonal to it. The cross-section ( ) is identified by intersecting the beam with 
planes that are orthogonal to its axis. A Cartesian reference system is adopted: y - and z -axis are 

two orthogonal directions lying on  . The x  coordinate is coincident with the axis of the beam. 
It is bounded such that 0 x l  . 

Beam geometry and reference system are presented in Fig. 1. The cross-section is considered to 
be constant along x . The displacement field is 

        T
x y zx y z u x y z u x y z u x y z        u                  (1) 

in which xu , yu  and zu  are the displacement components along the x -, y - and z -axis, 

respectively. Superscript ‘T ’ represents the transposition operator. Stress, σ , and strain, ε , 

vectors are grouped into vectors n , n  that lie on the cross-section 
T T
n xx n xxxy xz xy xz        

   
   

 σ ε                      (2) 

and pσ , pε  lying on planes orthogonal to   

T T
p yy p yyzz yz zz yz        

   
   

 σ ε                     (3) 

Under the hypothesis of linear analysis, the following strain-displacement geometrical relations 
hold 
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y x z xx

z z yy

T
x y x zn x

T
p z y zy

u u u u u

u u u u





 
 
 
  

  
 
  

   

  

  

 
                        (4) 

Subscripts ‘ x ’, ‘ y ’ and ‘ z ’, when preceded by comma, represent derivation with respect to 
the corresponding spatial coordinate. A compact vectorial notation can be adopted for Eq. (4) 

n np nx

p p

 


ε D u D u

ε D u
                             (5) 

where npD , nxD , and pD  are the following differential matrix operators  

0 0
0 0 0

0 0 0 0

00 0

np nx p

y

y x z

z yz

  
     

             
    

       

D D I D                  (6) 

and I  is the unit matrix. Under the hypothesis of linear elastic materials, the generalised Hooke 
law holds. According to Eqs. (2) and (3), it reads 

p pp p pn n

n np p nn n

 
 

σ C ε C ε

σ C ε C ε
                              (7) 

In the case of isotropic FGMs, matrices ppC , pnC , npC  and nnC  in Eq. (7) are  

22 12 1123

23 13 6633

44 55

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0

T
pp pn np nn

C C C C

C C C C

C C

   
   
   
   
   
   
   
   

 
     
  

C C C C         (8) 

In order to make the software implementation of the proposed models independent from the 
particular gradation law, a Lagrange approximation over pN  Chebyshev points along y  and 
z  co-ordinates based on Newton’s series expansion is assumed for the material stiffness 
coefficients in Eq. (8) 

         zzzyyyCzyyxC ijij ,,,;,,,, 1010   with pN,,1,0,       (9) 

being 

 
 

1 0

1

1
0

m

n p

m

m

m N
n

 
 






  
   





  



                      (10) 
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Chebyshev’s points are defined over the domain  1 1   via the following equation 













p
m N

m cos  with pNm ,,1,0                       (11) 

These points are then mapped into the cross-section domain via a variables transformation. 

Terms  ;ijC  are the divided differences computed from the functions  ij ijC C y z  , see 

Philips (2003). These latter depend on the particular gradation law chosen for the numerical 
investigations and they can be obtained via numerical or analytical homogenisation analyses. In 
this article, a power gradation law of the volume fraction of the metallic and ceramic constituent 
materials and the rule of mixtures are assumed, see Praveen and Reddy (1998) and Chakraborty et 
al. (2003). This results in a power law distribution over the cross-section of the Young modulus 
E  and the Poisson ratio   

     1 2 2

y z
n n

y y z zf y z f f y fz    
 
 

                       (12) 

where f  is the generic material property, y , z , y  and z  are defined according to the 
material reference system (this latter can differ from the global structural one) and yn  and zn  
are the material gradation exponents. The divided differences  ;ijC  in Eq. (9) are then 
computed from 

       
     

       
     

         

11 22 33

12 13 23

44 55 66

1

1 1 2

1 1 2

1

2 1

y z
C y z C y z C y z E y z

y z y z

y z
C y z C y z C y z E y z

y z y z

C y z C y z C y z E y z
y z


 


 



 
      

         


      
         

      
   

         (13) 

and Eq. (12). pN  equal to nine ensures the convergence of the results within the considered 
number of significant digits.  

Fig. 1 Beam geometry and reference system 
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3. Hierarchical beam theories 
 
The variation of the displacement field over the cross-section can be postulated a-priori. 

Several displacement-based theories can be formulated on the basis of the following generic 
kinematic field 

     xzyFzyx  uu ,,,   with uN,,1,0                  (14) 

uN  stands for the number of unknowns. It depends on the approximation order N . The 

compact expression is based on Einstein’s notation: repeated indexes implicitly indicate 
summation. Thanks to this notation, problem’s governing differential equations and boundary 
conditions can be derived in terms of a single ‘fundamental nucleo’. The complexity related to 
higher than classical approximation terms is tackled and the theoretical formulation is valid for the 

generic approximation order and approximating functions  F y z  . The approximating functions 

F  are Mac Laurin’s polynomials. This choice is inspired by the classical beam models. uN  and 

F  as functions of N  can be obtained through Pascal’s triangle as shown in Table 1. The actual 

governing differential equations and boundary conditions due to a fixed approximation order are 
obtained straightforwardly via summation of the nucleo corresponding to each term of the 
expansion. According to the chosen polynomial functions, the generic N -order displacement 
field is:  

  
2

21
and

2

2
with

2
321

321

321











NN
N

NN
N

zuyuzuyuuu

zuyuzuyuuu

zuyuzuyuuu

tot

N
zN

N
Nzzzzz

N
yN

N
Nyyyyy

N
xN

N
Nxxxxx

tot

tot

tot







               (15) 

The kinematic field of a first-order theory is 

1 2 3

1 2 3

1 2 3

x x x x

y y y y

z z z z

u u u y u z

u u u y u z

u u u y u z

  
  
  

                         (16) 

Classical Euler-Bernoulli’s theory (EBT) 

1 1 1

1

1

x xx x y z

y y

z z

u u u y u z

u u

u u

   




                       (17) 

and Timoshenko’s theory (TBT)  
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1 2 3

1

1

x x x x

y y

z z

u u u y u z

u u

u u

  



                         (18) 

are straightforwardly derived from the first-order approximation model. It should be noted that the 
reduced Hooke law for the axial stress/strain relation 

11xx xxQ                                (19) 

should be used for classical models. This is due to the fact that the kinematic fields in Eqs. (17) 
and (18) account for a rigid cross-section ( 0yy zz   ) in clear violation of Poisson’s effect 

0ii xx     with i y z                          (20) 

This incongruence in the theory, known as Poisson’s locking, see Carrera and Brischetto (2008a, 
b), is avoided by assuming Eq. (19) instead of the full three dimensional Hooke equations. The 
reduced material stiffness coefficient 11Q  is classically obtained imposing the equations in yy  
and zz  in Hooke’s law equal to zero. An algebraic linear system in yy  and zz  is, then, 
obtained. The reduced stiffness coefficients 11Q  is derived by substituting its solution into 
Hooke’s equations in xx  

12 33 13 23 22 13 12 23
11 11 12 132 2

23 22 33 23 22 33

C C C C C C C C
Q C C C

C C C C C C

 
  

 
                (21) 

and, in the case of isotropic materials, 11Q  is equal to the Young modulus E . In this last case, 
the reduced material stiffness law can be also obtained by replacing Eq. (20) within the Hooke 
equation in the normal stress components ii . The equation in the axial stress yields Eq. (19) with 

11Q E  and the equations in the normal stresses yy  and zz  are equal to zero. It should be 
noted that the Hooke equations containing the shear stresses and strains are not reduced. No shear 
correction coefficient is considered for TBT, since it depends on several parameters, such as the 
geometry of the cross-section, see, for instance, Cowper (1966) and Murty (1970). Higher-order 
models yield a more detailed description of the shear mechanics (no shear correction coefficient is 
required), the in- and out-of-section deformations, the coupling of the spatial directions due to 
Poisson’s effect and the torsional mechanics than classical models do. A more general description 
of the proposed model as well as a detailed investigation of the effectiveness of each expansion 
term in the a-priori kinematic field can be found in Carrera et al. (2011) and in Carrera and 
Petrolo (2011).  

 
 

4. Governing equations 
 
The governing differential equations and the boundary conditions are obtained via the Principle 

of Virtual Displacements, see Reddy (2002) 

i eL L L                                  (22) 
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  stands for a variation, iL  represents the strain energy, eL  is the work done by the 
external loads and L  is the inertial work. 

 
4.1 Strain energy 
 
Coherently with the stresses and strains grouping in Eqs. (2) and (3), the virtual strain energy 

results in a sum of two contributes 

 T T
i n n p p

l

L d dx  


    ε σ ε σ                         (23) 

By replacing the geometrical relations in Eq. (5), the material constitutive equations in Eq. (7) 
and the unified approximation of the displacement field in Eq. (14) and after integrating by parts, 
the previous equation reads 

     
     

    
   

0

TT
i np np p s nn np s nn s nx

l

T

p pp p s pn np s pn s nx

T
nx np p s nn np s nn s nx s

x l

T
np p s nn np s nn s nx s

x

L F F F F

F F F F

F F F F F F d dx

F F F F d

 



  

 

 







 

    

   

     

    

 



u D C D C D C D

D C D C D C D

D C D C D C D u

u C D C D C D u

     (24) 

In a compact vectorial form  

0

x lsT s T
i s s x

l

L dx 
   




   u K u u u                       (25) 

The components of the differential stiffness matrix s
K are 

2
66 55 11 66 12 55 13

2

2
22 44 66 12 66 23 44

2

y y z z y y z z

y y z z y y y z z y

s s s
xx xy xzs s s s s s s

s s s
yy yx yzs s s s s s s

zz

J J J J J J JK K K
x x x

J J J J J J JK K K
x x

  
      

  
      



   
             

 
            

  
      

  
 

      
 

  

  

2
13 55 23 4444 33 55

2 z z z y y zy y z z

s ss
zx zys s s ss s sJ J J J J J JK KK xx
 

     
 
           

      


 

      (26) 

The generic term 
   

gh
sJ

   
is a cross-section moment 

       , ,

gh
s gh sJ C F F d

     


                             (27) 

As far as the boundary conditions are concerned, the components of s
  are 
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 


  
 

 






    

   


    

  

 

  

                    (28) 

 
4.2 Virtual work of the external loads 
 
The total external virtual work eL  is considered as due to a generic surface load p  and a 

generic line load l  with y   and z  and x  , y  and z  

e p lL L L                                 (29) 

The subscripts convention for a surface and line load component is the same as for the stresses: 
the first subscript stands for the normal to the plane of application, whereas the second one 
indicates the direction of the load itself. Surface loads act, therefore, over planes parallel to the 
plane xz  or the xy  one 

   
   


















zzz

yyy

pppz

pppy

yyyzzzyxxp

zzzyyzyxxp

ˆ,ˆ,ˆat,,:

ˆ,ˆ,ˆat,,:
                (30) 

pL  is  

zz zx zy yy yx yzp p p p p p pL L L L L L L                         (31) 

The terms in Eq. (31) are  

zx yx

yy zy

zz yz

z y
p p x zx yxl

y z
p p y yy zyl

z y
p p z zz yzl

L L u p E p E dx

L L u p E p E dx

L L u p E p E dx

  

  

  

  

  

  

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 

 
 
 

 
 
 

  

  

  





                    (32) 

with 

   ˆˆ

ˆˆ
ˆ ˆ

pp zy

zyp py z

yzy z
pp yz

E F z dz E F y dyy z



 

   




                       (33) 

The considered line loads are 

 l x y z x y z         at    ˆ ˆ lly z y z 
                 (34) 

where  ˆ ˆ lly z 
  are the cross-section coordinates of the application point. The external virtual 
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work is 

zz zx zy yy yx yzl l l l l l lL L L L L L L                           (35) 

and in a explicit form 

      
      
      dxzyFlzyFluLL

dxzyFlzyFluLL

dxzyFlzyFluLL

l

llyzllzzxll

l

llzyllyyxll

l

llyxllzxxll

yzyzzzzzyzzz

zyzyzyyyzyyy

yxyxzxzxyxzx











,ˆ,,ˆ,

,ˆ,,ˆ,

,ˆ,,ˆ,













             (36) 

 
4.3 Inertial work 
 
The virtual inertial work is 

T

l

L d dx 


   u u                         (37) 

where   is the material density and double dots stand for the second time derivative ( t  stands 
for time). Replacing Eq. (14) within Eq. (37) yields  

T T s
s s s

l l

L F F d dx dx
      



    u u u M u                    (38) 

The components of the inertial matrix sM  are 

s
ij ij s ij sM F F d J 

   


                          (39) 

where ij  is Kronecker’s delta and sJ 
  is 

s sJ F F d
  


                          (40) 

 
4.4 Governing equation fundamental nucleo 
 
The explicit form of the fundamental nucleo of the governing equations is 

     
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     (41) 
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The essential and the natural boundary conditions are 

11 12 13

66 66

55 55
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x y z

y x

z x

xx s xs s ys s zs

yy s xs s ys

zz s xs s zs

u J u J u J uu

u J u J uu

u J u J uu

   

  

  

  

 

 

   

  

  

                (42) 

For a fixed approximation order, the nucleo has to be expanded over the indeces   and s  in 
order to obtain the governing equations and the boundary conditions of the desired model.  

 
4.5 Strong form space domain solution 
 
The differential equations are solved via a strong form, Navier-type solution. Within the 

approximation of the mechanical model, the solution is, therefore, exact. The following 
space-harmonic displacement field is adopted:  

       
       
       

cos

sin

sin

x x

y y

z z

u x y z t U t F y z x

u x y z t U t F y z x

u x y z t U t F y z x

 

 

 





    
    
    

                   (43) 

By the nature of the solution, investigations are restrained to simply supported beams. 
Parameter   is 

m

l

                                  (44) 

where m N   represents the half-wave number along the beam axis and iU   are the maximal 

amplitudes of the displacement components. It is assumed that the surface and line loads vary 
along x in the following manner 

 
 
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 
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   
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   
   
   

   
   
   

   
   
   

      

  

      

  

                (45) 

where P  and L  are the maximal load amplitudes, which are function of time. The 

displacement field in Eq. (43) satisfies the Dirichlet boundary conditions for the displacement 
components yu  and zu  and a Robin type one along the axial direction since for 0x   and l  

the following relations hold 

0 0 0
xx y zu u u                             (46) 

Upon substitution of Eq. (43) into Eq. (41), the fundamental algebraic nucleo for the forced 
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vibrations is obtained 

s s
s s

 
    U M K U PU                         (47) 

The components of the algebraic stiffness matrix sK  are 
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       (48) 

 
4.6 Time domain solution 
 
Upon expansion of the dynamic fundamental nucleo in Eq. (47) over the indeces   and s , 

the final algebraic problem is obtained  

 Mq Kq P                                (49) 

where M , K  and P  are the global mass and stiffness matrix and the load vector and q  and 

q  are the unknown acceleration and displacement vectors. In the case of damping, Eq. (49) 
becomes 

  Mq Cq Kq P                              (50) 

being q  the velocity vector and C  the damping matrix. The derivation of the damping matrix 
has not been presented in the previous subsections since the classical Rayleigh weighted formula is 
assumed  

  C M K                               (51) 

where   and   are two real constants. A solution of the dynamic problem is obtained by means 
of the following time discretisation of displacements and velocities, see Newmark (1959) 

 

 

2
1 1

11

1
1 2 2

2
1

n n n n n

n nn n

t t

t

 

 

 



        

      

q q q q q

q qq q

  

  
                (52) 

in which  n  and   1n stand for a quantity evaluated at time step nt  and 1nt  , with 

1n nt t t   . Parameters   and   should be properly chosen in order to preserve accuracy 

and stability. The trapezoidal rule ( 1 4    and 1 2   ) is here used. It should be pointed out, 

as discussed in Newmark (1959), that a value of   different than 1 2  results in spurious 

damping. A linear algebraic system for time step 1nt   is obtained by replacing Eq. (10) within 

Eq. (8)  

648



 
 
 
 
 
 

A dynamic analysis of three-dimensional functionally graded beams by hierarchical models 

 

   
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2
1 1 1 2

2n nn n n n n

t
t t t t    

   

 
                 

 
M C K P C K qq q q q q     (53) 

As far as initial conditions are concerned, nil displacement and velocity vectors are assumed at 
initial time for the numerical investigations without loss of generality.  

 
 

5. Numerical results and discussion 
 
The beam support is      0 2 2 2 2l a a b b           . Square cross-section with a = b = 1   

m are considered. The length-to-side ratio l / a  is equal to 100 and 10. Slender and deep beams 
are, therefore, investigated. FGMs beams are made of zirconia and aluminium. The mechanical 
properties of zirconia are: E1 = 151 GPa, v1 = 0.28 and 1   = 5700 kg/m3. In the case of 
aluminium, the following mechanical properties are used: E2 = 72 GPa, v2 = 0.33 and 2  2800 
kg/m3. Young’s modulus, Poisson’s ratio and density vary along the cross-section axes according 
to the power gradation law in Eq. (12). Material reference system is coincident with the structural 
one. The coefficients in Eq. (12), therefore, are: 1

y a  , 1
z b   and 0 5y z    . 

Material exponents yn  and zn  are considered as analysis parameters. Without loss of generality, 
they are assumed to be as high as four and as low as 0.25. In such a manner, the cross-section 
corner  2 2a b     is made of zirconia, whereas the material is fully aluminium at 
 2 2a b    , see Fig. 2. A surface and a line load are considered. They vary over time 
sinusoidally 

     tLPLP pyyyyyyyy sinˆ,ˆ,                          (54) 

where ˆ yyP  and ˆ yyL  are the maximal amplitudes and p  is the load circular frequency (it is 

assumed to be equal to 8  rad/s). The time increment t  is 35 10  s, the final time ( ft ) is 90 

and two seconds for 100l a   and ten, respectively. It should be noted that, since a Navier-type 
solution is used, the load varies sinusoidally along the beam axis with m  in Eq. (44) equal to one. 
As far as validation is concerned, results are compared with three-dimensional FEM solutions 
obtained via the commercial code ANSYS. The three-dimensional quadratic element “Solid186” is 
used. Each element is considered as homogeneous by referring to the material properties at its 
centre point. Although the proposed closed form solution and the three-dimensional FEM one are 
different, some considerations about the computational cost can be done considering the degrees of 
freedom (DOFs) per cross-section. For the three-dimensional FEM solution (FEM-3D), the DOFs 

as function of the number of elements along z- or, equivalently, y-axis n  are   3 3 1 1n n  . 

For the considered solutions, n = 20 and the DOFs per cross-section are about 3850. For a fixed 

approximation order N , the DOFs of the proposed solutions are   3 1 2 2N N   . In the 

case of a fifth-order model, they are 63. This latter model ensures the convergence of the results 
for all the considered cases.  
 
 

649



 
 
 
 
 
 

Gaetano Giunta , Yao Koutsawa, Salim Belouettar and Adriano Calvi 

 

Fig. 2 Beam cross-section 
 

Fig. 3 Surface load Pyy 
 
 
5.1 Surface load 
 
The surface load is applied as shown in Fig. 3. Terms in Eqs. (30) are: ˆ 2

yyp ay    and

   2/,2/ˆ,ˆ bbzz
yyyy pp  . ˆ 1yyP    Pa. The following displacements are considered 

     2 0 0 0 2 0 2 2 2y x zy x zu l u a u l a bu u u                          (55) 

As a first case, damping is disregarded. Figs. 4 and 6 present the displacements time variation 
for both slender and deep beams. A linear material variation is considered along each cross-section 
direction ( 1y zn n  ). In the case of a slender beam, results computed by EBT and fifth-order 

model are identical. For l / a =10, the two solutions diverge as time passes. This is clearly visible 
in Fig. 6(b). Some remarkable difference are also present at a time close to the initial one. For 
instance at 0 130t    s, yu  and xu  computed via the two models differ by about 80% and 

70%, respectively. A fifth-order model matches the reference FEM solution for all the considered 
cases, as shown by Figs. 4(b) and 5(b). For the sake of clarity, the three-dimensional FEM solution 
is presented only for yu  and xu  in the case of l / a =10. A mesh 202020   is considered. It 
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provides a good compromise between accuracy and computational costs. A convergence analysis is 
not here reported for the sake of brevity. Further details can be found in Giunta et al. (2010, 
2011b). Fig. 7 shows the displacement components yu  and zu  for the material exponents as 

high as two and as low as 0.25. A perfect match between the fifth-order model and the reference 
FEM solution can be observed. The smaller the material exponent, the lower the amplitude of the 
oscillations. This is due to a higher presence of the stiffer ceramic phase. A second analysis is 

carried out accounting for damping. The damping coefficients are 2   s-1 and 42 10    s. 
Deep beams are investigated. The displacements components yu  and zu  are presented in Fig. 8. 

A bi-linear material gradation is considered. After a characteristic damping time, that is different 
for the two displacement components, the motion becomes similar to a sinusoidal. Fifth-order 
theory, TBT and FEM-3D yield coincident results for yu . In the case of zu , some differences 

between N = 5 and TBT can be observed. For this latter case, the solution FEM-3D (which is 
coincident with the fifth-order solution) is not presented for the sake of clearness of the figure. The 
absolute difference between TBT and N = 5 theory can be as high as about 10%. It is about 5% 
after stabilisation of the oscillations due to damping ( 1t   s).  

 
 

 
(a) 100l a   (b) 10l a   

Fig. 4 Displacement component yu  time variation, surface load Pyy, ny = nz =1 

 
 

 
(a) 100l a   (b) 10l a   

Fig. 5 Displacement component xu  time variation, surface load Pyy, ny = nz =1 
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(a) 100l a   (b) 10l a   

Fig. 6 Displacement component zu  time variation, surface load Pyy, ny = nz =1 

 
 

 
(a) yu  (b) zu  

Fig. 7 Displacement components time variation for ny = nz = 4, 1 and 0.25 via fifth-order model and 
FEM-3D solution, surface load,  l / a = 10 

 
 

 
(a) yu  (b) zu  

Fig. 8 Displacement components time variation, damping coefficients 2   s-1 and 42 10    s, 

surface load yyP , 10l a   
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5.2 Line Load 
 
The line load shown in Fig. 9 is considered. The load is applied at the cross-section corner 

   ˆ 2 2ˆ yyyy
ll b by z      , and its amplitude is ˆ 1yyL    Pa/m. This analysis aims at 

investigating the accuracy of the proposed models in the presence of localised loadings. A bi-linear 
material variation over the cross-section is considered and damping is disregarded. The 

cross-section displacement components yu  and zu  are evaluated at point  2 2 2l a b      . 

The axial displacement is not presented for the sake of brevity. It is similar to yu . A deep beam is 

considered since, as far as displacements are concerned, classical theories and higher-order models 
yield matching results for a slender beam. Results are presented in Figs. 10 and 11. FEM-3D 
solution has not been presented in the figures since it is coincident with the N = 5 model. A 
difference of about 10% is now present also in the case of yu . This difference can be as high as 

30% in the case of EBT. This is due to the fact that the deformation is not only governed by 
bending. Torsion is present and a localised deformation at the neighbourhood of the load 
application point, as shown in Giunta et al. (2010), is observable. These deformations cannot be 
accounted for by classical models since the cross-section is considered to be rigid on its-own 
plane. 
 

Fig. 9 Line load Lyy 
 

Fig. 10 Displacement component yu  time variation for l / a = 10, line load Lyy, ny = nz =1 
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Fig. 11 Displacement component zu  time variation for l / a = 10, line load Lyy, ny = nz =1 

 
 
Table 1 Mac Laurin’s polynomials terms via Pascal’s triangle 

N  
uN   F    

0  1  
1 1F     

1  3   
2 3F y F z     

2  6   2 2
4 5 6F y F yz F z      

3  10   3 2 2 3
7 8 9 10F y F y z F yz F z       

… …  …  

N    1 2

2

N N 
  

N
N

Nb
N

N
N

Na
N zFyzFzyFyF

tottot
 





1

1
1

1   

a:  21
2 2N N N   .  

b:   1
2 1 2totN N N   .  

 
 

 

6. Conclusions 
 
A dynamic analysis of functionally graded three-dimensional beams has been proposed. The 

beam models have been all derived via a unified formulation. Thanks to this formulation, 
higher-order models that account for non-classical effects such as shear deformations and in- and 
out-of-plane warping and localised deformations can be formulated straightforwardly. 
Euler-Bernoulli’s and Timoshenko’s classical models are obtained as particular cases. The 
governing differential equations have been solved exactly in space via a Navier-type solution, 
whereas Newmark’s scheme has been used for the time domain solution. Simply supported beams 
subjected to surface and line loads have been investigated. Loads have been supposed to vary 
sinusoidally in time. The effect of several gradation exponents and of damping has been 
investigated. Results have been validated through comparison with three-dimensional FEM 
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solutions obtained via the commercial code ANSYS. Numerical investigation showed that, for the 
considered cases, the proposed formulation converges to the reference FEM solution. Very 
accurate results with a limited number of degrees of freedom have been obtained. It should be 
pointed out that a reduced numerical effort is particularly attractive in the cases where iterative 
solution schemes are required.  
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