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Abstract.    The fault diagnosis of rolling element bearings has drawn considerable research attention in 
recent years because these fundamental elements frequently suffer failures that could result in unexpected 
machine breakdowns. Artificial intelligence algorithms such as artificial neural networks (ANNs) and 
support vector machines (SVMs) have been widely investigated to identify various faults. However, as the 
useful life of a bearing deteriorates, identifying early bearing faults and evaluating their sizes of development 
are necessary for timely maintenance actions to prevent accidents. This study proposes a new two-layer 
structure consisting of support vector regression machines (SVRMs) to recognize bearing fault patterns and 
track the fault sizes. The statistical parameters used to track the fault evolutions are first extracted to 
condense original vibration signals into a few compact features. The extracted features are then used to train 
the proposed two-layer SVRMs structure. Once these parameters of the proposed two-layer SVRMs 
structure are determined, the features extracted from other vibration signals can be used to predict the 
unknown bearing health conditions. The effectiveness of the proposed method is validated by experimental 
datasets collected from a test rig. The results demonstrate that the proposed method is highly accurate in 
differentiating between fault patterns and determining their fault severities. Further, comparisons are 
performed to show that the proposed method is better than some existing methods. 
 

Keywords:    statistical parameters; bearing fault diagnosis; deterioration evaluation; a two-layer structure; 
support vector regression machine 
 
 
1. Introduction 
 

Rolling element bearings are key components in rotating machinery and widely used in a range 
of mechanical transmission systems, such as those in automobiles, power plants, and aircraft 
engines. Unexpected failures in the bearings can cause machine breakdowns, leading to economic 
losses and, even worse, human casualties. Hence, effective and feasible bearing fault diagnosis 
techniques are of great industrial importance in avoiding catastrophe and minimizing defective 
machinery downtimes. As such, this work has attracted considerable research attention (Shen et al. 
2012). 

Bearing faults can cause violent vibrations on a machine when the movements between the 
components they connect lose fluency. As a result, the vibration signals collected from the 
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machine comprise a great deal of fault-related information (Wang et al. 2011). Zhu et al. (2010) 
presented an image recognition technology for rotating machinery fault diagnosis. In addition, 
ensemble empirical mode decomposition (EEMD) (Huang et al. 1998) and wavelet analysis (Yan 
et al. 2009) are potential approaches to extracting useful signatures in both time and frequency 
domains (Wang et al. 2009).  

Signal processing-based fault diagnosis methods have been widely investigated and have 
proven to be effective and powerful machine fault diagnosis tools. However, for complex vibration 
signals, considerable expertise is required to make correct judgments regarding fault diagnosis and 
prognosis (Wang et al. 2011). In contrast, artificial-intelligence-based fault diagnosis methods 
have the potential to tackle this problem without human experience (Caesarendra et al. 2011, 
Gryllias et al. 2012). These methods aim to recognize different machine health conditions via the 
features extracted from the vibration signals. The accuracy of the identification of these conditions 
can be further enhanced through classifiers that exhibit good performance (Di Maio et al. 2012). 
Artificial neural networks (ANNs), which are developed in accordance with how the human brain 
processes information, have proven very effective in machine fault diagnosis. However, they have 
a number of drawbacks, including slow convergence and poor generalization ability. They are also 
unsuitable for solving problems when few samples are available for training the models (Wong et 
al. 2006). Vanpnik (1995) recently developed computational supervised learning approaches 
known as support vector machines (SVMs) based on statistical learning theory. SVMs have 
well-defined formulations and keep consistent with mathematical theory. Moreover, owing to their 
superior generalization capability, SVMs do not require a large amount of samples for training 
(Widodo et al. 2007). Hu et al. (2007) used SVM ensembles for bearing fault diagnosis and 
achieved better results compared with other approaches. Konar et al. (2011) proposed a bearing 
fault detection scheme for a three-phase induction motor that combined continuous wavelet 
transforms and SVMs. Based on the correlation between intrinsic mode functions (IMFs) and 
SVMs, a reliable method of pattern recognition for rolling bearing faults has also been put forward 
(Jiang et al. 2012).  

Most of the studies on bearing fault diagnosis have focused on distinguishing different fault 
patterns while ignoring bearing fault deterioration. In fact, the deterioration of a normal bearing 
into one suffering functional failure is a gradual process. The failure usually occurs when an early 
bearing fault grows to a severe extent (Heng et al. 2009). Maintenance actions taken too early or 
late are not suitable, as they result in too much or too little maintenance (Cai et al. 2012). Hence, 
tracking the size of a bearing’s defect is more meaningful for timely maintenance actions and 
could bring considerable economic benefits. The challenge of an effective bearing fault diagnosis 
method not only requires that the fault patterns be recognized, but also the defect sizes to evaluate 
a deteriorating bearing’s health status. Until now, the relevant studies have seldom reported results 
to this effect. 

Unlike the target value of a traditional SVM, which can only be used to handle a binary 
problem, the target value of a support vector regression machine (SVRM) is continuous. It has 
shown great potential in time series prediction, and thus can establish a stable nonlinear 
relationship between inputs and outputs (Smola et al. 2004). Most of the studies on SVRMs have 
aimed at making time series predictions (Jiang et al. 2012), whereas classification problems are 
usually addressed by a binary SVM. In a traditional SVM method, multi-class problems are 
usually tackled by combining a number of binary SVM classifiers. For example, the max-win 
strategy suffers the problem of equal votes. Considering a k class problem and given an input 
vector xi belonging to the class l, k (k-1)/2 binary classifiers are required to be established prior to 
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an unknown input vector classification. The pattern recognized by the classifier trained from the 
samples coming from the two other classes i and j (i, j≠l) is less meaningful, and conversely, this 
affects the votes for the class l. When the feature vectors extracted from the samples belonging to 
the same class are fed to the trained SVRM, the outputs of the trained SVRM produce small 
deviations from their target values. Therefore, this property is more attractive to be used for 
solving the multi-class problems comparing to binary SVM based classifiers. In this paper, in order 
to establish a systematic scheme for diagnosing early bearing fault patterns and sizes, a new 
two-layer structure consisting of SVRMs is proposed to accurately recognize both bearing fault 
patterns and sizes. Some statistical features are first extracted from the vibration signals collected 
from a machine under different bearing health conditions. The two-layer SVRMs are then trained 
with the feature vectors by defining decision-making functions based on the regression functions 
which have continuous outputs for the two layers. Finally, bearing fault patterns and sizes are 
intelligently recognized via the nonlinear models in the two layers. The proposed method is 
applied to the fault diagnosis and health evaluation of the bearing datasets. Compared with the 
fault identification ratios obtained by conventional multi-classifiers that are constructed via binary 
SVMs and the regressive errors of an ANN analysis, the method proposed herein exhibits a more 
systematic and higher degree of accuracy. 

The rest of this paper is outlined as follow. Section 2 briefly describes the fundamental theory 
of SVRMs. The proposed two layer SVRMs structure is presented in Section 3, followed by 
experimental verification tests using bearing datasets as stated in Section 4. A comparison study 
between conventional methods and the proposed scheme is investigated in section 5. Conclusions 
are drawn in Section 6. 

 
 

2. Theoretical background of SVRMs 
 
SVRM theory is developed based on the principle of SVM and is originally used for time series 

prediction. Given a dataset 1{ , }N
i i ix y  , where xi  is an input feature vector, yi is the target value, 

and N is the total number of training samples. In ε- insensitive support vector regression, it aims 
to obtain a function f(x) which can predict the output yi within the error limit of ε. Besides, the 
estimation function f(x) can be as flat as possible to ensure a good generalization property and 
variance. This function is presented as follow 

 f x w x b                                   (1) 

where w  is the weight vector and b is a constant. The function can be obtained by solving the 
following optimization problem                           
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where i  and 
*

i  denote the slack variable, C is a positive constant which penalizes the errors 

larger than   using ε- insensitive loss function given as follow 

0,

,

if

otherwise

 


 

  


                               (3) 

Fig. 1 (a) shows the regression line, the upper and lower boundary lines. Fig. 1 (b) shows the 
ε- insensitive loss function. 

To solve the optimization problem provided by Eq. (2), the following Lagrange equation is 
required to be constructed 
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where * *, , ,i i i i    are Lagrange multipliers which have to satisfy the following constraints 

* *, , , 0,i i i i                                                    (5) 

The partial derivatives of the Lagrange equation L with respect to the primal variables 
*( , , , )i ib   have to vanish for optimality 
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By substituting Eq. (6) into Eq. (4), the dual optimization problem is given as follow 
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Fig. 1 The regression line of SVR shown in (a) and the loss function of SVR is shown in (b) 
 
 
By exploiting Karush-Kuhn-Tucker (KKT) conditions (Smola et al. 2004), the computation of 

b is done by the following formula 
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            (8) 

Then, by solving the optimization problem, a linear regression function is presented as follows 
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                            (9) 

The linear regression function is not sufficient enough to process the non-linear problem. The 
kernel function is applied here to map the input vector into a high dimensional feature space and 
thus the regressive function is derived as follow 
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            (10) 

where ( , ) ( ) ( )i iK x x x x    is a symmetric positive defined kernel function given by the 

Mercer's theorem (Minh et al. 2006). In this paper, the popular radial basis function (RBF) is 
adopted and its mathematical formula is given as 
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where   is a positive real number.
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Fig. 2 Framework of the proposed two-layer SVRMs structure for identifying bearing fault patterns and 
sizes 

 
 

3. The proposed two-layer SVRMs for bearing health evaluation 
 

The proposed two-layer structure includes two hierarchical steps: a fault pattern decision and a 
fault size evaluation. Each step is detailed in the following subsections. The framework of the 
proposed scheme is depicted in Fig. 2. 

 
3.1 Fault feature extraction 
 
With the degradation of a bearing, violent vibrations occur increasingly in the mechanical 

system and are reflected in the collected vibration signals from the machine. To prevent the 
machine’s breakdown over time and ensure production efficiency, the real-time defect size must be 
monitored so that some suitable and timely action may be taken according to the defect 
development trend. Hence, extracting the sensitive features that reflect the actual bearing health 
status is an important task for the later procedure. When a bearing defect starts to develop, it 
results in the variations of the signal amplitudes, which cause that the distribution of the signal is 
different from that under the normal health condition. Besides, the signals obtained under different 
fault conditions may exhibit differently in the aspects of signal amplitudes, impact intervals, etc. In 
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order to describe different health conditions, statistical features can be used. For example, kurtosis 
can be used to measure whether the signal is peaked or flat relative to a normal distribution, and 
the variance can be used to measure the dispersion of the signal about its mean. Skewness, crest 
factor, clearance factor, shape factor, and impulse indicator can reflect the distribution of the signal, 
while square root amplitude value and absolute mean amplitude value can measure the vibration 
amplitudes and energy of the time domain signal. Hence, these time domain statistical features are 
extracted (Wang et al. 2011). For some types of bearings, such as the tapered rolling bearing 
whose contact angles are smaller than 90°, when it operates under a pure axial load, time domain 
statistical features may be approximately identical for different health conditions. In order to solve 
the above problem, some statistical features should be extracted from frequency domain. The 
spectral mean, spectral variance, and frequency center can satisfactorily measure the vibration 
energy, the convergence of spectrum power, the locations of the main frequency components, 
which have different values for different fault patterns (Lei et al. 2008). The time-domain and 
frequency-domain features are summarized in Table 1. 
 
Table 1 The time-domain and frequency-domain statistical features 
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where Fk is a frequency spectrum, K is the number of frequency spectrum lines, fk is the frequency value 
at the kth frequency spectrum line. 

459



 
 
 
 
 
 

Changqing Shen, Dong Wang, Yongbin Liu, Fanrang Kong and Peter W. Tse 

 

3.2 Using two-layer SVRMs for accurate bearing fault diagnosis 
 
As previously mentioned, the challenge of an effective bearing fault diagnosis method requires 

recognizing not only the fault patterns but also the defect sizes to track the bearing’s health status. 
Hence, it is important to take timely maintenance actions. The two-layer SVRMs structure is 
presented here to solve this problem. 

As Fig. 2 shows, the first layer aims to identify bearing fault patterns, which indicate a pattern 
recognition or classification problem. In this study, a new classification strategy known as the 
generic support vector regressive classifier is proposed. The SVR has great potential for 
constructing nonlinear relationships between the input vectors and output values. The fault feature 
vectors of samples belonging to the same class should have similar values and thus produce 
outputs with a small degree of variance in the SVR model. Define the class labels as 1,2,…,C for a 

C class problem, and construct a dataset , where  is the input feature vector, 

 is the target value, and N is the total number of training samples. For a sample 

of the ith class, whose target value is i during the support vector regressive classifier construction,
 the output of the SVR model should produce a smaller deviation from i than that of a different 

class. According to the foregoing illustration, the tested sample belongs to the class m if m satisfies 
the following proposed decision-making function 

2

2* 2

1,2,...,
1

arg min ( ( )e )
ix Xn

i i
m M

i

m b 
 




  
  

                  (12) 

where M denotes the condition number and X is the fault feature vector for the testing sample. 

After a fault pattern is decided in the first layer, the sample is then fed to its related fault size 

recognition model in the second layer. The second layer of a two-layer SVRMs structure focuses 

on recognizing the fault size based on the fault pattern recognized in the first layer. Given dataset 

{xi,yi}, i=1,2,…N, where xi is the input feature vector extracted from the vibration signals under 

different fault sizes for a certain bearing fault, yi is the actual bearing fault size and N is the total 

number of training samples. By solving the mathematical problem illustrated in Eq. (2), a support 

vector regressive model that constructs a nonlinear relationship between the signal features and 

related bearing fault size is trained and established for further processing. The fault size nonlinear 

analysis function is described as follows. 
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size i i
i

f x b 
 
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                          (13) 

 
3.3 Two-layer SVRMs parameter selection and optimization  
 
To better train the previously introduced two-layer SVRMs, three key parameters, C,  , and 

1{ , }N
i i ix y  ix

{1,2,..., }iy C
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 , should be properly determined. To obtain the optimal parameters, the numerical ranges of these 
parameters are first decided. The parameters are then iteratively selected via grid search, and the 
two-layer SVRMs are constructed according to the proposed method based on the SVR theory. In 
the first layer, the model output for the sample should be as close to its practical fault label value 
as possible, or it will be misclassified to the wrong fault pattern according to Eq. (12). Hence, it is 
hoped that in the training process of the first layer, the model outputs should be as close to their 
target values as possible. Similarly, the model output should be as close to it practical fault size as 
possible in the second layer. Consequently, to evaluate the performance of the constructed models, 
the normalized root mean square error (RMSE) of the predicted results based on the popular 
cross-validation scheme is adopted as an evaluative criterion in this study, as it is capable of 
evaluating the goodness of fit related to the actual bearing fault label values and sizes. Finally, the 
intelligent diagnosis model with the least RMSE for the outputs is applied for further analysis. The 
optimization strategy is presented in Fig. 3. 
 

 

Fig. 3 Flow chart of the two-layer SVRMs parameter selection and optimization 
 
 

4. Validation of the proposed method 
 

To verify the effectiveness of the proposed method, the experimental bearing fault data 
provided by Case Western Reserve University is analyzed here (Loparo 2012). The data were 
collected from a test rig, as shown in Fig. 4. The experimental setup mainly included a 2 hp motor 
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(left), a torque transducer, and a dynamometer (right). The motor shaft was supported by 
6205-2RS JEM SKF type bearings. The bearings’ inner race, outer race, and rolling elements were 
artificially seeded by a single point fault using electro-discharge machining, respectively. For the 
faults localized to the inner race, rolling elements, and outer race, the accelerometers were used to 
sample vibration signals at 12k Hz and were installed at the 12 o’clock, 12 o’clock, and 6 o’clock 
positions at the fan end, respectively. The data samples obtained from the different bearing health 
conditions are shown in Fig. 5. Two datasets of signals including health and three different fault 
conditions are employed here for analysis. As Table 2 shows, for each dataset, in the first layer of 
the two-layer SVRMs, 180 samples for each condition were acquired for training and testing, 90 
samples were used for training, and the remaining 90 samples were used for testing. In the second 
layer, there were 30 training samples and 30 testing samples for each fault severity. In the first 
layer, the inner race, outer race, ball fault, and bearing health target values were artificially set at 1, 
2, 3, and 4, respectively, during the training while the actual fault sizes were determined as the 
target values in the second layer. 

 
 

Fig. 4 Description of the experimental platform 
 

Fig. 5 Data samples obtained from different bearing health conditions: (a) the normal bearing signal, (b) 
the bearing inner race fault signal, (c) the bearing outer race fault signal, and (d) the bearing ball 
fault signal 
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Table 2 Description of the bearing data for each dataset 

Health condition 
Defect size 

(inches) 

Training 

samples 

Testing 

samples

Target values for two-layer SVRMs 

The first layer The second layer 

Inner race fault 

0.007 30 30 

1 

0.007 

0.014 30 30 0.014 

0.021 30 30    0.021 

Outer race fault 

0.007 30 30 

2 

0.007 

0.014 30 30 0.014 

0.021 30 30    0.021 

Ball fault 

0.007 30 30 

3 

0.007 

0.014 30 30 0.014 

0.021 30 30    0.021 

Health - 90 90 4 - 

 
 

The two bearing datasets were processed according to the flowchart of the proposed intelligent 
fault diagnosis scheme illustrated in Fig. 2. In the first layer of the two-layer SVRMs, the 12 
statistical features introduced in Table 1 were first extracted from each sample, producing 360 
feature vectors for the four bearing health conditions. With the pre-defined target values, the 
intelligent nonlinear model, which constructs the relationship between the feature vector and 
bearing fault pattern, was trained after a parameter grid search and cross-validation. C={20, 21,…, 
27},  ={20, 20.1,…, 22} and  ={0.01, 0.02,…, 0.1} were selected as the numerical ranges for the 
parameters grid search and cross-validation. 

Fig. 6 to Fig. 9 show the training and testing results on the bearings’ inner race, outer race, ball 
faults, and normal pattern recognitions for dataset one, respectively. According to the proposed 
decision-making function shown in Eq. (12), the sample was classified to the fault category whose 
pre-defined target value was nearest in linear distance to the sample predicted output value. Hence, 
as indicated in these figures, one sample was misclassified in the testing process for the inner race 
fault samples because its output value in the first layer was nearer to label 2, representing the 
pattern value for an outer race fault. All of the training samples were correctly attributed to the 
appropriate fault categories. The similar training and testing processes were conducted for dataset 
two. The accuracy of the bearing fault recognition for the two datasets is summarized in Table 3. It 
can be concluded that the proposed SVR classification method achieved a great performance in the 
first layer of the two-layer SVRMs. 

In the second layer of the two-layer SVRMs, the samples from three different fault severities 
collected under each condition, as shown in Table 2, were used for model training and testing. Fig. 
10 shows the training and testing results for the inner race fault samples according to the proposed 
fault size nonlinear analysis function in Eq. (13). The predicted inner race fault size values stayed 
in good accordance with the actual values and training results. The maximum error for the 
predicted result was less than 0.003 inch. 
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Fig. 6 The (a) training results and (b) testing results in the first layer of the two-layer SVRMs for the 
bearings’ inner race fault pattern recognitions using dataset one 

 

Fig. 7 The (a) training results and (b) testing results in the first layer of the two-layer SVRMs for the 
bearings’ outer race fault pattern recognitions using dataset one 

 

Fig. 8 The (a) training results and (b) testing results in the first layer of the two-layer SVRMs for the 
bearings’ ball fault pattern recognitions using dataset one 

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

Sample

La
be

l v
al

ue

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

Sample

La
be

l v
al

ue

 

 

Actual label

Predicted value (a)

(b)

0 10 20 30 40 50 60 70 80 90
1

1.5

2

2.5

3

Sample

La
be

l v
al

ue

0 10 20 30 40 50 60 70 80 90
1

1.5

2

2.5

3

Sample

La
be

l v
al

ue

 

 

Actual label

Predicted value (a)

(b)

0 10 20 30 40 50 60 70 80 90
2

2.5

3

3.5

4

Sample

La
be

l v
al

ue

0 10 20 30 40 50 60 70 80 90
2

2.5

3

3.5

4

Sample

La
be

l v
al

ue

 

 

Actual label

Predicted value (a)

(b)

464



 
 
 
 
 
 

Recognition of rolling bearing fault patterns and sizes based on two-layer… 

 

 

Fig. 9 The (a) training results and (b) testing results in the first layer of the two-layer SVRMs for the 
bearings’ normal pattern recognitions using dataset one 

 

Fig. 10 The predicted inner race fault sizes for the (a) training sample results and (b) testing sample results 
in the second layer of the two-layer SVRMs using dataset one 

 
 
Table 3 Bearing fault recognition results in the first layer of the two-layer SVRMsu 

Dataset I II 
Health condition Training accuracy Testing accuracy Training accuracy Testing accuracy 
Inner race fault 100% 98.89% 100% 100% 
Outer race fault 100% 100% 100% 100% 

Ball fault 100% 100% 100% 98.89% 
Health 100% 100% 100% 100% 

Overall accuracy 100% 99.72% 100% 99.72% 
 
 
Fig. 11 similarly illustrates the results of the outer race fault size prediction. The predicted fault 

size values matched well with the actual fault size values. 
Fig. 12 presents the results for the ball fault size prediction. As the most complicated fault 
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pattern, the ball faults exhibited more complex vibration signals for a defective ball’s stochastic 
motion, and thus the relationship between the feature vector and actual fault size was hard to 
establish precisely. However, in the second layer of the proposed two-layer SVRMs, the maximum 
error of the predicted fault size values kept within 0.004 inch, although the predicted fault sizes 
fluctuated more violently to the actual fault sizes than those of the inner race and outer race faults. 

As previously analyzed for dataset one, the proposed two-layer SVRMs structure acts as a 
systematic bearing fault diagnosis scheme that identifies both a bearing’s fault size and the fault 
severity. Meanwhile, through validation of the experimental bearing dataset, the proposed method 
achieved a satisfactory performance. The results related to the identification of the fault sizes using 
dataset two will be reported in Section 5 for comparison purposes. In order to shorten the length of 
the results obtained by the proposed method using dataset two, only the final accuracy will be 
reported. 

 
 

Fig. 11 The predicted outer race fault sizes for the (a) training sample results and (b) testing sample results 
in the second layer of the two-layer SVRMs using dataset one 

 

Fig. 12 The predicted ball fault sizes for the (a) training sample results and (b) testing sample results in 
the second layer of the two-layer SVRMs using dataset one 
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5. Comparisons with other SVM and ANN methods 
 

The proposed two-layer SVRMs structure acts as a systematic scheme for diagnosing bearing 
faults with high accuracy. To further prove its superiority over other methods, comparisons were 
conducted in the first and second layers, respectively. 

In the traditional SVM method, the max-win strategy is considered a powerful strategy in 
dealing with actual applications due to its fast training speeds and good classification accuracy 
relative to other strategies (Zhao et al. 2008). The feed-forward network, which is a two-layer 
perception and the most popular neural network, was adopted in this study for further comparison. 
Via the back propagation algorithm, the feed-forward network iteratively changes its weights to 
minimize the RMSE using the gradient search technique (Rafiee et al. 2007). This study used the 
sigmoid transfer function, and the number of nodes in the hidden layer was determined through a 
linear search method. Through trial and error using the data in these two cases, a feed-forward 
network was constructed when the number of nodes in the hidden layer was set as 20. Tables 4 and 
5 describe the recognition accuracy obtained by the traditional SVM and ANN methods for the 
two datasets, respectively. 

According to the results listed in Tables 4 and 5, the proposed method in the first layer was 
more accurate than the traditional SVM and ANN methods. 

The ANN method was similarly used to replace the method in the second layer of the two-layer 
SVRMs method proposed in this study. The samples with different fault severities under each fault 
condition were used for ANN model training and testing. 

Fig. 13 to Fig. 15 show the bearing fault size prediction results obtained by the ANN method 
for dataset one. The second layer of the proposed two-layer SVRMs clearly performed better than 
the ANN method. The results shown in Fig. 13 to Fig. 15 fluctuated violently and produced larger 
errors than those shown in Fig. 10 to Fig. 12. 

 
 

Table 4 Bearing fault recognition results obtained by the traditional SVM method 

Dataset I II 

Health condition 
Training 
accuracy 

Testing accuracy Training accuracy Testing accuracy 

Inner race fault 98.89% 100% 96.67% 90% 
Outer race fault 100% 100% 100% 86.67% 

Ball fault 92.22% 86.67% 93.33% 92.22% 
Health 92.22% 86.67% 100% 100% 

Overall accuracy 95.56% 93.33% 97.5% 92.22% 
 

 
Table 5 Bearing fault recognition results obtained by the ANN method 

Dataset I II 

Health condition 
Training 
accuracy 

Testing accuracy Training accuracy Testing accuracy 

Inner race fault 93.33% 96.67% 90% 93.33% 
Outer race fault 97.78% 100% 97.78% 93.33% 

Ball fault 90% 84.44% 93.33% 86.67% 
Health 100% 100% 100% 100% 

Overall accuracy 95.28% 95.28% 95.28% 93.33% 
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Fig. 13 The predicted inner race fault sizes obtained by the ANN method for the (a) training samples and 
(b) testing samples using dataset one 

 

Fig. 14 The predicted outer race fault sizes obtained by the ANN method for the (a) training samples and 
(b) testing samples using dataset one 

 

Fig. 15 The predicted ball fault sizes obtained by the ANN method for the (a) training samples and (b) 
testing samples using dataset one 
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Table 6 The maximum errors for the results obtained by the two-layer SVRMs and ANN methods 

Dataset Fault pattern Inner race fault Outer race fault Ball fault 

 Methods 
two-layer 
SVRMs 

ANN 
based 

two-layer 
SVRMs 

ANN 
based 

two-layer 
SVRMs 

ANN 
based 

I 
Training 0.0003 0.0014 0.0003 0.0014 0.0024 0.0039
Testing 0.0006 0.0017 0.0007 0.0018 0.0037 0.0054

II 
Training 0.0007 0.0011 0.0003 0.0016 0.0013 0.0022
Testing 0.0022 0.0020 0.0013 0.0017 0.0038 0.0054

 
Statistical indicator was used to quantify the accuracy of the second layer of the two-layer 

SVRMs for the two datasets, respectively. The maximum error, which evaluates the maximum 
deviation from the actual fault size, was defined as 

actual predictedMaximum error max( )f f                     (14) 

As shown in Table 6, the values of these indicators obtained in the second layer of the 
two-layer SVRMs were better than those obtained by the ANN method in the two dataset studies. 
The results once again proved the superiority of the proposed method. 

 
 

6. Conclusions 
 

This study proposed a new two-layer structure consisting of SVRMs. Compared with the 
traditional classification methods reported in many other studies, this study not only aimed to 
identify different bearing fault patterns, but also evaluated their deteriorating health conditions. 
The proposed scheme was more meaningful in practice, as the entire useful life of a bearing went 
through a deterioration process before its functional failure occurred. According to the 
aforementioned illustration, the proposed scheme involved extracting representative statistical 
parameters from the vibration signals, identifying the bearing health condition in the first layer, 
and predicting the fault size in the second layer once a fault pattern was recognized in the first 
layer. The proposed decision-making function for bearing fault pattern recognition in the first layer 
overcame the drawback of the equal votes, which occurred in the max-win strategy SVM method. 
In addition, the two-layer SVRMs had well-defined formulations and kept consistent with the 
mathematical theory. Hence, the two-layer SVRMs method was superior to the traditional SVM 
method and better at generalizing than the ANN method, as demonstrated by both theoretical 
analysis and experimental dataset validation. 

 
 

Acknowledgements 
 

The work described in this paper was partly supported by a grant from the Research Grants 
Council of the Hong Kong Special Administrative Region, China (Project No. CityU 122011), a 
Natural Science Foundation of China (Grant No. 51075379) and a Natural Science Major Project 
of Education Department of Anhui Province (Grant No. KJ2013A010). The authors also would 
like to appreciate two anonymous reviewers for their constructive and valuable comments for 
improving this paper. 

469



 
 
 
 
 
 

Changqing Shen, Dong Wang, Yongbin Liu, Fanrang Kong and Peter W. Tse 

 

References 
 

Caesarendra, W., Widodo, A. and Yang, B.S. (2011), “Combination of probability approach and support 
vector machine towards machine health prognostics”, Probabilist. Eng. Mech., 26(2), 165-73. 

Cai, G.G., Chen, X.F., Li, B., Chen, B.J. and He, Z.J. (2012), “Operation reliability assessment for cutting 
tools by applying a proportional covariate model to condition monitoring information”, Sensors, 12(10), 
12964-12987. 

Di Maio, F., Hu, J., Tse, P., Pecht, M., Tsui, K. and Zio, E. (2011), “Ensemble-approaches for clustering 
health status of oil sand pumps”, Expert Syst. Appl., 39(5), 4847-4859. 

Gryllias,K.C., and Antoniadis, I.A. (2012), “A support vector machine approach based on physical model 
training for rolling element bearing fault detection in industrial environments”, Eng. Apl. Artif. Intel., 
25(2), 326-344. 

Heng, A., Zhang, S., Tan, C.C. and Mathew, J. (2009), “Rotating machinery prognostics: State of the art, 
challenges and opportunities”, Mech. Syst. Signal Pr., 23(3), 724-739. 

Hu, Q., He, Z.J., Zhang, Z.S. and Zi, Y.Y. (2007), “Fault diagnosis of rotating machinery based on improved 
wavelet package transform and SVMS ensemble”, Mech. Syst. Signal Pr., 21(2), 688-705. 

Huang, N.E., Shen, Z. and Long, S.R. (1998), “The empirical mode decomposition and the Hilbert spectrum 
for nonlinear and non-stationary time series analysis”, Proceedings of the Royal Society of London. 

Jiang, H. and He, W.W. (2012), “Grey relational grade in local support vector regression for financial time 
series prediction”, Expert Syst. Appl., 39(3), 2256-2262. 

Jiang, Q., Li, T., Yao, Y. and Cai, J.H. (2012), “Study of rolling bearing SVM pattern recognition based on 
correlation dimension of IMF”, Proceedings of the 2nd International Conference on Intelligent System 
Design and Engineering Application (ISDEA). 

Konar, P. and Chattopadhyay, P. (2011), “Bearing fault detection of induction motor using wavelet and 
Support Vector Machines (SVMs)”, Appl. Soft. Comput., 11(6), 4203-4211. 

Lei, Y.G., He, Z.J., Zi, Y.Y. and Chen, X.F. (2008), “New clustering algorithm-based fault diagnosis using 
compensation distance evaluation technique”, Mech. Syst. Signal Proc., 22(2), 419-435. 

Loparo, K.A. (2012), Case western reserve university bearing data center: 
http://csegroups.case.edu/bearingdatacenter/home. 

Minh, H.Q., Niyogi, P. and Yao, Y. (2006), “Mercer’s theorem, feature maps, and smoothing”, Proceedings 
of the 19th Annual Conference on Learning Theory, Pittsburgh, United states. 

Rafiee, J., Arvani, F., Harifi, A. and Sadeghi, M.H. (2007), “Intelligent condition monitoring of a gearbox 
using artificial neural network”, Mech. Syst. Signal Pr., 21(4), 1746-1754. 

Shen, Z.J., He, Z.J., Chen, X.F., Sun, C. and Liu, Z.W. (2012), “A monotonic degradation assessment index 
of rolling bearings using fuzzy support vector data description and running time”, Sensors, 12(8), 
10109-10135. 

Smola, A.J. and Schölkopf, B. (2004), “A tutorial on support vector regression”, Stat. Comput., 14(3), 
199-222. 

Vapnik, V.N. (1995), The nature of statistical learning theory, Springer, Berlin. 
Wang, D., Miao, Q. and Kang, R. (2009), “Robust health evaluation of gearbox subject to tooth failure with 

wavelet decomposition”, J. Sound Vib., 324(3-5), 1141-1157. 
Wang, D., Tse, P., Guo, W. and Miao, Q. (2011), “Support vector data description for fusion of multiple 

health indicators for enhancing gearbox fault diagnosis and prognosis”, Meas. Sci. Technol., 22(2), 
025102. 

Wang, S.B., Huang, W.G. and Zhu, Z.K. (2011), “Transient modeling and parameter identification based on 
wavelet and correlation filtering for rotating machine fault diagnosis”, Mech. Syst. Signal Pr., 25(4), 
1299-1320. 

Widodo, A. and Yang, B.S. (2007), “Support vector machine in machine condition monitoring and fault 
diagnosis”, Mech. Syst. Signal Pr., 21(6), 2560-2574. 

Wong, W.T., and Hsu, S.H. (2006), “Application of SVM and ANN for image retrieval”, Eur. J. Oper. Res., 

470



 
 
 
 
 
 

Recognition of rolling bearing fault patterns and sizes based on two-layer… 

 

173(3), 938-950. 
Yan, R.Q. and Gao, R. (2009), “Base wavelet selection for bearing vibration signal analysis”, Int. J. Wavelets 

Multiresolut. Inf. Process., 7(4), 411-426. 
Zhao, S.L. and Zhang, Y.C. (2008), “SVM classifier based fault diagnosis of the satellite attitude control 

system”, Proceedings of the 2008 International Conference on Intelligent Computation Technology and 
Automation. 

Zhu, D.C., Feng, Y.P., Chen, Q. and Cai, J.B. (2010), “Image recognition technology in rotating machinery 
fault diagnosis based on artificial immune”, Smart. Struct. Syst., 6(4), 389-403. 

 
 
CY 

471




