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Abstract.  In recent years the interest in online monitoring of lightweight structures with ultrasonic guided 
waves is steadily growing. Especially the aircraft industry is a driving force in the development of structural 
health monitoring (SHM) systems. In order to optimally design SHM systems powerful and efficient 
numerical simulation tools to predict the behaviour of ultrasonic elastic waves in thin-walled structures are 
required. It has been shown that in real industrial applications, such as airplane wings or fuselages, 
conventional linear and quadratic pure displacement finite elements commonly used to model ultrasonic 
elastic waves quickly reach their limits. The required mesh density, to obtain good quality solutions, results 
in enormous computational costs when solving the wave propagation problem in the time domain. To 
resolve this problem different possibilities are available. Analytical methods and higher order finite element 
method approaches (HO-FEM), like p-FEM, spectral elements, spectral analysis and isogeometric analysis, 
are among them. Although analytical approaches offer fast and accurate results, they are limited to rather 
simple geometries. On the other hand, the application of higher order finite element schemes is a 
computationally demanding task. The drawbacks of both methods can be circumvented if regions of 
complex geometry are modelled using a HO-FEM approach while the response of the remaining structure is 
computed utilizing an analytical approach. The objective of the paper is to present an efficient method to 
couple different HO-FEM schemes with an analytical description of an undisturbed region. Using this 
hybrid formulation the numerical effort can be drastically reduced. The functionality of the proposed scheme 
is demonstrated by studying the propagation of ultrasonic guided waves in plates, excited by a piezoelectric 
patch actuator. The actuator is modelled utilizing higher order coupled field finite elements, whereas the 
homogenous, isotropic plate is described analytically. The results of this "semi-analytical" approach 
highlight the opportunities to reduce the numerical effort if closed-form solutions are partially available. 
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1. Introduction 
 

Guided structural wave inspection methods in thin plate-like structures involve necessarily the 

use of Lamb waves. These kind of elastic waves have several good properties. According to 

Raghavan and Cesnik (2007), its amplitude decay ratio is less than that of sonic waves emitted 

outside the structure and their propagation velocity is higher according to Rose (2002). When 

excited at high frequencies, they have a very short wave length which makes them very sensitive 

to small perturbations of the plate-like structure and, at the same time, different modes can be 

induced. These features allow scanning a bigger area of the structure, to localize relatively small 

damages, to characterize the localized damages in accordance to its interaction with each mode 

(Willberg et al. 2009a) and to scan not only the surface, but also through the thickness of the 

structure. These facts are what make Lamb-wave-based structural online monitoring systems very 

attractive for the SHM research community (Wang et al. 2008, Lu et al. 2008). 

In active SHM systems Lamb waves need to be excited and monitored. A mean to do this is 

through the use of piezoelectric transducers. Piezoelectric patches are bonded to the structure, 

allowing the excitation and sensing of Lamb waves through the use of the inverse and direct 

piezoelectric effect (see Fig. 1). This is one of the most used type of sensors and actuators due to 

their relatively easy integration in to the structure and their low costs (Wang et al. 2008, Lu et al. 

2008). 

In spite of their good capabilities and promising features, the use of Lamb waves for SHM 

applications has also some difficulties. The use of Lamb waves to detect damages is what is called 

an inverse problem. In general terms, inverse problems are ill-conditioned and very difficult to 

solve (Bonnet and Constantinescu 2005, Leonard et al. 2002, Chakraborty and Gopalakrishnan 

2004). An excitation pulse normally consists of several modes that convert into each other in the 

presence of structural changes as well as damages and are superposed making the obtained wave 

signals very complex to analyze (Ahmad 2011). The high propagation velocity implies that 

reflections from structural boundaries contribute to the received wave signals at the sensors. Thus, 

information related to structural damages is hard to identify due to the complexity of the signals 

(Su and Ye 2009). 

To overcome these difficulties, a good understanding of the wave propagation through the 

structure is essential. 

An appropriate theoretical reference model is indispensable in order to elucidate the main 

features that characterize Lamb waves, to apply this knowledge to interpret the sensors signals, to 

design optimal excitation profiles and to distinguish which kind of excitation is adequate for each 

application. 

 

 

Fig. 1 Piezoelectric patch used as a transducer. Piezoelectric transducers can be used as actuators as well as 

sensors. They are very popular due to their relatively easy integration and low cost 
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The beginning of the theoretical studies of Lamb waves can be set in 1889 with Lord Rayleigh, 

who first modeled the elastic wave propagation along a guided surface of an isotropic 

homogeneous semi-infinite solid (Rayleigh 1885). These waves are known today as surface or 

Rayleigh waves. Love (1911) added another parallel surface in order to simulate horizontally 

polarized waves, termed SH waves. Based on the work of Lord Rayleigh, Horace Lamb (1917) 

published his seminal work “On Waves in an Elastic Plate”. Lamb studied the propagation of 

guided waves between two parallel plane surfaces with polarization of displacements parallel and 

perpendicular to the direction of propagation. After the publication of this work, elastic waves in 

thin isotropic plates were named after him. 

Lamb’s problem was again retaken, when Osborne and Hart (1945) studied Lamb waves 

excited by underwater explosions. At this point, the final solution of the field of displacements 

demanded to solve the Rayleigh-Lamb dispersion equation. Upper and lower bounds together with 

asymptotic methods were used by Holden (1951) and Mindlin (1951), and later extended by Onoe 

(1955) to describe a qualitative behavior of the real branches of the Lamb wave dispersion curves 

corresponding to propagating Lamb modes. The computation of bounds and the qualitative 

behavior of imaginary branches corresponding to evanescent Lamb modes were first performed by 

Lyon (1955). The existence of complex branches and their corresponding phase velocities for real 

frequencies were established by Mindlin and Medick (1959). Later a comprehensive solution of 

the dispersion equation for each Lamb wave mode was given by Mindlin (1960). Gazis (1958) 

using a digital computer gave approximated solutions to the dispersion equation corresponding to 

propagating modes, which were computed more accurately with more computation power by 

Viktorov (1967). Viktorov also analyzed the problem of forced motion in the two-dimensional 

case. In all these previous studies, the plain strain condition was always assumed, leading to a 

two-dimensional formulation of the problem. 

Achenbach (1973) also presented a study on the forced motion and the response of a plate 

under vertical point forces applied on the surface. Graff (1975) extended the aforementioned work 

to the three dimensional case by studying circular crested waves. 

In the last decades Lamb waves have found an application in non-destructive testing. 

Consequently, the effort to model elastic waves in plates has been multiplied. We can refer to the 

publications of Achenbach (1998, 1999, 2000, 2003) and Achenbach and Xu (1999), where the 

concept of the membrane carrier wave together with mechanical reciprocity is used to describe the 

field of displacements in isotropic plates. Some work has also been done using the Fourier 

transform and the Cauchy’s theorem of residues in the works of Gomilko et al. (1991), Raghavan 

and Cesnik (2004), Giurgiutiu (2005), von Ende et al. (2007) and von Ende and Lammering (2007, 

2009). In the work of Wilcox (2004), the excitation matrices are defined to model Lamb wave 

fields excited by line and point distribution of forces. The modal analysis has also been considered 

in order to obtain analytical solutions, as in the work of Jin et al. (2003). Another analytical 

approach is the use of the Green’s tensor for point forces in the surface of the three-dimensional 

model of the plate. This can be seen in the works of Karmazin et al. (2010, 2011) and Glushkov et 

al. (2006, 2010). Some hybrid approaches have also been formulated as in the work of Velichko 

and Wilcox (2007) where the Green’s function for a laminated plate is obtained using modal 

analysis. 

Parallel to the analytical approaches mentioned above, other numerical and semi-analytical 

approaches have been used to model Lamb waves such as the Finite Difference Method as in the 

work from Sun and Wu (2009), the Local Interaction Simulation Approach as in the works from 

Delsanto et al. (1992, 1994, 1997) and Lee and Staszewski (2003a, b) the Finite Element Method 
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(Willberg et al. 2009a, b, Xu et al. 2004), the Spectral Analysis (Vivar-Perez et al. 2009a, b), the 

Spectral Element Method in the time domain (Ostachowicz et al. 2012, Peng et al. 2009, Kudela 

and Ostachowicz 2008, 2009), the Spectral Element Method in the frequency domain with the use 

of the Fast Fourier or the Wavelet Transform (Doyle 1997, Gopalakrishnan et al. 2008, 

Gopalakrishnan and Mitra 2012) as well as the Semi-Analytic Finite Element Method (Ahmad 

2011, Ahmad et al. 2009, Bartoli et al. 2006, Galán and Abascal 2002). A nice comparison and 

overview of different higher order finite element formulations applied to the modeling of Lamb 

wave propagation can be found in Duczek et al. (2012) and Willberg et al. (2012). Some mixed 

formulations have been applied as well in order to keep advantages and decrease disadvantages of 

different methods such as by a combination of semi-analytic finite elements and standard finite 

elements as in Ahmad (2011) and Liu (2002), and also by a combination of some analytical 

methods with finite element solutions as in Tian et al. (2004) and Vivar-Perez (2012), to mention 

just a few. 

The application of analytical methods is very convenient in the simulation of Lamb waves since 

their evaluation is relatively inexpensive from a numerical point of view. Furthermore, the 

qualitative behavior of Lamb wave propagation can be derived by analytical expressions. They 

have the disadvantage of being only developed for specific geometries, and mostly they are only 

given in the frequency domain. The direct application of purely numerical methods such as the 

Finite Element Method is the most commonly used approach due to their flexibility to model 

arbitrary geometries. However, it is the most expensive method in terms of computational effort, 

since the number of elements and degrees of freedoms in the model increase in regions of abrupt 

changes in material properties or in cases of rapid variation of the solution in very small 

subdomains of the integration domain, as in the case of modeling ultrasonic Lamb waves. 

Our approach to model Lamb-wave-based SHM systems is a hybrid formulation that deploys 

an analytical solution in regular regions of the structure and applies discrete approximation models 

in regions where the plate-like structure is perturbed. Hence, this paper constitutes a contribution 

to the mathematical description and numerical modeling of elastic waves in thin plates. 

To reach our goal we used a procedure already exploited in the published works by Karmazin 

et al. (2010, 2011) and Gluskov et al. (2006, 2010). In these works, the problem of the wave 

propagation in a plate is analyzed in the frequency domain. For the system of partial differential 

equations in frequency domain the fundamental solution or Green’s tensor is found with the help 

of Cauchy’s residues theorem. We derive integral expressions which can be used to find the 

response of the plate under an arbitrary distribution of loads in a localized region of the surface of 

the plate. Although it is not presented here, the obtained formulas can be used in the same way as 

Ahmad (2011) and Morvan et al. (2003) to describe the reflected waves originated from 

boundaries and defects of the plate. 

We are mainly interested in the excitation and reception of waves by piezoelectric actuators and 

sensors, respectively (Sirohi and Chopra 2000). For that reason, it is of great significance to 

provide mathematical tools that consider the electro-mechanical coupling effect of actuators and 

sensors bonded to the plate and their influence to the structure (Huand and Derriso 2008). These 

tools should be able to model the wave reflections caused by defects or perturbations from the 

geometry of the plate-like structure as well (Ahmad 2011, Ahmad et al. 2009). 

The novel contribution is that this aim was reached using Chebyshev spectral analysis in the 

frequency domain to model any perturbation of the plate geometry instead of the classical Finite 

Element Method used by Chang and Mal (1999) and Hayashi and Kawashima (2002). Spectral 

analysis has a higher order of accuracy than standard finite elements as it has been shown in the 
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works of Boyd (2000), Fornberg (1998) and Trefethen among others. Also as a novelty, the 

bonding condition between the piezoelectric patch and the plate in the frequency domain is given 

in an analytical way, and finally, with the help of quadrature formulas and spectral analysis, the set 

of coupling equations were discretized and semi-analytical expressions for the propagation of 

Lamb waves were obtained using the concept of the dynamic reaction or response matrix of the 

plate with exact wavenumbers. The implied advantage of using exact wavenumbers instead of 

approximated ones is that it increases the level of accuracy of the final results and no discretization 

through the thickness of the plate has to be used as in the works presented by Loveday (2007), 

Ahmad (2011) or Morvan et al. (2003). 

 

 

2. Statement of the problem 
 

The main purpose of this work is to model ultrasonic elastic waves induced and received by 

piezoelectric patches bonded to an isotropic plate. It is considered that a piezoelectric patch 

occupies a domain   and is bonded to an infinite isotropic plate. The piezoelectric transducer 

and the plate share the common surface . A schematic representation of the problem under 

consideration is displayed in Fig. 2. 

We analyze the governing equations of the piezoelectric patch and of the plate separately. The 

bonding conditions on the interface   will be described with appropriate boundary conditions. 

According to this principle, the solution strategy is to consider two separated problems: the first 

problem corresponds to the description of the displacements on the plate due to dynamic loads 

applied on its upper surface, and the other corresponds to the description of the mechanical and 

electrical state of the piezoelectric patch under appropriate boundary conditions in   that model 

the influence of the reaction forces of the plate on the actuator or sensor. A graphical 

representation of this idea is given in Fig. 3. 

 

 

 

 

Fig. 2 Schematic representation and reference system of a piezoelectric patch bonded to a plate. The 

piezoelectric patch occupies a volume   and shares a common interface   with the plate 
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Fig. 3 The dynamic analysis of the plate and the piezoelectric patch is done separately. On the left side a 

plate is considered and the influence of the actuator or sensor is modeled as a dynamic load Τ  

applied to the surface . On the right side the piezoelectric transducer is considered and the reaction 

forces of the plate are modeled by specific boundary conditions on the surface   

 

 

It will be shown that the displacement field of the plate resulting from the applied loads can be 

accurately described with analytic expressions. To this end, we consider the governing equations 

and boundary conditions in the frequency domain. The novelty in the content of this work is the 

formulation of spectral methods in the frequency domain applied to bonded piezoelectric patches. 

In the following it is presented first how the conditions on the bonding surface   of the 

piezoelectric actuator and the plate are mathematically modeled. Then the respective discretization 

method using higher order finite element schemes is explained. 

 

 
3. Wave propagation in isotropic plates 

 

A homogeneous linear elastic isotropic plate of thickness d under a distribution of dynamic 

loads Τ is considered, as shown in Fig. 3. The equation of motion corresponds to Navier’s 

equation for a three dimensional isotropic body 

  2 .       u u u                           (1) 

The coefficients   and   are the elastic Lame constants and   is the mass density. The 

unknown vector function ( , )tu u x  corresponds to the vector of displacements depending on 

the position vector 1 1 2 2 3 3x x x  x e e e  and the temporal variable t . The unit vectors 1e , 2e  

and 3e  are mutually perpendicular and have the direction of the three Cartesian coordinate axis. 

The symbols   and 
2  denote the gradient and the Laplace’s operator with respect to the 

spatial variable vector x , respectively. An upper point represents the derivative with respect to 

time. The plate extends infinitely in the 1 2x x  plane and it is bounded by the top and bottom 

surfaces 3 / 2x d  . The influence of the external dynamical loads Τ  applied to the upper 

surface are introduced in the model through boundary conditions 
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 

 

3

3

3 3 3 / 2

3 3 3 / 2

, ,

, 0.

x d

x d

u

u

 

 





      

      

u ue T

u ue
                        (2) 

Here the notation 3( ),  stands for partial derivative with respect to 3x . 

 

3.1 Analytical approach 
 

We consider the statement of this problem in the frequency domain. To this end, the Fourier 

transforms of the vector of displacements u  and the vector of loads Τ  are taken into account 

   

   

*

3 3

*

, ; , , ,

; , .

i t

i t

x x t e dt

t e dt

























u x u x

T x T x

                      (3) 

The vector 1 1 2 2x x x e e  is provided with an upper bar to denote that it represents only in 

the in-plane components of the position vector 3 3x x x e . The parameter   is the circular 

frequency and i  is the imaginary unit 1 . With this transformation in mind, the equation of 

motion in Eq. (1) is transformed in the frequency domain is as follows 

  * 2 * 2 * 0.         u u u                        (4) 

In the frequency domain the derivation with respect to the temporal variable t  is replaced by a 

multiplication with i  and we obtain an equation where the circular frequency   is introduced 

as a variable parameter. The boundary conditions remain essentially unchanged 

 

 
3

3

* * * *

3 3 3
/ 2

* * *

3 3 3
/ 2

, ,

, 0.

x d

x d

u

u

 

 





     
 

     
 

u u e T

u u e
                     (5) 

Integral expressions for the vector function 
*

u  that satisfy Eq. (4) and the boundary 

conditions Eq. (5) can be found in terms of 
*

T  using the concept of the response tensor also 

known as Green’s tensor 

            (6) 

A closed-form analytical expression can be given for the frequency dependent response tensor 
*

E . The procedure to derive those expressions can be found in the work of Vivar-Perez (2012) 

and it has some similarities to the procedure detailed by Karmazin et al. (2010, 2011) and von 

Ende et al. (2007). In this article only the two dimensional problem is considered. The analytic 

expression for the tensor 
*

E for general three dimensional problems will be presented in the 

second part of the paper at hand. 
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Fig. 4 Rotated reference system x


, x


,
3

x  and line distribution of loads applied on the surface of a plate, 

generating plane Lamb waves 

 
 
 
3.2 Two-dimensional problem 
 

It will be considered that the distribution of loads T  only depends on the spatial variable x , 

i.e., 
* *( ; )x T T . The reference system given by the coordinates x , x  and 3x  is 

obtained from the Cartesian coordinate system determined by the coordinates 1x , 2x  and 3x  by 

a counterclockwise rotation about the 3x  axis by an angle  , as shown in Fig. 4. In this case, the 

dependence on the variable x  is dropped from our model and the spatial dependence of u  on 

the position vector x  is reduced to the variables x  and 3x . An example of this configuration is 

given in Fig. 4. 

Under these conditions Eq. (6) is transformed and results in 

   * * *

3 3, ; ' , ; ( ' ; ) ' ,x x x x x dx     



  u x E T                 (7) 

where the matrix 
*

E  can be expressed as follows (Vivar-Perez, 2012) 

  



*

3 3 3

0

3 3

, ; ( ; , ) ( ; , )

                             ( ; , ) ( ; , ) .

A S
n n

a s
n n

i x i xA A S S

n n

n

i x i xa a s s

n n

x x x e x e

x e x e

 

 

 



 

    

   





 

 

E E E

E E

            (8) 

The matrix functions
A

E ,
S

E , 
a

E and 
s

E are the corresponding excitation matrices of the 

anti-symmetric Lamb modes, the symmetric Lamb modes, the anti-symmetric shear horizontal 

(SH) modes and the symmetric SH modes, respectively. In the two dimensional case the matrix 

functions can be given analytically as 

x3

x1

x20

x

xT
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N N
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D d d
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x x
D d d
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 



 


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   
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
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   
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 
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E E
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

 
 



 (9) 

In (9) we apply the convention 0 2   and 1n   for 0n  . The functions N  in the 

entries of matrices 
A

E  and 
S

E are as follows 

 
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2 2 2
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and the functions D are given by the following expressions 
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with 
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2 2
2 2 2 2 2 2

1 22 2

1 2

,  ,  ,  .p q c c
c c
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 


                      (12) 

Thus, each mode has its corresponding excitation matrix. This formulation is convenient for 

applications, where only the contribution of one single mode is needed (Wilcox 2004). These 

matrices depend on the material, the geometry and the frequency and can be calculated beforehand, 

as well as the frequency-dependent wavenumbers
A

n ,
S

n , 
a

n  and 
s

n . The wavenumbers 
A

n  

and 
S

n  are the solutions of the Rayleigh-Lamb dispersion equations for anti-symmetric and 

symmetric Lamb modes, respectively, as 

2 2 2 2

2 2 2 2

4 cos sin ( ) sin cos 0,
2 2 2 2

4 sin cos ( ) cos sin 0.
2 2 2 2

pd qd pd qd
pq q

pd qd pd qd
pq q

 

 

  

  

                (13) 

The wavenumbers 
a

n  and 
s

n  corresponding to anti-symmetric and symmetric SH modes 

can be given explicitly as 

2 2 2

2 2

2

2 2 2

2 2

2

(2 1)
,

4
.

a

n

s

n

n

c d

n

c d

 


 



 

 

                         (14) 

The dispersion relations in Eq. (13) constitute an implicit relation between the wavenumber   

and the circular frequency , or the linear frequency / 2f   . To find explicitly the values of 

  as a function of , or equivalently as a function of f , a numerical algorithm is applied. The 

algorithm used consists in tracking the curve branch corresponding to each mode in the fd d  

plane, and it is based on a combination of Muller's method (Muller 1959) used to find complex 

roots of Eq. (13) and a procedure to trace implicit planar curves given by Yu et al. (2006). 

 

 

 
Table 1 Material data for aluminum 

Elastic Young's modulus 70GPa 

Poisson's ratio 0.33 

Mass density   2700kg/m
3
 

Longitudinal velocity 1c  6197m/s 

Transversal velocity 2c  3121m/s 
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Fig. 5 Graphical representation of the wavenumber-frequency dependence corresponding to the first eleven 

symmetric and the first ten anti-symmetric Lamb modes of an aluminum plate. Curves corresponding 

to symmetric and anti-symmetric modes are represented in light and dark color, respectively 

 

 

The value of the wavenumbers
A

n ,
S

n , 
a

n  and 
s

n  for each frequency are either complex or 

real. Complex values for the wavenumber correspond to decaying evanescent modes and real 

numbers to the propagating modes. It can be shown that for each frequency there is a finite number 

of propagating modes and the rest are evanescent. From Eq. (8) it follows that decaying evanescent 

modes have a small contribution to the value of the response matrix 
*

E  for values of x  big 

enough. For this reason the sum in Eq. (8) is truncated for each x  such that the absolute value of 

the contribution of the first neglected term is less than a prefixed tolerance. 

Another point, worth mentioning, is that for the particular case of an isotropic plate, the values 

of these wavenumbers and the expressions for 
*

E do not change with the direction of e  or the 

direction of propagation of the wave. Thus, in order to simplify notations we assume 1 e e  

without losing generality. The same is not to be expected in anisotropic plates. 

Fig. 5 illustrate the dependence between the wavenumbers and the frequency, the dispersion 

curves of the dependence of the wave numbers of the anti-symmetric and the symmetric Lamb 

modes, 
A

n  and 
S

n  and the linear frequency f  is shown for an aluminum plate. The same can 

be seen in Fig. 6 for the wave numbers 
a

n  and 
s

n  of the anti-symmetric and the symmetric SH 

modes. The values of the material constants required for the calculation are given in Table 1. 
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Fig. 6 Graphical representation of the wavenumber-frequency dependence corresponding to the first nine SH 

modes of an aluminum plate. Curves corresponding to symmetric and anti-symmetric modes are 

represented in light and dark color respectively 
 

 

4. Modeling of bonded piezoelectric patches 
 

After studying the displacement field of an infinite plate, a separate analysis is done with 

piezoelectric patches attached to it. The configuration and reference system corresponding to our 

model of a piezoelectric patch is shown in Fig. 1. 

In piezoelectric materials the electrical and mechanical fields are coupled (Rose 2002, Royer 

and Dieulesaint 2000). The mechanical state is characterized by the vector of displacements u , the 

strain tensor ε  and the stress tensorσ . The electrical state in a piezoelectric material is given by 

the electrical potential   which is a scalar quantity, the electric field vector E  and the vector of 

electrical displacements D . 

 

4.1 Governing equations 
 

The governing equations corresponding to the mechanical field are described by linearized 

relations between the vector of displacements u and the second rank Cauchy strain tensor ε  

 
1

2
   ε u u                             (15) 

and the balance equation in the elastic body in absence of body forces 

. σ u                                (16) 

Consider that 1  and 2  are a disjoint partition of  , i.e., 1 2   and 
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1 2    , where   is the set of points of the boundary of   excluding the 

points of  , cf. Fig. 7. 

Assume that on 1  the tractions T  are applied and on 2  the displacements v  are 

prescribed. Then the boundary conditions corresponding to 1  are defined as follows 

1

,


 σ n T                                 (17) 

where n  is the outer normal vector to the surface 1 . On 2  the conditions are simply given 

by 

2

.

u v                                  (18) 

Our initial conditions are the steady static state, i.e., the initial vector of displacements and 

velocities are equal to 0  when 0t   

   0 0,   0 0t t   u u                         (19) 

 

 

 

 

Fig. 7 Surfaces,  , 
1

 , 
2

 , 
1

S and 
2

S of  . The piezoelectric patch is electroded on the upper and 

lower surfaces 
2

S  and is not electroded on the lateral face
1

S . The lower surface   is shared by 

the plate and the piezoelectric transducer. The upper and lateral surfaces 
1

  are traction free. In this 

case, there is no surface where the displacements are known or prescribed and the surface 
2

  is an 

empty set (
2

  ) 

 

 

The influence of the electrical field is described by the equations of general electrostatics 

(Jackson 1998), consisting of the equations relating of the electrical potential and the electric field 

in the bounded domain   

, E                                (20) 

as well as the equation for the electrical displacement D  in absence of an internal distribution of 

x1

x2

x3

0

1S2

S1
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charges 

0. D                                 (21) 

Conditions on the boundary   are also taken into account. Let's take 1S  and 2S  such that 

1 2S S   and 1 2S S    (see Fig. 7). The Neumann boundary conditions on 1S , 

relating the normal flux of the electrical displacement vector to the charge density denoted by e , 

are given as 

.e  D n                               (22) 

The Dirichlet boundary conditions, prescribing a given electric potential   on 2S , are as 

follows 

2

.
S

                                  (23) 

For the electrical potential the following initial conditions are considered in the model 

   0 0,   0 0.t t                           (24) 

We assume that our applications are within the limits of linear theory of piezoelectricity. 

Therefore the constitutive relations have the following form 

,

,

   

   

σ c ε e E

σ e ε ζ E
                             (25) 

where the fourth rank elasticity tensor c , the third rank piezoelectric tensor e  and second rank 

dielectric tensor ζ  complete the set of coefficients of the linear constitutive law. 

We make use of a Cartesian coordinate system to write the final governing equations of the 

linear piezoelectricity in terms of the electrical potential and the components of the vector of 

displacements. We substitute the equations of the electrical field Eq. (20), the linearized relations 

between the mechanical displacements and the mechanical strains Eq. (15) and the constitutive 

laws Eq. (25) in the balance equation Eq. (16) and the equation for the electrical displacement in 

Eq. (21) and obtain finally 

, ,

, ,

,

0.

ijkl k lj lij lj i

jkl k lj lj lj

c u e u

e u

 

 

 

 


                         (26) 

Einstein's summation convention regarding the sum over repeated indexes k , l  and j  is 

considered and an index j  after a comma denotes a partial derivative with respect to the variable

jx . The equations Eq. (17), Eq. (18), Eq. (22) and Eq. (23) are rearranged and therefore, the 

boundary conditions can be stated in the following form 
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 

 
1

1

2

2

, ,

, ,

,

,

,

.

ijkl k l lij l j i

jkl k l lj l j e
S

i i

S

c u e n T

e u n

u v



  

 





 

  





                      (27) 

 
4.2 Bonded piezoelectric patches 
 

In order to introduce the boundary conditions corresponding to the bounding interface   the 

problem is transformed to the frequency domain. If we denote the Fourier transform of a function 

with a star as superscript and apply the direct Fourier transform in Eq. (3) to the governing 

equations of piezoelectricity in Eq. (26), we obtain the formulation of the problem in the frequency 

domain as 

* * 2 *

, ,

* *

, ,

,

0.

ijkl k lj lij lj i

jkl k lj lj lj

c u e u

e u

  

 

  

 
                        (28) 

In the bounding surface   not all the boundary conditions given in Eq. (27) apply. Therefore, 

this surface is separately considered. The application of the Fourier transform to the boundary 

conditions Eq. (27) results in 

 

 
1

1

2

2

* * *

, ,

* * *

, ,

* *

*

,

,

,

.

ijkl k l lij l j i

jkl k l lj k l j e
S

i i

S

c u e n T

e u u n

u v



 

 





 

  





                    (29) 

In the surface   the interaction between the piezoelectric patch and the plate has to be 

considered. An ideal bonding implies the continuity of the field of displacements and the 

distribution of tractions. If we denote by Q  the vector of reaction forces of the piezoelectric 

patch to the bonding surface , we get 

 
1

* * *

, , 0.ijkl k l lij l j ic u e n Q


                          (30) 

On the interface   the displacements of the plate and the piezoelectric patch are the same. 

Thus, according to Eq. (6) we can make use of the relation between the Fourier transform of the 

displacements on the surface   of the plate and the Fourier transform of the applied loads Q  to 

finally obtain 

 * * *, / 2; ( ', / 2; ) ( '; ) '        .d d  


  u x E x x Q x dx x          (31) 
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Conditions given in Eqs. (30) and (31) constitute constraints that model the reaction of the plate 

to the movement or vibration of the bonded piezoelectric actuator on the surface . Observe that 

the boundary condition in Eq. (31) includes the effect of the geometry of   through the region of 

integration, and the material properties as well as the thickness of the plate are taken into account 

by the factor 
*

E  in the integrand. Once the system of governing equations restricted to these 

boundary conditions is solved, we obtain a solution for the behavior of an isolated piezoelectric 

patch when it is perfectly bonded to the plate without the need to consider or analyze the behavior 

of any other point in the plate except for those contained in . Nevertheless, after determining the 

traction distribution Q  defined on , the displacements of any point in the plate due to the 

excitation of the piezoelectric patch or the reflection of the incident field due to piezoelectric or 

elastic obstacles can be determined through Eq. (6). 

The Fourier transform of the distribution of the loads Q  in , say 
*

Q , can be determined 

once the system of partial differential equations in Eq. (28), constrained by the boundary 

conditions given by Eqs. (29)-(31) is solved. With that, the mechanical displacements of any point 

in the plate and in the bonded piezoelectric patch can be calculated in the frequency domain. To 

obtain the desired results in the time domain, the inverse Fourier transform must be applied to the 

results. 

 

 

5. Chebyshev spectral analysis of bonded piezoelectric patches 
 

In the following, the system of partial differential equations given by Eq. (28) together with the 

boundary conditions in Eqs. (29)-(31) is solved using spectral analysis. 

 

5.1 The two-dimensional problem 
 

The considered model describes a two-dimensional problem corresponding to a piezoelectric 

transducer bonded to an elastic plate as shown in Fig. 8. For the sake of simplicity, the equations 

resulting from the discretization of model are only presented for the reference domain 
2[ 1,1]  . The same procedure can be analogously applied for a general quadrilateral shape if a 

coordinate transformation is considered. 

 

 

 

Fig. 8 Geometrical representation of a two-dimensional model corresponding to a piezoelectric patch bonded 

to a plate. The common interface between both bodies is   

 

x1

x3

d

a

b
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Our choice for interpolation nodes within the interval [ 1,1]  is the Chebyshev-Lobatto grid 

determined by the points 

cos ,    0,1,..., .j

j
j N

N


                            (32) 

The Lagrange interpolation polynomials (also referred to as shape functions or cardinal 

functions) are computed in terms of the position of the nodes 
j  with the following general 

formula 

0

( ) .
N

jN

j

j i j

x
l x



 





                              (33) 

The Chebyshev-Lobatto grid and its corresponding cardinal functions are illustrated in Fig. 9 

for the case 7N  . 

In the two-dimensional case, the nodes used for the interpolation procedure constitute a tensor 

product of the Chebyshev grid shown in Fig. 9. The distribution of the grid nodes in two 

dimensions is shown in Fig. 10. The polynomial degrees of the interpolation polynomials in the 

directions of 1x  and 3x  in the general case are denoted as 1N  and 3N , respectively. 

 

 

 

Fig. 9 Cardinal functions corresponding to a Chebyshev-Lobatto grid with 7N  . Only the functions 
7
( )

j
l x  for 0,1,2,3j   are plotted from top to bottom. The other cardinal functions 

7
( )

j
l x  for 

4,5,6,7j   can be obtained by mirroring the given shape functions 
7
( )

j
l x  for 0,1,2,3j   

with respect to the axis 0x   
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The approximation of each component of the unknown function of displacements ku  and the 

unknown electric potential   is done according to, 

31

1 3 1 3 31

1 3

1 3

31

1 3 31 1

1 3

1 3

1 3

0 0

4 1 3

0 0

( ) ( ) ( ),

( ) ( ) ( ).

NN
N N n n NN

k k k n n

n n

NN
n n NN N

n n

n n

u u U t l x l x

U t l x l x 

 

 

 

 





                  (34) 

Consequently, the same approximation is used for the vector of reaction forces Q  on the 

interface   between the piezoelectric patch and the plate and is given by 

 

 

 

Fig. 10 Tensorial product of the Chebyshev-Lobatto grid in the two dimensional reference square 
2

[ 1,1] . 

The degree of polynomial interpolation is 6N   in vertical and horizontal directions 

 

 
1

1 1 1

1

1

1 1

0

( ) ( ),
N

N n N

i i n

n

Q q Q t l x


                          (35) 

Every triple 1 3( , , )k n n  with 1,3,4k  ; 1 10,1,...n N  and 3 30,1,...n N  is labeled with a 

different index n  varying from 1 to 1 33( 1)( 1)M N N   . According to this all the values 

1 3*n n

kU  can be arranged in the vector of degrees of freedom 
*

U of size 1M  . Consider first the 

case when the piezoelectric patch is not bonded to the plate, i.e., 
* 0Q  in Eq. (30). Under this 

assumption, the result of substituting Eq. (34) in Eqs. (28)-(30) is a linear system of equations in 
*

U  for each frequency 

* * *.K U F                                (36) 
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The column vector 
*

F of size 1M   is the vector of loads and the square matrix 
*

K  of size 

M  is the dynamic stiffness matrix 

* 2 , K K M                              (37) 

where K and M are respectively the mass and stiffness matrices of the original model. 

When the piezoelectric patch is bonded to the plate we must consider the unknown reaction 

forces 
*

Q  and their relation with the displacements 
*

u  in the interface   given by Eq. (31). 

This is introduced in the discrete model in Eq. (36) by substituting Eq. (35) in Eq. (31). The 

integral resulting from the substitution is calculated using Clenshaw-Curtis quadrature formulas. 

For this choice of quadrature formula the quadrature nodes coincide with the nodes that are used 

for the discretization grid. If we denote by
1nw , 1 10,...,n N  the weights of the quadrature 

formula, the equation resulting from the discretization of Eq. (31) is as follows 

 1 3 1 1 1

1

* **

1 1' , / 2 .
m N m m n

j n ji i

n I

U w E x x d Q


                     (38) 

Denote by 
*

IU  the column vector of the entries of 
*

U  that correspond to the displacements 

of nodes belonging to the interface . Let us correspondingly arrange the values of 1*n

iQ  in a 

column vector
*

Q . With this convection in mind Eq. (38) can be written in matrix form as follows 

* * *.I U E Q                                (39) 

The entries of the matrix 
*

E  give a measure of the plate receptance to the loads 
*

Q  in   

induced by the piezoelectric patch. The entry in the m -th row and the n -th column can be 

interpreted as the response in the degree of freedom m due to a unit force considered in the n -th 

entry of the vector 
*

Q . 

According to Eqs. (30) and (39), the final system of linear equations for each frequency   

can be written in terms of the dynamic stiffness matrix 
*

K  and the reaction matrix 
*

E  as 

follows 

* * * *

* * * 1 * *
.

( )

BB BI B B

IB II I I



    
    

    

K K U F

K K E U F
                       (40) 

Solving this linear system of equations, the vector 
*

U  can be found and, with that, the 

mechanical and electrical state of the piezoelectric patch bonded to the structure is determined. 

The displacements at any point of the plate can be found once the vector 
*

Q  is determined 

through the following formula 

     
1

1 1
* * * * * * * * * * ,II IB BB BI I IB BB B


     

  
Q K K K K E I F K K F          (41) 

where I  is the identity matrix of the same size as 
*

E . This expression is obtained if Eq. (39) is 

substituted in (40) and the resulting system of equations is solved for
*

Q . 
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6. Numerical results 
 

In order to evaluate the reliability of the proposed methods, we consider a numerical 

experiment. The materials for the piezoelectric actuator and the plate are PIC-181 and aluminum, 

respectively. The material constants for both materials are listed in Tables 1 and 2.  

The values of the geometrical parameter are d = 2 mm for the thickness of the plate and 1a 
mm denoting the thickness of the transducer and b = 10 mm representing the length of the 

piezoelectric patch, respectively (see Fig. 8). The surfaces of the plate are traction free, and the 

upper and the lower faces of the piezoelectric actuator are electroded. On the lower face of the 

actuator, it is considered that the potential   vanishes and in the upper face it changes only whit 

the temporal variable t  according to a 3 -cycle ( 0n ) sinus burst with a central frequency of f0 

=200 KHz and with an amplitude of 50 V. Every point on the upper face has ψ(t) = 50 V•p(t), 

where the time amplitude modulating function ( )p t  is given by 

  2 0
0 0 0

0

1
( ) ( ) ( / ) sin sin 2 ,

2

f t
p t H t H n f t f t

n


                 (42) 

and ( )H t  is the Heaviside step function, i.e., ( ) 1H t   if 0t   and vanish otherwise. 

A graph of ( )p t  and the frequency content of its Fourier transform is depicted in Fig. 11. 

 

 

 

Fig. 11 The function ( )p t , which corresponds to a three cycle sinus burst modulated by a Hann-window 

(above) and the absolute value of its Fourier transform 
*
( )p t  (below) 
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After determining the parameters that define the geometry of the problem and the boundary 

conditions, a discretization of the domain occupied by the piezoelectric material is introduced. For 

the benchmark example N1 = 20 and N3 =8 were chosen as polynomial degrees in the direction of 

1x  and 3x , respectively. This amounts to a formulation with 567 degrees of freedom. Additionally, 

only the first 16 terms are considered in the infinite sum in Eq. (8) to build the dynamic reaction 

matrix 
*

E  according to Eqs. (38) and (39). 

In Fig. 12, the simulation results of the motion of the piezoelectric transducer due to an applied 

electric potential difference are shown. With this method, the behavior of the bonded piezoelectric 

actuator can be analyzed by only considering the points contained on its domain. Nevertheless the 

effects of the reaction forces, caused by the elastic plate, on the behavior of the piezoelectric patch 

are observed. The effects of the reaction of the plate in the simplified model of the bonded patch 

are introduced by Eq. (31) or its discrete version given by Eq. (39). Observe that Eq. (39) can only 

be considered if the Green’s response tensor of the plate has been previously determined, which 

constrains the application of the method only to those models where the response tensor is 

available. 

 

 

 

Table 2 Values of the non-zero coefficients of the elasticity tensor c , the piezoelectric tensor e , the 

dielectric tensor ζ  and the mass density   of PIC-181. The constant 
12

0
8.854187817620 10 F/m


   is the vacuum permittivity 

Elastic coefficients (GPa) 

1111 2222c c  152.30 

3333c  134.10 

1122c  89.09 

1133 2233c c  85.42 

1212c  31.61 

1313 2323c c  28.30 

Piezoelectric coefficients (N/Vm) 

113 223e e  11.00 

311 322e e  -4.50 

333e  14.70 

Relative permittivity  

11 0 22 0/ /     1224 

33 0/   1135 

Mass density (kg/m
3
) 

  7850 
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Fig. 12 Deformation of a piezoelectric actuator bonded to an elastic isotropic plate after 5 st  and 

10 st  . The contour plots represent the electrical potential in MV. The deformation scale factor 

is set to 
4

2.0 10  

 

 

 

Fig. 13 Vertical and horizontal displacements at point x1 = 200 mm on the surface of the plate excited by a 

piezoelectric actuator. The ABAQUS results are compared with the proposed method (combination 

of analytical and spectral methods) 
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As a way to verify the results, we calculated the displacements at some points in the plate that 

are not located at the bonding region of the piezoelectric actuator. We chose points located at x1 = 

200 mm and x1 = 245 mm on the upper surface of the plate, i.e., x3 = 1 mm. The results of the 

calculation were compared with finite element results calculated with ABAQUS. The FE-mesh is 

generated using rectangular quadratic elements with the element size of 0.25mm . Both results 

agree very well as can be seen in Figs. 13 and 14. 

The same analysis is applied to study the behavior of piezoelectric sensors. We considered the 

case when a piezoelectric patch with the same dimensions as the actuator is attached to the surface 

of the plate in the region delimited by the points x1 = 195 mm and x1 = 205 mm. In Fig. 15 we 

plotted snapshots of the piezoelectric patch in at different times 80 st   and 85 st  , where 

the piezoelectric sensor is under the influence of the traveling 0A  mode. The snapshots are 

shown in Fig. 15. Here it is clear to see that although the piezoelectric sensor is considered 

separately the effects of the traveling A0 mode in terms of deformation and electric potential are to 

be seen. 

This shows the capability of the method to describe the piezoelectric behavior of a piezoelectric 

sensor/actuator system bonded to a plate without considering any point within or the discretization 

of the plate, except for the points that belong to the bonding surfaces. This is very advantageous 

regarding the simulations of Lamb waves excited by piezoelectric transducers with applications to 

non-destructive testing. The number of degrees of freedom of the system and the calculation effort 

reduces significantly and it simplifies the analysis of the behavior of the sensor due to effect of the 

signals emitted by the actuators. 

 

 

 

Fig. 14 Vertical and horizontal displacements at point x1 = 245 mm on the surface of the plate excited by a 

piezoelectric actuator. The ABAQUS results are compared with the proposed method (combination 

of analytical and spectral methods) 
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Fig. 15 The deformation of a piezoelectric sensor bonded to an elastic isotropic plate on the upper face 

1
195mm 205mmx    mm after 80 st  and 85 st  s of the excitation signal. The contour 

plots represent the electrical potential in MV. The deformation scale factor is set to 
4

2.0 10  

 
 
7. Conclusions 

 
In this work the use of analytical and spectral methods has been used to model Lamb waves in 

isotropic plates induced by piezoelectric transducers. The capability of the method to model the 

behavior of wave propagation in elastic plates as well as the effects of piezoelectric transducers 

attached to the structure is shown. 

The spectral analysis was utilized to model piezoelectric transducers (actuators and sensors). A 

mathematical model to describe the mechanical and electrical fields of piezoelectric transducers 

bonded to an elastic isotropic plate is given and its accuracy is verified. With help of the spectral 

analysis combined with analytical methods, the reaction forces of the plate to a vibrating 

transducer are also taken into account. Thus, a method to study piezoelectric transducers bonded to 

a structure is provided without considering any other region of the plate other than the bonding 

surface. The time-dependent displacements at any point of the plate are calculated using this 

formulation. 

The analytical methods applied here to model the propagation of elastic guided waves in plates 

have many advantages in comparison with other methods used for the same purposes. In regards to 

finite element or finite difference based methods, the analytical formulation presented here has the 

advantage that there is no need to discretize the complete domain of the plate to obtain the solution 

of displacements at any point of an infinite plate. As a matter of fact, the history of displacements 

at a certain point of the plate can be calculated without considering the displacement at 

neighboring points and no assumption about the number of elements/nodes per wave length has to 

be taken into account. This results in a huge improvement in terms of the calculation time and the 

memory storage requirements. The time history of displacements is calculated using the fast 

Fourier transform algorithm. Therefore no numerical dispersion is introduced as in cases where 

time domain simulations are made with an iterative time integration scheme like central 

differences or Runge-Kutta. An important advantage is that with analytical methods in the 

frequency domain the contribution of each mode to the displacement field can be separately 

analyzed and studied. This is very useful when only propagating modes are considered and all 
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evanescent modes are neglected, which is very convenient if the point considered to monitor the 

signal produced by the actuator is relatively far away from the source of excitation. This is a 

feature shared by analytical and semi-analytical approaches, but not by finite element and finite 

difference based approaches. With analytical approaches we are capable to model plates of infinite 

dimensions. Reflections from the boundaries of the plate are neglected in the current model. This 

is very useful when only the information of the reflections from damages are investigated or in the 

case that big plate structures are considered and the amplitudes of the sending waves are very 

small before the reflections. With classical methods used in time domain simulations, the 

dimensions or the model must be necessarily finite and they have to be coupled with another sort 

of discretization on the boundary such as boundary finite elements, infinite elements or artificial 

damping elements in order to eliminate the reflections at the boundary. 

Anisotropy and stratified materials obtained by an arrangement of phases of different properties of 

orientation is something that is not considered in this work. Anisotropic and composite plates can 

also be modeled following a similar philosophy. Some work in this direction has already been 

done and some hybrid techniques have also been developed. In this case also the initial equations 

have to be changed in order to achieve this goal. This is work in progress and will be reported in 

forthcoming publications. 

 

 

Acknowledgements 
 

The authors would like to thank the German Research Foundation (DFG) and all project 

partners (PAK 357) for their support (GA 480/13-2). Additionally, the support received by the 

postgraduate program of the German Federal State of Saxony-Anhalt is also gratefully by the 

second author acknowledged. 

 

 

References 
 

Achenbach, J.D. (1973), Wave propagation in elastic solids, (Eds. H.A. Lauwerier and W. T. Koiter), 

North-Holland Series in Applied Mathematics and Mechanics, volume 16, North Holland, Amsterdam, 

The Netherlands. 

Achenbach, J.D. (1998), “Lamb waves as thickness vibrations superimposed on a membrane carrier wave”, 

J. Acoust. Soc. Am., 103(5), 2283-2286. 

Achenbach, J.D. (1999), “Wave motion in an isotropic elastic layer generated by a time-harmonic point load 

of arbitrary direction”, J. Acoust. Soc. Am., 106(1), 83-90. 

Achenbach, J.D. and Xu, Y. (1999), “Use of elastodynamic reciprocity to analyze point-load generated 

axisymmetric waves in a plate”, Wave Motion, 30(1), 57-67. 

Achenbach, J.D. (2000), “Quantitative nondestructive evaluation”, Int. J. Solids Struct., 37(1, 2), 13-27. 

Achenbach, J.D. (2003), Reciprocity in elastodynamics, Cambridge Monographs on Mechanics, Cambridge 

University Press, Cambridge, United Kindom. 

Ahmad, Z.A.B. (2011), Numerical simulations of waves in plates using a semi-analytical finite element 

method, Technical report: Fortschritt-Berichte VDI, Number 437 in Reihe 20-Rechnerunterstütze 

Verfahren. VDI Verlag. 

Ahmad, Z.A.B., Vivar-Perez, J.M., Willberg, C. and Gabbert, U. (2009), “Lamb wave propagation using 

wave finite element method”, PAMM- Proc. Appl. Math. Mech., 9, 509-510. 

Bartoli, I., Marzania, A., Lanza di Scalea, F. and Violab, E. (2006), “Modeling wave propagation in damped 

waveguides of arbitrary cross-section”, J. Sound Vib., 295(3-5), 685-707. 

611



 

 

 

 

 

 

Juan M. Vivar-Perez, Sascha Duczek and Ulrich Gabbert 

 

Bonnet, M. and Constantinescu, A. (2005), “Inverse problems in elasticity”, Inverse Probl., 21(2), 1-50. 

Boyd, J.P. (2000), Chebyshev and fourier spectral methods (2nd Ed.), Dover, New York, USA.  

Chakraborty, A. and Gopalakrishnan, S. (2004), “Wave propagation in inhomogeneous layered media: 

solution of forward and inverse problems”, Acta Mech., 169, 153-185. 

Chang, Z. and Mal, A. (1999), “Scattering of Lamb waves from a rivet hole with edge cracks”, Mech. Mater., 

31(3), 197-204. 

Delsanto, P.P., Whitcombe, T., Chaskelis, H.H. and Mignogna, R.B. (1992), “Connection machine 

simulation of ultrasonic wave propagation in materials. I: The one-dimensional case”, Wave Motion, 16(1), 

65-80. 

Delsanto, P.P., Schechter, R.S., Chaskelisb, H.H., Mignogna, R.B. and Kline, R. (1994), “Connection 

machine simulation of ultrasonic wave propagation in materials. II: The two-dimensional case”, Wave 

Motion, 20(4), 295-314. 

Delsanto, P.P., Schechter, R.S. and Mignogna, R.B. (1997), “Connection machine simulation of ultrasonic 

wave propagation in materials III: The three-dimensional case”, Wave Motion, 26(4), 329-339. 

Doyle, J.F. (1997), Wave propagation in structures: spectral analysis using fast discrete Fourier transform. 2 

edition, Mechanical Engineering Series, Springer, New York, USA. 

Duczek, S., Willberg, C., Schmicker, D. and Gabbert, U. (2012), “Development, validation and comparison 

of higher order finite element approaches to compute the propagation of Lamb waves efficiently”, Key 

Eng. Mater., 518, 95-105. 

Fornberg, B. (1998), A practical guide to pseudospectral methods, (Eds. P.G. Ciarlet, A. Iserles, R.V. Kohn, 

and M.H. Wright), Cambridge Monographs on Applied and Computational Mathematics, Cambridge 

University Press, United Kindom. 

Galàn, J.M. and Abascal, R. (2002), “Numerical simulation of Lamb wave scattering in semi-infinite plates”, 

Int. J. Numer. Meth. Eng., 53(5), 1145-1173. 

Gazis, D.C. (1958), “Exact analysis of the plane-strain vibrations of thick-walled hollow cylinders”, J. 

Acoust. Soc. Am., 30(8), 786-794. 

Giurgiutiu, V. (2005), “Tuned lamb wave excitation and detection with piezoelectric wafer active sensors for 

structural health monitoring”, J. Intel. Mat. Syst. Str., 16, 291-305. 

Glushkov, E.V., Glushkova, N.V., Seemann, W. and Kvasha, O.V. (2006). “Elastic wave excitation in a layer 

by piezoceramic patch actuators”, Acoust. Phys., 52(4), 398-407. 

Glushkov, Y.V., Glushkova, N.V. and Krivonos, A.S. (2010), “The excitation and propagation of elastic 

waves in multilayered anisotropic composites”, J. Appl. Math. Mech., 74(3), 297-305. 

Gomilko, A.M., Gorodetskaya, N.S. and Meleshko, V.V. (1991), “Longitudinal Lamb waves in a 

semi-infinite elastic layer”, Int. J. Appl. Mech., 27(6), 577-581. 

Gopalakrishnan, S. and Mitra, M. (2010), Wavelet methods for dynamical problems: with application to 

metallic, composite, and nano-composite structures, CRC Press Inc, Florida, USA. 

Gopalakrishnan, S., Chakraborty, A. and Mahapatra, D.R. (2008), Spectral finite element method, (Ed. K.J. 

Bathe), Computational Fluid and Solid Mechanics, volume XIV. Springer, New York, USA. 

Graff, K.F. (1975), Wave motion in elastic solids, Oxford University Press, London, United Kindom. 

Hayashi, T. and Kawashima, K. (2002), “Multiple reflections of Lamb waves at a delamination”, Ultrasonics, 

40(1-8), 193-197. 

Holden, A. (1951), “Longitudinal modes of elastic waves in isotropic cylinders and slabs”, Bell Syst. 

Technical J., 30(4), 956-969. 

Huang, H., Pamphile, T. and Derriso, M. (2008), “The effect of actuator bending on Lamb wave 

displacement fields generated by a piezoelectric patch”, Smart Mater. Struct., 17(5), 1-13. 

Jackson, J.D. (1998), Classsical electrodynamics (3rd Ed.), John Wiley & Sons, Inc. New York, USA. 

Jin, J., Quek, S.T. and Wang, Q. (2003), “Analytical solution of excitation of Lamb waves in plates by 

inter-digital transducers”, P. Roy. Soc. Lond. A, 459(2033), 1117-1134. 

Karmazin, A., Kirillova, E., Seemann, W. and Syromyatnikov, P. (2010), “Modelling of 3d steady-state 

oscillations of anisotropic multilayered structures applying the Green’s functions”, Adv. Theor. Appl. 

Mech., 3(9), 425-445. 

612



 

 

 

 

 

 

Analytical and higher order finite element hybrid approach for an efficient simulation… 

 

Karmazin, A., Kirillova, E., Seemann, W. and Syromyatnikov, P. (2011), “Investigation of Lamb elastic 

waves in anisotropic multilayered composites applying the Green’s matrix”, Ultrasonics, 51(1), 17-28. 

Kudela, P. and Ostachowicz, W.M. (2008), “Wave propagation modelling in composite plates”, Appl. Mech. 

Mater., 9, 89-104. 

Kudela, P. and Ostachowicz, W. M. (2009), “3D time-domain spectral elements for stress waves modelling”, 

J. Physics, 181(1), 1-8. 

Lamb, H. (1917), “On waves in an elastic plate”, P. Roy. Soc. A, 93, 114-128. 

Lee, B.C. and Staszewski, W.J. (2003a), “Modelling of Lamb waves for damage detection in metallic 

structures: Part I. Wave propagation”, Smart Mater. Struct., 12(5), 804-814. 

Lee, B.C. and Staszewski, W.J. (2003b), “Modelling of Lamb waves for damage detection in metallic 

structures: Part II. Wave interactions with damage”, Smart Mater. Struct., 12(5), 815-824. 

Leonard, K.R., Malyarenko, E.V. and Hinders, M. K. (2002), “Ultrasonic Lamb wave tomography”, Inverse 

Probl., 18(6), 1795-1808. 

Liu, G.R. (2002), “A combined finite element/strip element method for analyzing elastic wave scattering by 

cracks and inclusions in laminates”, Comput. Mech., 28(1), 76-81. 

Love, A.E. (1911), Some problems of geodynamics, Cambridge University Press, Cambridge, United 

Kindom. 

Loveday, P.W. (2007), “Analysis of piezoelectric ultrasonic transducers attached to waveguides using 

waveguide finite elements”, IEEE T. Ultrason. Ferr., 54(10), 2045-2051. 

Lu, Y., Wang, X., Tang, J. and Ding, Y. (2008), “Damage detection using piezoelectric transducers and the 

Lamb wave approach: II. Robust and quantitative decision making”, Smart Mater. Struct., 17(2), 025034, 

doi:10.1088/0964-1726/17/2/025034. 

Lyon, R.H. (1955), “Response of an elastic plate to localized driving forces”, J. Acoust. Soc. Am., 27(2), 

259-265. 

Mindlin, R.D. (1951), “Thickness-shear and flexural vibrations of crystal plates”, J. Appl. Phys., 22(3), 

316-323. 

Mindlin, R.D. and Medick, M.A. (1959), “Extensional vibrations of elastic plates”, J. Appl. Mech. - T ASME, 

26, 561-569. 

Mindlin, R.D. (1960), Waves and vibrations in isotropic elastic plates, (Eds. J.N. Goodier and N.J. Hoff) 

First Symposium on Naval Structural Machanics ,1958. Pergamon, Oxford . 

Morvan, B., Wilkie-Chancellier, N., Duflo, H., Trinel, A. and Duclos, J. (2003), “Lamb wave reflection at 

the free edge of a plate”, J. Acoust. Soc. Am., 113(3), 1417-1425. 

Muller, D.E. (1959), “A method for solving algebraic equations using an automatic computer”, Math. 

Comput., 10(56), 208-215. 

Onoe, M.A. (1955), A study of the branches of the velocity-dispersion equations of elastic plates and rods, 

Technical report: Report Joint Commitee on Ultrasonics of the Institute of Electrical Communication 

engineers and the Acoustical society of Japan. 

Osborne, M.F.M. and Hart, S.D. (1945), “Transmission, reflection, and guiding of an exponential pulse by a 

steel plate in water. I. theory”, J. Acoust. Soc. Am., 17(1), 1-18. 

Ostachowicz, W.M., Kudela, P., Krawczuk, M. and Zak, A. (2012), Guided waves in structures for SHM: the 

time-domain spectral element method, John Wiley & Sons, Ltd, United Kindom. 

Peng, H., Meng, G. and Li., F. (2009), “Modeling of wave propagation in plate structures using 

three-dimensional spectral element method for damage detection”, J. Sound Vib., 320, 942-954. 

Raghavan, A. and Cesnik, C.E.S. (2004), “Modeling of piezoelectric-based Lamb wave generation and 

sensing for structural health monitoring”, Proc. SPIE, 5391, 419-430. 

Raghavan, A. and Cesnik C.E.S. (2007), “Review of guided-wave structural health monitoring”, Shock Vib., 

39(2), 91-114. 

Rayleigh, L. (1885), “Waves propagated along the plane surface of an elastic solid”, Proc. London Math. 

Soc., 20, 225-234. 

Rose, J.L. (2002), “A baseline and vision of ultrasonic guided wave inspection potential”, J. Press. Vessel T. 

- ASME, 124(3), 273-282. 

613

http://dx.doi.org/10.1088/0964-1726/17/2/025034


 

 

 

 

 

 

Juan M. Vivar-Perez, Sascha Duczek and Ulrich Gabbert 

 

Royer, D. and Dieulesaint, E. (2000), Elastic waves in solids I: free and guided propagation, Springer, 

Berlin, Germany. 

Sirohi, J. and Chopra, I. (2000), “Fundamental understanding of piezoelectric strain sensors”, J. Intel. Mater. 

Syst. Str., 11, 246-247. 

Su, Z. and Ye, L. (2009), Identification of damage using Lamb waves. from fundamentals to applications, 

(Eds. F. Pfeiffer and P. Wriggers), Lecture Notes in Applied and Computational Mechanics, volume 48, 

Springer, London, United Kindom. 

Sun, J.H. and Wu, T.T. (2009), “A Lamb wave source based on the resonant cavity of phononic-crystal 

plates”, IEEE T. Ultrason. Ferr., 59(1), 121–128. 

Tian, J., Gabbert, U., Berger, H., and Su, X. (2004), “Lamb wave interaction with delaminations in CFRP 

laminate”, Comput. Mater. Continua, 1(4), 327-336. 

Trefethen, L.M. (2000), Spectral methods in MATLAB. SIAM, USA. 

Velichko, A. and Wilcox, P.D. (2007), “Modeling the excitation of guided waves in generally anisotropic 

multilayered media”, J. Acoust. Soc. Am., 121(1), 60-69. 

Viktorov, I.A. (1967), Rayleigh and Lamb waves: physical theory and applications, Plenum Press, New York, 

USA. 

Vivar-Perez, J.M. (2012), Analytical and spectral methods for the simulation of elastic waves in thin plates, 

Technical Report: Number 441 in Reihe 20, Fortschrit- Berichte VDI. VDI Verlag. 

Vivar-Perez, J. M., Willberg, C. and Gabbert, U. (2009a), “Simulation of piezoelectric induced Lamb waves 

in plates”, PAMM-Proc. Appl. Math. Mech., 9, 503-504. 

Vivar-Perez, J.M., Willberg, C. and Gabbert, U. (2009b), “Simulation of piezoelectric Lamb waves in plate 

structures”, Proceedings of the International Conference on Structural Engineering Dynamics. ICEDyn 

Ericeira, Portugal. 22.-24. June. 

von Ende, S., Schäfer, I. and Lammering, R. (2007), “Lamb wave excitation with piezoelectric wafers - an 

analytical approach”, Acta Mech., 193(3-4), 141-150. 

Von Ende, S. and Lammering, R. (2007), “Investigation on piezoelectrically induced Lamb wave generation 

and propagation”, Smart Mater. Struct., 16(5), 1802-1809. 

von Ende, S. and Lammering, R. (2009), “Modeling and simulation of Lamb wave generation with 

piezoelectric plates”, Mech. Adv. Mater. Struct., 16(3), 188-197. 

Wang, X., Lu, Y. and Tang, J. (2008), “Damage detection using piezoelectric transducers and the Lamb wave 

approach: I. system analysis”, Smart Mater. Struct., 17(2), 025033, doi:10.1088/0964-1726/17/2/025033. 

Wilcox, P. (2004), “Modeling the excitation of Lamb and SH waves by point and line sources”, AIP 

Conference Proc., 700, 206-213. 

Willberg, C., Vivar-Perez, J.M. and Gabbert, U. (2009a), “Lamb wave interaction with defects in 

homogeneous plates”, Proceedings of the International Conference on Structural Engineering Dynamics 

(ICEDyn), Ericeira, Portugal. 22.-24. June. 

Willberg, C., Vivar-Perez, J.M., Ahmad, Z. and Gabbert, U. (2009b), “Simulation of piezoelectric induced 

Lamb wave motion in plates”, Proceedings of the 7th International Workshop on Structural Health 

Monitoring 2009: From System Integration to Autonomous Systems. 

Willberg, C., Duczek, S., Vivar-Perez, J.M., Schmicker, D. and Gabbert, U. (2012), “Comparison of different 

higher order finite element schemes for the simulation of Lamb waves”, Comput. Meth. Appl. Mech. Eng., 

241-244, 246-261. 

Xu, B., Shen, Z., Ni, X. and Lu, J. (2004), “Numerical simulation of laser-generated ultrasound by the finite 

element method”, J. Appl. Phys., 95(4), 2116- 2121. 

Yu, Z.S., Cai, Y.Z., Oh, M.J., Kim, T.W. and Peng, Q.S. (2006), “An efficient method for tracing planar 

implicit curves”, J. Zhejiang University Sci. A, 7(7), 1115-1123. 

 

 

FC 

614

http://dx.doi.org/10.1088/0964-1726/17/2/025033



