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Abstract.  In this paper, a novel PARAllel FACtor (PARAFAC) decomposition based Blind Source 
Separation (BSS) algorithm is proposed for modal identification of structures equipped with tuned mass 
dampers. Tuned mass dampers (TMDs) are extremely effective vibration absorbers in tall flexible structures, 
but prone to get de-tuned due to accidental changes in structural properties, alteration in operating conditions, 
and incorrect design forecasts. Presence of closely spaced modes in structures coupled with TMDs renders 
output-only modal identification difficult. Over the last decade, second-order BSS algorithms have shown 
significant promise in the area of ambient modal identification. These methods employ joint diagonalization 
of covariance matrices of measurements to estimate the mixing matrix (mode shape coefficients) and 
sources (modal responses). Recently, PARAFAC BSS model has evolved as a powerful multi-linear algebra 
tool for decomposing an n

th 
order tensor into a number of rank-1 tensors. This method is utilized in the 

context of modal identification in the present study. Covariance matrices of measurements at several lags are 
used to form a 3

rd
 order tensor and then PARAFAC decomposition is employed to obtain the desired number 

of components, comprising of modal responses and the mixing matrix. The strong uniqueness properties of 
PARAFAC models enable direct source separation with fine spectral resolution even in cases where the 
number of sensor observations is less compared to the number of target modes, i.e., the underdetermined 
case. This capability is exploited to separate closely spaced modes of the TMDs using partial measurements, 
and subsequently to estimate modal parameters. The proposed method is validated using extensive 
numerical studies comprising of multi-degree-of-freedom simulation models equipped with TMDs, as well 
as with an experimental set-up. 
 

Keywords:  modal identification; blind source separation; parallel factor decomposition; tuned-mass 

damper; MTMD 

 
 
1. Introduction 
 

Blind Source Separation (BSS) methods have gained acceptance as a powerful means of 

ambient modal identification applicable to a large class of structural mode estimation problems 

(Antoni 2005, Hazra et al. 2010, Hazra et al. 2012, Sadhu et al. 2011, Sadhu et al. 2012, Sadhu et 
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al. 2012, Yang and Nagarajaiah 2012, Sadhu and Narasimhan 2013, Abazarsa et al. 2013). A major 

application where traditional BSS methods have not been explored fully is for structural health 

monitoring of flexible structures equipped with tuned mass dampers (TMD). TMDs are passive 

vibration absorbers that suppress unwanted vibrations in flexible structures. Their dynamics and 

design (often called tuning) are well understood, e.g., (DenHartog 1956, Warburton 1982, Rana 

and Soong 1998, Gerges and Vickery 2005). Detuning, resulting from an alteration of the 

properties of the primary structure, deterioration of the TMD itself, in-correct design forecasts, etc., 

lead to a significant loss in the TMD’s performance. Multiple TMDs (MTMDs) (Abe and Fujino 

1994, Chen and Wu 2003, Lee et al. 2006), semi-active, and adaptive TMDs (Nagarajaiah 2009, 

Roffel et al. 2011, Roffel et al. 2013) are examples of control devices designed to overcome the 

problem of detuning in TMDs (Nagarajaiah and Varadarajan 2005, Kareem and Kline 1995). In 

order to assess the magnitude of detuning and thereby restore their optimal functionality, it is 

important to estimate the modal properties to which the TMD is attached to, and subsequently 

compare its as-built condition to the optimal performance (Hazra et al. 2010). However, many 

existing output-only algorithms encounter difficulties in achieving this objective, primarily due to 

the presence of closely spaced modes accompanied by a relatively high amount of damping in the 

fundamental mode(s) introduced by the TMD (Hazra et al. 2010).  

Second-order Blind Identification (SOBI) (Belouchrani et al. 1997) and Independent 

Component Analysis (ICA) (Hyvarinen 1999) are the most extensively applied BSS methods for 

modal identification. In their basic form, both SOBI and ICA aim to estimate the modes and modal 

responses from a set of measurements without the knowledge of sources. This is called the 

static-mixtures case and forms one of the key assumptions in all BSS methods. As well, most BSS 

applications assume that the number of measurements is equal to, or larger than the number of 

sources, which are modal responses in the context of ambient modal identification, to be estimated. 

Recently the authors have developed new algorithms based on SOBI to handle higher damping 

(Hazra et al. 2010) (also called MCC method), second-order nonstationarity due to earthquake 

excitations (Sadhu et al. 2012), when low energy higher modes (Hazra et al. 2010) and 

narrowband excitation (Sadhu and Narasimhan 2013) are present, and when the number of sensors 

are less than the number of sources, i.e., underdetermined mixtures (Hazra et al. 2012, Sadhu et al. 

2011, Sadhu et al. 2012).  

Although the issue of identification in the context of TMDs has been dealt with in the literature 

(Lin et al. 2001, Hazra et al. 2010, Cho et al. 2012), a general BSS algorithm dealing with 

problems such as MTMDs and partial sensor measurements in noisy environments (in 

TMD-equipped structures) has not yet been presented. To the knowledge of the authors, 

identification of structures with MTMDs still remains an open problem. In their previous work 

(Hazra et al. 2010), the authors used a signal processing tool called empirical mode decomposition 

(EMD) to extract the intrinsic mode functions (IMFs) from measurements corresponding to the 

closely spaced modes. The IMFs are then used to estimate of the mode shape matrix using iterative 

and/or non-iterative procedures within the framework of MCC (Hazra et al. 2012, Hazra et al. 

2010). However, this method is susceptible to mode-mixing due to EMD and the need of prior 

knowledge regarding the spectral characteristics.  

PARAllel FACtor (PARAFAC) decomposition (Lathauwer 1997, Lathauwer and Castaing 2008) 

is a higher-order tensor modeling and decomposition tool of BSS based on multi-linear algebra 

with strong uniqueness properties. This tool has shown significant promise in performing source 

separation even with sparse measurements in a number of applications (Smilde et al. 2004). 

Several forms of PARAFAC decomposition exist in the literature (Kruskal 1977, Stegeman et al. 

258



 

 

 

 

 

 

Ambient modal identification of structures equipped with tuned mass dampers using parallel factor… 

2006, Lathauwer and Castaing 2008), and our ability to harness its potential depends on the 

mathematical framework of the underlying problem at hand. For the case of ambient modal 

identification, PARAFAC decomposition can be utilized by assuming that the covariance matrices 

of vibration measurements at several lags can be formulated as a third-order tensor, which allows 

us to use PARAFAC decomposition as a powerful tool in blind modal identification. In a recent 

study, PARAFAC decomposition is subsequently employed in conjunction with Bayesian model 

updating method (Abazarsa et al. 2013) to estimate the modal parameters of structures. However, 

the separability of closely-spaced modes, low-energy modes and noise robustness of PARAFAC 

method was not studied in the aforementioned work. The novelty of the present work lies in 

overcoming the robustness issues and inaccuracies in identifying closely-spaced sources due to the 

presence of single or multiple TMDs in linear structures, where traditional output-only modal 

identification methods do not perform well (Lin et al. 2001, Hazra et al. 2010, Hazra et al. 2010, 

Cho et al. 2012).  

The paper is organized as follows. The problem statement is presented first followed by a brief 

background on TMDs and PARAFAC. The general problem formulation of ambient modal 

identification is then presented in a BSS-PARAFAC framework. Finally, the identification results 

of simulation and experimental models using the proposed method are presented, followed by the 

main conclusions of this study. 

 

 

2. Background  

 
Before proceeding to the algorithmic details for identification, a brief background on three key 

aspects is first presented. They are: (i) TMD dynamics, (ii) MCC-EMD method, and (iii) 

PARAFAC decomposition. Item (ii) has previously been published by the authors separately 

(Hazra et al. 2012); only the key aspects are presented in this section. This method is provided to 

compare the performance of the method proposed in this paper with a method previously presented 

by the authors based on time-frequency decompositions.  

 

 

 

Fig. 1 Single and multiple TMDs 

259



 

 

 

 

 

 

A. Sadhu, B. Hazra and S. Narasimhan 

2.1 Dynamics of a structure with TMD  

 
In order to understand the mechanics of TMD action, it is instructive to observe the equations 

of motion for a two degree-of-freedom (DOF) structural system excited by a stochastic disturbance, 

representing, say, wind. The equations of motion for the system in Fig. 1 can be written as  

𝑀𝑋 + 𝐶 𝑋 + 𝐾 𝑋 −   𝑘  𝑥 − 𝑋 + 𝑐  𝑥 − 𝑋   = 𝑤 

𝑚𝑥 +  𝑘  𝑥 − 𝑋𝑗  + 𝑐  𝑥 − 𝑋𝑗
   = 0                       (1) 

where M, C, K are the mass, damping, and stiffness coefficients of the primary structure, and m, c, 

k are the mass, damping, and stiffness coefficients of the TMD. w is the external excitation source, 

which is assumed to be Gaussian and white for the purposes of this study. Of particular interest is 

the case of TMD for a general N-DOF primary structure. The equations of motion for the i
th
 mode 

when the TMD is present in the j
th
 floor level can be written as (assuming a proportionally damped 

system) 

𝑀𝑖𝑦 𝑖 + 𝐶𝑖  𝑦 𝑖 + 𝐾𝑖  𝑦𝑖 −  𝜑𝑖𝑗  𝑘  𝑥 − 𝑋𝑗  + 𝑐  𝑥 − 𝑋𝑗
   = 𝑤𝑖  

𝑚𝑥 +  𝑘  𝑥 − 𝑋𝑗  + 𝑐  𝑥 − 𝑋𝑗
   = 0                      (2) 

where, the quantities 𝑀𝑖 , 𝐶𝑖 , 𝐾𝑖 , 𝑤𝑖   should be interpreted as corresponding to i
th
 mode. From Eqs. 

(1) and (2), one can readily observe that as long as 𝜑𝑖𝑗  is normalized such that its value is 1 for 

the j
th
 location, the TMD design quantities obtained using Eq. (1) can be used directly to design a 

TMD corresponding to i
th
 mode (Rana and Soong 1998).  

The optimal TMD parameters are specified by its optimum mass ratio (µopt), optimum 

frequency ratio (fopt), and optimum damping ratio (ξopt). These quantities represent the ratio of the 

TMD parameters to the structure mass, modal frequency (to which the TMD is tuned to) and 

damping, respectively. Generally, µopt is assumed to be the as-built system for 

condition-assessment purposes, i.e., µopt=µ , the mass ratio of the existing structure. fopt and ξopt are 

determined as a function of the mass ratio and primary structure damping ratio (ζp) using 

documented values (Rana and Soong 1998, Warburton 1982, Gerges and Vickery 2005, Lin et al. 

2001, Hazra et al. 2010). In most cases, the optimal design parameters of TMD that are of practical 

interest are the TMD stiffness and damping kopt and copt, respectively. Detuning of TMDs is mainly 

reflected by a reduction in the value of the TMD stiffness kTMD. Thus, a parameter α is used to vary 

the TMD stiffness of the controlled system (i.e., kTMD = αkopt) to quantify the level of de-tuning. 

α=1 implies perfectly tuned condition and values less than 1 implies a detuned condition.  

Multi-tuned mass dampers (MTMDs) are an extension of TMDs. They aim to improve the 

passive control performance of traditional TMDs either by providing optimal performance around 

an expected value of modal frequency (Abe and Fujino 1994, Zuo 2009), or in reducing the 

responses in more than one structural mode by placing them at different locations within the 

structure (Rana and Soong 1998). To tune a MTMD, the following design procedure is generally 

adopted. First, a target mass ratio contributed by n TMDs is assumed. The individual distribution 

of TMD masses is arrived at by estimating the peak response ratios at the corresponding locations 

to which the TMDs are to be placed. This is generally carried out using broadband excitations to 

the system. One should note that the dynamics of structural responses contain as many pairs of 

closely spaced modes as the number of TMDs.  
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2.2 Modal identification of a TMD-controlled structure using MCC-EMD  

 
The second-order BSS techniques (e.g., MCC method) (Hazra et al. 2010, Hazra et al. 2012) 

are unable to resolve sources with close spectral content. In order to overcome this issue, the 

authors presented an algorithm where the powerful signal processing technique, EMD, is 

integrated within the framework of the MCC method, called the MCC-EMD method (Hazra et al. 

2010, Hazra et al. 2012). EMD is a technique that reduces a signal into Intrinsic Mode Functions 

(IMF) that admits a Hilbert transform (Huang et al. 1998). For Multi-Degrees-of-Freedom (MDOF) 

systems, the IMFs extracted from the free-vibration responses can be regarded as the normal 

modes of vibration (Yang et al. 2003). The key idea of the MCC-EMD algorithm (for the case of a 

single TMD) is to separate the IMFs corresponding to the closely spaced modes using EMD, 

subsequently separating others using the standard MCC method, finally integrating the results.  

The MCC method (Hazra et al. 2010) is an extension of the SOBI method (Belouchrani et al. 

1997), which is a popular tool for BSS. For the case of static mixtures, the problem statement of 

BSS is given by 

𝐱 𝑘 = A𝐬 𝑘                                 (3) 

In Eq. (3), A= [aij] is the instantaneous mixing matrix, s represents the sources. BSS methods seek 

A and s using the information contained in x. Hence, the term blind is commonly used. Identifying 

n sources or less when the matrix A is of rank n, is well-known (Kerschen et al. 2007, Hazra et al. 

2010, Hazra and Narasimhan 2010).  

The relationship of the MCC method with the vibration modes of a structure can be understood 

by examining the underlying mathematical formulation of a linear dynamic system. Consider the 

equations of motion for a MDOF system under the action of an excitation force vector F(t). If F(t) 

is assumed to be uncorrelated with one another and white, the correlation of responses x(t) can be 

expressed in the form of Eq. 3 by the use of NExT (James et al. 1995)  

𝑅𝑖𝑗𝑘  𝑇 = 𝐸 𝑥𝑖𝑗  𝑡 + 𝑇 𝑥𝑗𝑘  𝑡   ⇔ 𝐫 = 𝐑 𝑇 = 𝐀𝑟𝐬𝑟                (4) 

The vector r contains the correlation of responses, 𝐬𝑟  is the modal response, and Ar is a matrix 

containing the normal modes of the system (Hazra et al. 2010). In the above form, it is easy to 

recognize the similarity between Eqs. (3) and (4), provided the correlation of the responses r is 

used in lieu of x.  

The key step in MCC is the simultaneous diagonalization of two covariance matrices and 

evaluated at zero time-lag and at some non-zero time-lag p  

 R𝑟 0 = 𝐸 r 𝑘 r𝑇 𝑘  = 𝐀𝑟R𝑠 0 𝐀𝑟
𝑇 

     R𝑟 𝑝 = 𝐸 r 𝑘 r𝑇 𝑘 − 𝑝  = 𝐀𝑟R𝑠 𝑝 𝐀𝑟
𝑇                  (5) 

where, R𝑠 𝑝 = 𝐸 s 𝑘 s𝑇 𝑘 − 𝑝  . With these basic definitions, the key steps are enumerated as 

follows (please refer to (Hazra et al. 2010) for details): 

 Calculate the correlations of the responses to obtain the vector r. 

 Obtain the whitened vector r  𝑘 = Qr 𝑘 = Λr

−
1

2Vr
T𝐫 k  (where 𝐑 r 0  =𝐕𝐫 ΛVr

T) 

 Divide r(k) into L non-overlapping blocks (time windows 𝑇𝑖 , i = 1, 2, 3, … . L) and estimate 

the set of covariance matrices 𝐑 𝑟 𝑇𝑖 , 𝑝𝑗   for 𝑖 = 1, 2, 3, … . L and 𝑗 = 1, 2, 3, … . 𝑙 

 Find a unitary matrix that approximately diagonalizes the set of L matrices𝐕𝐫∀ 𝐑 𝑟 𝑝  at 
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each lag, p, using joint approximate diagonalization.  

 The mixing matrix is computed as 𝐀 𝑟 = Q−1V𝑥  

 

In the MCC-EMD method, the first 2 closely spaced IMFs (Γ𝑖  𝑖 = 1, 2) of the structure 

(corresponding to a TMD tuned to the first mode) are extracted using EMD according to  

𝑥 =   Γ𝑖 𝑡 + 𝜀 2
𝑖=1 (𝑡)                           (6) 

Then, the auto-correlation of Γ1 and Γ2 for all time-lags are calculated and represented in a vector 

Γ. Subsequently, the next (n − 2) modes are extracted from the correlation of the responses (r) 

using MCC according to  

𝐀 𝑟 = Q−1V𝑟  

𝐬 = 𝐀 𝑟
−1

r                                 (7) 

Then, an augmented matrix se is constructed, expressed as 

𝐬𝑒 = [𝚪 ∶  𝐬 ]                                (8) 

The modal transformation matrix, or the mixing matrix 𝐀 𝑒 , is estimated using the following least 

square estimator 

𝐀 𝑒 = [𝐬𝑒
𝑇𝐬𝑒]−1𝐬𝑒

𝑇  r                             (9) 

The natural frequencies and the corresponding damping estimates are calculated directly by 

applying Hilbert transform to the recovered sources, se.  

 

2.3 Introduction to PARAFAC  
 

When a signal is expressed as a multi-dimensional array, then its tensor representation allows 

us to use multi-linear algebra tools, which are more powerful than linear algebra tools. A vector 

𝐭 = 𝑡𝑖 ∈ ℜ𝑛1  is a first-order tensor, whereas a matrix 𝐓 = 𝑡𝑖𝑗 ∈ ℜ𝑛1× 𝑛2  is second-order tensor. In 

general, a p-th order tensor is written as 

T = 𝑡𝑖𝑗𝑘 …𝑝 ∈ ℜ𝑛1× 𝑛2× 𝑛3× …….× 𝑛𝑝                       (10) 

 

 

 

Fig. 2 Block representation of a 2 ×  2 ×  2 tensor 
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Fig. 3 Tensor fibers (a) Mode-1 fibers, (b) Mode-2 fibers, and (c) Mode-3 fibers 

 

 

A 3-dimensional tensor can be visualized as a parallelepiped. The simplest 3-dimensional 

tensor is a 2 × 2 × 2 tensor as shown in Fig. 2. Like matrices, a tensor is defined by its higher order 

fibres, mode-1 (column) fibres (𝑡:𝑗𝑘 ), mode-2 (row) fibres (𝑡𝑖:𝑘) and mode-3 (tube) fibres (𝑡𝑖𝑗 :) as 

shown in Fig. 3. They are obtained by fixing any two of the three indices. On the other hand, if we 

fix any one of the indices, it results in three kinds of slices − horizontal (𝑡𝑖∷), lateral (𝑡:𝑗 :) and 

frontal (𝑡∷𝑘) which form the slices of three respective modes. For example, mode-1 slices 

comprise of two horizontal slices and it is described as 

T 1 =  
𝑡1∷

𝑡2∷
 =  

𝑡111 𝑡121

𝑡211 𝑡221
     

𝑡112 𝑡122

𝑡212 𝑡222
                    (11) 

Along the same lines, mode-2 and mode-3 can be expressed as 

T 2 =  
𝑡111 𝑡211

𝑡121 𝑡221
     

𝑡112 𝑡212

𝑡122 𝑡222
                        (12) 

and 

T 3 =  
𝑡111 𝑡121

𝑡112 𝑡212
     

𝑡211 𝑡221

𝑡122 𝑡222
                        (13) 

respectively. Therefore, a tensor can be represented as a matrix by rearranging its entities, which is 

commonly known as matricization. Thus, Eqs. (11) - (13) are the mode-1, mode-2 and mode-3 

matricizations, respectively. While considering the product of a tensor and a matrix, one has to 

decide which dimension of the tensor will be taken into account and this is where the matricization 

plays an important role. In multi-linear algebra, one decides the dimension of the tensor by 

defining the n-mode product of a tensor with a matrix A as defined below 

𝐏 = 𝐓 × 𝑛 𝐀 ⇔ 𝐏𝒏 = 𝐀𝐓𝒏                          (14) 

where each n-mode fibre of T is multiplied by the matrix A to compute n-mode fibre of the 

resulting tensor P.  

A third-order tensor is primarily decomposed into a sum of outer products of triple vectors as 

shown in Fig. 4: 
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Fig. 4 Tensor decomposition 

 

 

𝐓 =  𝒂𝒓 ∘ 𝒃𝒓 ∘ 𝒄𝒓 ⇔ T 𝑖𝑗𝑘
𝑅
𝑟=1 =  𝑎𝑖𝑟𝑏𝑗𝑟 𝑐𝑘𝑟

𝑅
𝑟=1                    (15) 

where i ∈ [1 I], j ∈ [1 J] and k ∈ [1 K]. This is also called a tri-linear model of T, T= [A, B, C], 

where the matrices are given by A= (a1, a2, ...., aR), B = (b1, b2, ...., bR), and C = (c1, c2, ...., cR). 

Each triple vector product is a rank-1 tensor and is denoted as PARAFAC. Therefore, Eq. 15 

represents the summation of R rank-1 tensors or PARAFAC components that are needed to fit the 

tensor; it is also known as the rank of the tensor T (Bro 1997, Lathauwer 1997). PARAFAC 

components are usually estimated by minimization of the quadratic cost function 

𝑔 𝑎, 𝑏, 𝑐 =∥ T −  𝑎𝑟 ∘ 𝑏𝑟 ∘ 𝑐𝑟  
𝑅
𝑟=1 ∥2                      (16) 

The technique was introduced simultaneously in two different independent works; canonical 

decomposition (CANDECOMP) (Carroll and Chang 1970) or PARAllel FACtor (PARAFAC) 

analysis (Harshman 1970). The algorithms used to fit the PARAFAC model are usually classified 

in three main groups: (a) alternating least squares (ALS), which updates only a subset of 

parameters at each step; (b) derivative-based methods; seeking an update for all the parameters 

simultaneously by successive approximations, and (c) direct or non-iterative approaches. Out of 

these, ALS method has several advantages including easier implementation, guaranteed 

convergence and handling capability of higher order tensors. Using ALS, one can find the 

PARAFAC components A, B and C until it achieves the desired convergence  

𝐀 ←  T 1  𝐂⨀𝐁  𝐂𝑻𝐂 ∗ 𝐁𝑻𝐁 
†
 

𝐁 ←  T 2  𝐂⨀𝐀  𝐂𝑻𝐂 ∗ 𝐀𝑻𝐀 
†
 

𝐂 ←  T 3  𝐁⨀𝐀  𝐁𝑻𝐁 ∗ 𝐀𝑻𝐀 
†
                       (17) 

where ⊙ indicates Khatri-Rao product. ALS is primarily consists of the following key steps which 

exploit the simultaneous unfolding of three matrices: 

 Fix A and B, solve for C 

min
𝐂

 ∥ T −  𝐀, 𝐁, 𝐂 ∥2  = min
𝐂

 ∥ T 3  𝐁⨀𝐀  𝐁𝑻𝐁 ∗ 𝐀𝑻𝐀 
†
∥2            (18) 

 Optimal C is the least square solution 
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𝐂 ←  T 3  𝐁⨀𝐀  𝐁𝑻𝐁 ∗ 𝐀𝑻𝐀 
†
                       (19) 

 Successively solve for each component of A, B and C 

Finally, the algorithm tries to find a tensor 𝐓 =  𝐚𝐫 ∘ 𝐛𝐫 ∘ 𝐜𝐫 
𝑅
𝑟=1  such that the following 

expression is minimized 

∥ T − T  ∥𝐹                                (20) 

where ∥.∥F represents the Frobenius norm. A unique decomposition is obtained if the following 

Kruskal condition (Kruskal 1977) is satisfied  

𝑘𝐴 + 𝑘𝐵 + 𝑘𝐶 ≥ 2𝑅 + 2                           (21) 

where kA, kB and kC are k-rank of the matrices A, B and C respectively, where k-rank is defined as 

maximum number k such that every set of k columns of the matrix is linearly independent (Kruskal 

1977).  

In order to demonstrate the source separation capability of PARAFAC, three (𝑛𝑚= 3) mixtures 

of four (𝑛𝑠= 4) sine waves with frequencies 1.0, 1.1, 2.3 and 3.1 Hz are considered as shown in Eq. 

(22). It may be noted that the first two frequencies are closely-spaced in nature and analogous to 

the case of TMDs.  

 

𝑥1

𝑥2

𝑥3

 =  
5 −1 −1 2
−1 3   1   2
−1 1   2    3

  

𝑠1

𝑠2
𝑠3

𝑠4

                       (22) 

Since the mixtures contain 4 sources, rank-4 PARAFAC decomposition is then performed to 

extract the hidden closely-spaced and other sources from the underdetermined mixtures. Fig. 5 

shows true sources and their mixtures. Fig. 6 shows the resulting auto-correlation functions of the 

estimated sources ŝ. PARAFAC decomposition yields a1, a2, a3 and a4 as shown in Fig. 6 from 

which the mixing matrix can be estimated by concatenating successive normalized a’s 

 
−8.44 1.96 −2.2 −3.66
1.68 −5.88   2.2  −3.66
1.68 −1.96   4.4   −5.46

  =  
5 −1 −1 2
−1 3   1   2
−1 1   2    3

                (23) 

 

 

 3. Details of the algorithm  

 
Consider a linear, classically damped, and lumped-mass ns-DOF structural system, subjected to 

an excitation force, F(t).  

Mx (t) + Cx (t) + Kx(t) = F(t)                          (24) 

where, x(t) is a vector of displacement coordinates at the degrees of freedom. M, C, and K are the 

mass, damping and stiffness matrices of the multi-degree-of-freedom system. The solution to Eq. 

24 can be written in terms of modal superposition of vibration modes with the following matrix 

form 

𝐱 = 𝚽𝐪                                 (25) 
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Fig. 5 Underdetermined mixtures of sine waves 

 

 

 

Fig. 6 Estimated sources using PARAFAC decomposition 

 

 

where, x ∈ℜ
nm× N 

is the trajectory matrix composed of the sampled components of x, q ∈ℜ
ns× N 

is a 

matrix of the corresponding modal coordinates, Φnm×ns 
is the modal transformation matrix, and N is 

the number of data points in the measurements. nm and ns are the number of measurements and 

sources respectively. The measurement at the i
th
 DOF (i=1,2,...,nm) of Eq. (25) can be expressed as 

𝑥𝑖(𝑡) =  𝜙𝑖𝑟  𝑞𝑟
𝑛𝑠
𝑟=1 (𝑡) . Under the conditions when the modal coordinates are mutually 

uncorrelated with non-similar spectra, the normal coordinates can be regarded as the most 

uncorrelated sources. Thus, the modal coordinates q are a special case of general sources s with 

time structure, and subsequently form the basis of the BSS-based modal identification procedure 

described in this paper. Furthermore, the scalar multiplication for the components in x is not 
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expected to introduce ambiguity in the process of modal identification. 

Covariance matrix R𝑥 𝑝𝑘  evaluated at the time-lag 𝑝𝑘  can be written as  

R𝑥 𝑝𝑘 = 𝐸 x 𝑘 x 𝑛 − 𝑝𝑘 
𝑇 = AR𝑠 𝑝𝑘 A

𝑇                  (26) 

where  

 R𝑠 𝑝𝑘 = 𝐸 s 𝑛 s𝑇(𝑛 − 𝑝𝑘)                         (27) 

For notational simplicity we introduce the following definitions     

R𝑥1𝑥2
 𝑝𝑘 = R12𝑘

𝒙 ⇔ R𝑥𝑖𝑥𝑗
 𝑝𝑘 = R𝑖𝑗𝑘

𝒙  

R𝑠1
 𝑝𝑘 = R𝑘1

𝒔 ⇔ R𝑠𝑙
 𝑝𝑘 = R𝑘𝑙

𝒔                       (28) 

Eq. (26) can be expanded for x = {x1, x2,x3 } as follows 

 

𝑅11𝑘
𝑥 𝑅12𝑘

𝑥 𝑅13𝑘
𝑥

𝑅21𝑘
𝑥 𝑅22𝑘

𝑥 𝑅23𝑘
𝑥

𝑅31𝑘
𝑥 𝑅32𝑘

𝑥 𝑅33𝑘
𝑥

  =  

 𝑎11  𝑎12  𝑎13

 𝑎21  𝑎22  𝑎23

 𝑎31  𝑎32  𝑎33

  

R𝑘1
𝒔 0 0

0 R𝑘2
𝒔 0

0 0 R𝑘3
𝒔

  

 𝑎11  𝑎21  𝑎31

 𝑎12  𝑎22  𝑎32

 𝑎13  𝑎23  𝑎33

    (29) 

From Eq. (29), using simplified notations as in Eq. (28), R𝑥1𝑥2
 𝑝𝑘 =   𝑅12𝑘

𝑥  can be expressed 

as 

𝑅12𝑘
𝑥 =  𝑎11  𝑎21𝑅𝑘1

𝑠 + 𝑎12  𝑎22𝑅𝑘2
𝑠 +  𝑎13  𝑎23𝑅𝑘3

𝑠                    (30) 

which can be generalized for R
x
ijk as 

 𝑅𝑖𝑗𝑘
𝑥 = 𝑎𝑖1 𝑎𝑗1𝑅𝑘1

𝑠 + 𝑎𝑖2  𝑎𝑗2𝑅𝑘2
𝑠 + 𝑎𝑖3 𝑎𝑗3𝑅𝑘3

𝑠 =  𝑎𝑖𝑟  𝑎𝑗𝑟
3
𝑟=1 𝑅𝑘𝑟

𝑠   𝒊, 𝒋 = 1, 2, 3; 𝒌 = 1, 2, . . , 𝑝𝑘  (31) 

For any general 𝑛𝑠-DOF system 

𝑅𝑖𝑗𝑘
𝑥 =   𝑎𝑖𝑟  𝑎𝑗𝑟

𝑛𝑠
𝑟=1 𝑅𝑘𝑟

𝑠 ⇔ 𝐑𝐱 =  𝑎𝑟 ∘ 𝑎𝑟 ∘
𝑛𝑠
𝑟=1 𝑅𝑟

𝑠            (32) 

Considering the similarity between Eqs. (15) and (32), it is seen that by decomposing the third 

order tensor R
x
 into ns rank-1 tensors, the mixing matrix can be estimated. By using PARAFAC 

decomposition, the resulting solutions yield the mixing matrix A = [𝒂1, 𝒂2, 𝒂3,..., 𝒂𝑛𝑠 ] and the 

auto-correlation function of R
s
r for r = 1, 2, 3, ..., ns from which the natural frequency and damping 

can be estimated, provided it is free or broadband type of excitation. Unlike a two-way array 

(matrix case), PARAFAC yields unique decomposition even if the rank is greater than the smallest 

dimension of tensor (Lathauwer and Castaing 2008). Such identifiability capability of PARAFAC 

is utilized in the present study for underdetermined source separation in the framework of sparse 

BSS. By comparing Eqs. (15) and (32), it can be concluded that Eq. (32) is a special type of 

PARAFAC model with B=A. Under such situations, a more relaxed uniqueness condition is 

proposed where the following inequality is satisfied (Stegeman et al. 2006). 

𝑛𝑠(𝑛𝑠−1)

2
=

𝑛𝑚 (𝑛𝑚−1)

4
[
𝑛𝑚  𝑛𝑚−1 

2
+  1 −

𝑛𝑚 !

 𝑛𝑚−4 !4!
 𝑛𝑚  {𝑛𝑚 ≥ 4}            (33) 

where 

(𝑛𝑚 ) 𝑛𝑚 ≥ 4 = 0          𝑛𝑚 < 4 

(𝑛𝑚 ) 𝑛𝑚 ≥ 4 = 1          𝑛𝑚 ≥ 4                      (34) 
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Using Eq. (33), an upper bound of source separability of PARAFAC decomposition as in Table 

1 can be computed.  

 

 
Table 1 Source separation capability of PARAFAC decomposition 

nm 2 3 4 5 6 7 8 9 10 

ns 2 4 6 10 15 20 26 33 41 

 

 

The key steps of the PARAFAC decomposition is summarized below: 

 Obtain the partial (nm <ns) or full measurements (nm ≥ ns). 

 Estimate the covariance matrix Rx(pk) for a given lag pk. 

 For several lags i = 1, 2,..., pk, form a third-order tensor R
x
ijk as shown in Eq. (31). 

 Solve the PARAFAC model for R
x
 to estimate A and R

s
r. 

 Estimate natural frequencies (ωi) and damping (ξi) using R
s
r, and compute the mode shape 

matrix using A. 

 

 

4. Numerical study 
 

4.1 5-DOF building with a TMD 
 

First, simulations are performed on a 5-storey shear-beam structure model with TMD located at 

the roof (Hazra et al. 2010). The state-space model for this system subjected to an external 

disturbance vector w is given by 

 x = Ax + Ew  

y = 𝐂 x                                  (35) 

Here, the vector x is a vector of states, and the vector y represents the output vector, governed 

by 𝐂  matrix. The matrix E governs the location of the excitation on the structure. The system 

matrix A is constructed using M, C and K matrices. For the example building, the lumped weight 

of each floor is assumed to be 19.2 kN, and damping is assumed to be 2% critical in all modes. 

The natural frequencies are 0.91, 3.37, 7.11, 10.66 and 12.73 Hz. The mode shape matrix 

(normalized with respect to the top) for the building is given by  

 
 
 
 
 

1.00 1.00 1.00 1.00 1.00
0.82 −0.087 −1.29 −2.52 −3.39
0.59
0.34
0.11

−0.91
−1.02
−0.48

−0.87
1.23
1.35

1.81
0.94
−2.86

5.43
−5.84
4.84  

 
 
 
 

                     (36) 

An optimally designed TMD is placed at top floor of the 5-DOF model. The weight of TMD is 

2.74 kN, k=77.8 N/cm, and c =3.72 Ns/cm (Hazra et al. 2010). Due to the insertion of the TMD, 

two closely-spaced modes at frequencies of 0.78 and 0.99 Hz appear in the proximity of the 

fundamental mode. The percentage of separation of the closely spaced modes (i.e., Δf =0.21 Hz) 
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calculated with respect to 0.99 Hz is 20%. The system is excited by the Gaussian white noise at all 

the floor locations.  

 

 

 

Fig. 7 5-DOF+TMD model: R
s
r using PARAFAC decomposition 

 

 

 

Fig. 8 5-DOF+TMD model: estimated sources and their Fourier spectra 
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The PARAFAC decomposition is then undertaken for 6 components. The resulting mixing 

matrix shows an average MAC (Maia and Silva 1997) number of 0.99 and the auto-correlation of 

the sources obtained are shown in Fig. 7, from which the natural frequency and damping can be 

obtained. The sources are estimated by multiplying the pseudo-inverse of the mixing matrix with 

the response and are shown in Fig. 8. According to Table 1, a maximum six sources can be 

identified using 4 sensors, and therefore similar results are obtained when the floor response of the 

top 4 floors are used. In this particular case, PARAFAC yields auto-correlations of 6 sources and a 

4x6 mode shape matrix. Therefore, the MAC number is computed with reference to mode-shape 

coordinates of the true and estimated mode shape matrices corresponding to partial measurements. 

The mode-shape identification results for the partial measurement case (1 − 3 − 5 − 6) is also 

shown in Table 2 and compared with the full sensor cases for different noise conditions with 

signal-to-noise ratio (SNR) of 100 and 10. It is observed that the relative MAC numbers decreases 

for the third and sixth modes under the higher noise level case, due to the low energy of the 

respective modes in the floor responses. Details of the estimated modal parameters are presented in 

Table 5. 

 

 
Table 2 Details of the identification results of 5-DOF building with TMD 

 PARAFAC (SNR=100) PARAFAC (SNR=10) 

Mode nm=6 nm=5 nm=4 nm=6 nm=5 nm=4 

1 0.98 0.98 0.97 0.98 0.97 0.97 

2 0.99 0.99 0.98 0.99 0.98 0.97 

3 0.99 0.98 0.98 0.97 0.96 0.94 

4 0.99 0.99 0.99 0.99 0.99 0.98 

5 0.99 0.99 0.99 0.99 0.99 0.98 

6 0.99 0.99 0.98 0.98 0.96 0.95 

 

 

4.2 3-DOF building with single and multiple TMDs  
 

In the previous example, the resolution of source separation is considered reasonably high with 

a value of 20%. In this example, we make an attempt to explore the extent of source separation 

capability of PARAFAC decomposition and compare the identification results with the MCC-EMD 

method. A 3-DOF model (Rana and Soong 1998) is considered as a test-bed for single-mode and 

multiple-mode TMDs. Readers are referred elsewhere (Rana and Soong 1998) for the details of the 

mass, stiffness and damping matrices. The natural frequencies of the 3-DOF primary structures are 

0.71, 1.98 and 2.87 Hz, and the associated damping is assumed to be 2.0%, 0.5% and 0.3%, 

respectively. With the introduction of two optimally tuned TMDs, the resulting frequencies are 

0.64, 0.75, 1.91, 2.04 and 2.87 Hz with damping ratios 6.3%, 5.8%, 2.2%, 2.1% and 0.3%, 

respectively in the corresponding modes. It may be noted that the issue associated with the optimal 

design of TMDs (Hazra et al. 2010, Roffel et al. 2013) is beyond the scope of the current study, 

and therefore is not discussed here. The frequency separation for two consecutive modes is 14.7% 
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and 6.4% respectively, which is relatively small. Fig. 9 (left sub-figure) shows the Fourier 

spectrum of the top floor response with and without the MTMD. For all the subsequent analysis 

pertaining to the 3-DOF model, the excitation is assumed to be Gaussian and white. 

 

 

 

Fig. 9 3-DOF model with (a) multiple TMDs and (b) single TMD: Fourier spectrum of the top floor 

response 

 

 

 

Fig. 10 Fourier spectra of the estimated sources for single TMD case 
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Let us consider the case where the 3-DOF model is tuned to the 2
nd

 structural mode (i.e., with 

lowest frequency resolution of 6.7%). Thus, a pair of closely spaced modes at 1.91 Hz and 2.04 Hz 

is introduced. Fig. 9 (right sub-figure) shows 2 closely spaced peaks around 2 Hz, which 

corresponds to the 2
nd

 mode tuning. The sources identified using rank-4 PARAFAC decomposition 

is shown in Fig. 10. From Fig. 10, it is evident that PARAFAC decomposition separates the 

closely spaced modes very clearly; however, the results from MCC-EMD are less reliable. 

However, in the previous case of 5-DOF+TMD system, MCC-EMD method was clearly able to 

separate the closely spaced modes (refer to (Hazra et al. 2010) for the results) where the 

percentage separation of the frequencies was of the order of 20%. Based on this study, it is 

concluded that PARAFAC decomposition is able to resolve frequency separation as low as 7%. 

 

4.3 3-DOF with MTMD (2 TMDs)  
 

In this case, both the TMDs are assumed to be active (see Fig. 9 (left sub-figure)). Hence, the 

PARAFAC decomposition is performed for 5 components using five response measurements 

(three floor measurements and two TMD responses). The resulting sources and their Fourier 

spectra are shown in Fig. 11. Table 3 shows the relative performance of PARAFAC decomposition 

versus MCC-EMD method. It is seen that the presence of two successive pairs of closely-spaced 

modes with low frequency resolution (<10%) significantly affects the performance of MCC-EMD 

method. On the other hand, PARAFAC decomposition results in reliable estimates (with MAC 

numbers greater than 0.98) even in the case of 4 sensor measurements. Details of the estimated 

modal parameters are reported in Table 5. 

 

 
Table 3 MAC numbers of mode shapes of the 3-DOF building model with MTMD 

 PARAFAC MCC-EMD 

Mode nm=5 nm=4 nm=5 nm=4 

1 0.98 0.98 0.95 0.94 

2 0.99 0.98 0.96 0.95 

3 0.99 0.98 0.89 0.85 

4 0.99 0.99 0.91 0.89 

5 0.99 0.99 0.97 0.96 

 

 

4.4 10-DOF building with a TMD  

 
In order to demonstrate the performance of PARAFAC decomposition under partial 

measurements, a high-rise building model with 10 DOFs (Au et al. 1999) is considered. The 

lumped mass at all the floors are mi =1×10
5 

kg, i =1, 2, ..,10. The inter-story stiffness of all the 

floors are assumed to be ki =180×10
6 

N/m. The mass of the TMD is 1% of the entire mass of the 

building (Au et al. 1999). Fourier spectra of typical floor responses are shown in Fig. 12, which 

clearly indicates the presence of 6 dominant modes within the frequency range of 1-10 Hz. The 

modes above the first 6 have little or no energy content. Therefore, rank-6 PARAFAC 

decomposition is used to extract first 6 PARAFAC components to identify the associated modal 

information.  
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Fig. 11 3-DOF model with multiple TMDs: Estimated source and their Fourier spectrum 

 

 

 

Fig. 12 10-DOF building: Fourier spectra of typical floor responses 

 

According to Table 1, one needs 4 sensors to identify 6 PARAFAC components. Therefore, the 

possible number of minimal sensor configurations is 
11

C4 = 330. However, it is seen that the 

identifiability criteria is dependent not only on the number of partial measurements, but also on the 

energy distribution of the key modes amongst those sensors. Sensors corresponding to responses 

with low energy content in the key modes yield poor source separation, a problem that is more 
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acute for the case of substantial measurement noise. Therefore, a suitable choice of sensor 

configuration is extremely crucial in identifying low-energy modes under the partial measurement 

case. A summary of average MAC numbers for the first six modes using the best (w.r.t. frequency 

estimates) partial sensor configuration (1 − 2 − 7 − 8) out of 330 combinations are shown in Table 

4.  

 

 
Table 4 MAC numbers of identified mode shapes of 10-DOF building with TMD 

 Full measurement (nm=11) Partial measurement (nm=4) 

Mode SNR=100 SNR=10 SNR=100 SNR=10 

1 0.99 0.99 0.99 0.96 

2 1.00 0.99 0.98 0.97 

3 0.99 0.98 0.99 0.99 

4 0.99 0.98 0.98 0.96 

5 0.99 0.91 0.97 0.89 

6 0.99 0.97 0.99 0.95 

 

 
Table 5 Summary of the estimated natural frequency (ω) and damping (ξ) of the numerical models using 

partial measurements (nm = 4) 

 5-DOF+TMD 3-DOF+2-TMD 10-DOF+TMD (330 combinations) 

Mode 𝜔(𝐻𝑧) 𝜉(%) 𝜔(𝐻𝑧) 𝜉(%) 𝜇𝜔 𝐻𝑧 , 𝑐𝑣(%) 𝜇𝜉 % , 𝑐𝑣(%) 

1 
0.77 

[ 0.78]* 

7.8 

[7.67] 
0.64 [0.64] 

6.7 

[6.3] 
0.9 [0.92 ], (3.3) 4.8 [4.5], (4.2) 

2 
1.0 

[0.99  ] 

7.1 

[7.2] 

0.74 

[0.75] 

6.1 

[5.8] 
1.2 [1.06], (6.8) 3.8 [3.6], (5.6) 

3 
3.37 

[ 3.37 ] 

2.06 

[2.16] 

1.92 

[1.91] 

2.3 

[2.2] 
2.9 [3.0], (3.4) 0.99 [1.1], (4.9) 

4 
7.10 

[ 7.11] 

2.0 

[2.03] 

2.02 

[2.04] 

1.9 

[2.1] 
4.87 [4.94], (2.1) 1.31 [1.4], (7.1) 

5 
10.66 

[10.66] 

1.98 

[2.0] 

2.88 

[2.87] 

0.5 

[0.3] 
6.52 [6.75], (4.8) 1.71 [1.8], (7.5) 

6 
12.71 

[12.73] 

1.98 

[2.0] 
_ _ 8.25[8.42], (5.9) 2.04 [2.2],  (6.1) 

 [  ]* represents true value 

 

 

The resulting sources are shown in Fig. 13 from which the frequencies of the sources are 

estimated with significant accuracy (exact values are tabulated in Table 5). Detailed statistics 

including the mean value (µ) and coefficient of variation (cv) of the estimated frequencies and 

damping are shown in Table 5 that are obtained using 330 setups of partial measurements. 

Relatively higher error (cv) is observed in the estimation of damping, this is perhaps due to 

estimation error associated with the damping estimation from the forced vibration data (Yang et al. 
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2003, Hazra et al. 2010, Sadhu et al. 2011, Abazarsa et al. 2013). It can also be concluded that the 

performance of the PARAFAC method is sensitive to the chosen sensor configuration (Abazarsa et 

al. 2013), therefore the choice of key sensor configuration (i.e., containing higher participation of 

relevant structural modes) is crucial. 

 

 

 

Fig. 13 Fourier spectra of auto-correlation functions of identified sources of 10-DOF+TMD building 

using best sensor configuration (1 − 2 − 7 − 8) 

 

 

 

5. Experimental study  

 
In order to demonstrate the practical applicability of the proposed identification method, the 

algorithm is implemented using acceleration data acquired from a bench-scale two-storey model 

with a pendulum TMD as shown in Fig. 14. The structural model consists of two floor weights, 

140 N each. Flexural stiffness is provided by four 1.30 cm aluminum equal angles, 130 cm tall and 

0.17 cm thick. The lateral frequencies of the primary system without TMD are calculated as 2.6 

and 3.5 Hz. The identified structural damping in both the lateral directions is approximately 2% 

critical. The suspended mass is 1.5 kg, which corresponds to a mass ratio of approximately 5%. 

The position of a tuning frame sliding inside a rail provides a simple means to adjust the natural 

frequency of the pendulum. An air-damper is connected between the suspended mass and the rail 

assembly to provide a small amount of damping to the pendulum TMD. A broad-band excitation is 

commanded to an actuator (shaker shown in Fig. 14) connected to the first floor level, and the 

accelerations are recorded using low-frequency accelerometers at the floor levels, in both lateral 

directions. The theoretically calculated optimal length of the pendulum for the setup in Fig. 14 

using the expressions given in the author’s previous work (Hazra et al. 2010) is 44 mm. The 

sampling frequency is set to 100 Hz. 
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Fig. 14 Experimental setup 

 

 

 

 

Fig. 15 Fourier spectrum of the response 

 

 

Table 6 Modal identification of the experimental model 

Mode Identified 

frequency (Hz) 

using 

PARAFAC 

Identified 

frequency (Hz) 

using 

MCC-EMD 

Identified 

frequency (Hz) 

using SSI 

MAC 

(PARAFAC/ 

MCC-EMD 

MAC 

(SSI/ 

MCC-EMD) 

1 2.35 2.34 2.40 0.99 0.98 

2 2.70 2.69 2.42 0.99 0.81 

3 3.50 3.51 3.51 0.99 0.99 
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Fig. 16 Fourier spectra of the modal responses (sources) 

 

 

The Fourier spectrum of the recorded response of the second floor is shown in Fig. 15. The 

recorded acceleration responses are processed using PARAFAC decomposition, MCC-EMD 

(Hazra et al. 2010) method and SSI method (VanOverschee and De Moor 1996) without 

performing any processing on the data (such as de-noising, etc.). The identified modal responses 

(i.e. the separated sources) obtained using PARAFAC decomposition is shown in Fig. 16. The first 

2 sources correspond to the closely spaced modes of the experimental model. The results of the 

identification are presented in Table 6. The MAC numbers comparing the 3 methods show that the 

quality of identification is comparable in PARAFAC decomposition and MCC-EMD methods. The 

identified frequencies correspond well with the peaks in the spectral estimate as shown in Fig. 16. 

SSI is able to capture 2 modes only and it is very clear that it fails to resolve the closely spaced 

modes. This shows that PARAFAC decomposition is well equipped to handle practical 

measurement data. 

 

6. Conclusions 

 
A novel PARAFAC-decomposition based BSS method is undertaken for the modal identi-

fication of structures quipped with TMDs. The finer spectral resolution capability and iden-

tifiability property of PARAFAC are utilized to separate closely-spaced modes under the presence 

of partial measurements. Using an extensive numerical and experimental study, it is shown that 

PARAFAC decomposition is able to separate and identify closely-spaced modes with a frequency 

of separation as close as 7%. This method also eliminates the use of expensive and 

resource-consuming band-pass filtering based intermittency criteria as used in MCC-EMD method, 

which proves to be effective under the presence of multiple TMDs. Thus, the method promises to 
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be a strong candidate for separating closely spaced modes in MTMD identification problems. The 

study however shows that the performance of PARAFAC decomposition is significantly affected 

by the presence of measurement noise while using the partial measurements, an issue that remains 

to be addressed in future works. Furthermore, the choice of sensor configuration also needs to be 

investigated with the framework of PARAFAC decomposition.  
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