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Abstract.   Based on the Reissner mixed variational theorem (RMVT), finite rectangular layer methods 
(FRLMs) are developed for the three-dimensional (3D) linear buckling analysis of simply-supported, 
fiber-reinforced composite material (FRCM) and functionally graded material (FGM) sandwich plates 
subjected to bi-axial compressive loads. In this work, the material properties of the FGM layers are assumed 
to obey the power-law distributions of the volume fractions of the constituents through the thickness, and the 
plate is divided into a number of finite rectangular layers, in which the trigonometric functions and Lagrange 
polynomials are used to interpolate the in- and out-of-plane variations of the field variables of each 
individual layer, respectively, and an h-refinement process is adopted to yield the convergent solutions. The 
accuracy and convergence of the RMVT-based FRLMs with various orders used for expansions of each 
field variables through the thickness are assessed by comparing their solutions with the exact 3D and 
accurate two-dimensional ones available in the literature.  
 

Keywords: Reissner’s mixed variational theorem; computational modeling; finite layer methods; 
functionally graded materials; buckling; plates 

 
 
1. Introduction 

 
The buckling of sandwiched rectangular flat plates composed of fiber-reinforced composite 

materials (FRCMs) or functionally graded materials (FGMs) has attracted considerable attention 
for several decades, since this is one of the main failures that occur in these structures, which are 
widely applied in areas such as the aircraft, civil engineering and ship-building industries. 
Moreover, many comprehensive reviews of literature on the various computational models used 
for multilayered FRCM/FGM structures have been carried out (Noor and Burton 1990, Reddy 
1993, Noor et al. 1996, Carrera 2000a, b, 2001, 2003a, Carrera and Ciuffreda 2005a, Wu and Chen 
2008, Wu et al. 2008, Carrera and Brischetto 2009).  

Some two-dimensional (2D) plate theories have been proposed and applied to this subject, such 
as the equivalent single-layered theories (ESLTs), layerwise (or so-called discrete layer) theories, 
and zig-zag theories. Reddy and Phan (1985) and Wu and Chen (1994) developed the global and 
local higher-order shear deformation theories (HSDTs) for the stability analysis of isotropic, 
orthotropic and laminated plates, respectively, in which the global higher-order displacement 
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model and layerwise one were assumed, and in the latter the displacement continuity conditions 
were introduced to the potential energy functional of the plates using the Lagrange multiplier 
method and were satisfied using a generalized variational principle. A global-local HSDT theory 
was also proposed for the buckling analysis of laminated composite and sandwich plates under 
mechanical and thermal loads by Wu and Chen (2007) and Wu et al. (2008). Kim et al. (2009a) 
and Thai and Kim (2011) studied the buckling of isotropic and orthotropic plates using a 
two-variable refined plate theory (Kim et al. 2009b), in which the transverse shear effects were 
considered without using the shear correction factor. Using a sinusoidal shear deformation theory, 
Zenkour (2005) carried out a comprehensive buckling analysis of FGM sandwich plates. Zhao et 
al. (2009) applied a first-order shear deformation theory (FSDT), combined with the element-free 
kp-Ritz method, to the buckling analysis of FGM plates under thermo-mechanical loads. Reddy 
and Khdeir (1989) presented a comparative study of the analytical and finite-element solutions for 
the buckling of laminated cross-ply plates with various boundary conditions using the classical, 
first-order, and third-order laminate theories.  

In addition to the above-mentioned theories, which are based on the principle of virtual 
displacement (PVD), Reissner (1984, 1986a, b) proposed an alternative variational principle, 
known as Reissner’s mixed variational theorem (RMVT), for the analysis of laminated structures. 
In the former approaches, the displacement components are regarded as the primary field variables 
subject to variation, while both the displacement and transverse stress components are regarded as 
these in the RMVT. A review of the literature on using the RMVT for analyses of various 
laminated beams, plates and shells was undertaken by Carrera (2001). Zenkour and Fares (2001) 
and Zenkour and Al-Sheikh (2001) undertook a comparative study of the bending, buckling and 
free vibration problems associated with cylindrical shells made of nonhomogeneous materials 
using a variety of simple and mixed shear deformation theories, and presented analytical solutions 
for critical load parameters with assorted boundary conditions. Based on the PVD and RMVT, 
Carrera (2003b) developed a unified formulation to assess the performance of a variety of plate 
theories for the bending (Carrera and Ciuffreda 2005b) and buckling (Nali et al. 2011) analyses of 
laminated composite plates, and it has been concluded that the RMVT-based theories have better 
performance than the PVD-based ones for assorted analyses of multilayered structures, and thus 
the RMVT should be considered a natural tool for the analysis of multilayered structures, similar 
to how the PVD is used for isotropic single-layer ones.  

Some exact and approximate three-dimensional (3D) methods have also been presented for this 
subject. Noor (1975) presented the 3D buckling solutions for a wide range of lamination and 
geometric parameters, in which a quantitative assessment was made for the accuracy and range of 
validity of the classical and shear deformation plate theories. Within the framework of 3D 
elasticity theory, Fan and Ye (1993) derived the state space equations of the buckling of orthotropic 
thick plates without imposing any kinetic and kinematics assumptions in the formulation, and 
obtained a unified exact solution for the buckling of simply-supported rectangular laminates by the 
Cayley-Hamilton theorem. Gu and Chattopadhyay (2000) presented the 3D exact solutions for the 
buckling of simply-supported, laminated orthotropic plates under uni-axial compressive loads, in 
which a uniform pre-buckling stress assumption was made. Cheung and Kong (1993) proposed a 
global–local approach for the approximate 3D bending, vibration and buckling analyses of 
rectangular thick laminated plates, in which the cross-section of a laminated plate was discretized 
into conventional eight-node elements, and a cubic B3-spline function was used to interpolate the 
field variables in the length direction. Teo and Liew (1999a, b) applied the differential quadrature 
method (DQM) to the 3D bending, free vibration and buckling analyses of rectangular plates. 
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Referring to Carrera’s unified formulation (CUF) and combining it with a variable kinematics 
model, D’Ottavio and Carrera (2010) developed an RMVT-based discrete layer theory for the 
linearized buckling analysis of laminated and shells. Na and Kim (2004, 2006) presented the 
approximate 3D solutions for the buckling of FGM plates under thermo-mechanical loads, in 
which the material properties were assumed to be temperature dependent, a conventional 
eighteen-node solid element was used to model the plates in the spatial coordinates, and the 
Crank-Nicolson method was used for a time discretization. Based on the perturbation method, Wu 
and Chen (2001) and Wu and Chiu (2001, 2002) presented the 3D asymptotic solutions for the 
elasto-static, thermally induced static and dynamic buckling of multilayered anisotropic conical 
shells. 

Building on the PVD, Cheung and Jiang (2001) developed the finite rectangular layer methods 
(FRLMs) to study the 3D static problems of simply-supported, piezoelectric composite laminates, 
in which the displacement and electric potential components were regarded as the primary 
variables subject to variation. Subsequently, Akhras and Li (2007, 2008) applied these PVD-based 
FRLMs to the 3D static, vibration, stability and thermal buckling analyses of piezoelectric 
composite plates. Because it has been reported that the RMVT-based theories are superior to the 
PVD-based ones for the analysis of multilayered structures (Carrera et al. 2008, 2010, Brischetto 
and Carrera 2010), Wu and Li (2010) and Wu and Chang (2012) developed the unified 
formulations of RMVT-based FRLMs and RMVT-based finite cylindrical layer methods (FCLMs) 
for the bending analysis of multilayered FGM plates and cylinders, respectively. Implementing 
these methods in the cases of FRCM/FGM plates and cylinders shows that the convergence is 
rapid and their convergent solutions are in excellent agreement with the exact 3D ones available in 
the literature. 

In this article, the RMVT-based FRLMs are extended to the 3D elasto-static buckling analysis 
of multilayered (or sandwiched) FRCM/FGM plates under bi-axial compressive loads, in which 
the linear buckling theory is used, the material properties of the FGM layer are assumed to obey 
the power-law distributions of the volume fraction of the constituents through the thickness 
coordinate, and the orders used for expansions of displacement components and transverse stress 
ones through the thickness coordinate are taken to be identical to one another, which are 1, 2 and 3. 
The deviations of the present solutions obtained using two different sets of the initial membrane 
stresses, based on the uniform strain assumption and the uniform stress one, are examined, and 
those between the present solutions obtained using von san'marK   approximations and full 
kinematic nonlinearity are also evaluated. A parametric study with regard to some crucial effects 
on the critical load parameters of the multilayered FRCM/FGM plates is carried out, such as the 
length-to-width, length-to-thickness, orthotropic and load intensity ratios, and the 
material-property gradient index.  

 
 

2. Pre-buckling state in a multilayered FGM plate 
 

We consider a simply-supported, multilayered FGM plate subjected to bi-axial compression, 
the intensities (or corresponding loads) of which are xp  (or xP ) and yp  (or yP ) applied at the 

y-   and x-   planes, respectively, as shown in Fig. 1(a), and xpy pkp  , yxx LpP   and 

xyy LpP  , in which pk  denote the load intensity ratio, and 10  pk , and xL  and yL  denote 

the in-plane dimensions in the x and y directions. A Cartesian global coordinate system (x, y and 
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  coordinates) is located on the middle plane of the plate, and a set of Cartesian local thickness 

coordinates, ),,3,2,1( lm Nmz  , is located at the mid-plane of each individual layer, as shown 

in Fig. 1(b), where lN  is the total number of the layers constituting the plate. The thicknesses of 

each individual layer and the plate are ),,2,1( lm Nmh   and h, respectively, while 



lN

m
mhh

1

.  

The relationship between the global and local thickness coordinates in the mth-layer is 

mm zz  , in which   2/z 1mmm   , and 1mm  and  are the global thickness 
coordinates measured from the mid-plane of the plate to the top and bottom surfaces of the 
mth-layer, respectively. 

In this paper, the 3D linear buckling theory is used to derive the buckling of multilayered FGM 
plates, in which a set of membrane state of stresses exist in the plate just before instability occurs. 
Based on the uniform strain assumption, the displacement components of the mth-layer at the initial 
position are given by  

  xAu o
m
x )( ,   yBu o

m
y )( ,    and      o

m Wu )(      lNm ,,2,1       (1a-c) 

where oA  and oB  are a certain arbitrary constants, and these will be determined later in this 
paper by means of satisfying the force equilibrium equation in the x and y directions at the edges. 

According to the initial displacement model given in Eq. (1), it is assumed that in the 
pre-buckling state the plate is free of initial shear stresses (i.e., 0)()()(  m

yx
m

y
m

x   ,  

lNm ,,2,1  ), and the initial normal stresses in the mth-layer can be expressed as 
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where  )(
33
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3
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)()( / mm
j

m
i

m
ij

m
ij ccccQ    2,1, ji , and both the stress equilibrium equations in x, y 

and   directions in the plate domain and the loading conditions on the top and bottom surfaces  
Taking a free body diagram at each edge, we can express the force equilibrium equations in the 

x direction at the edges 0x  and xLx  , and in the y direction at 0y  and yLy  , as follows 

    x

h
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m
xy PdL  
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)( ,   and     y
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h

m
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in which   xyxpy PLLkP / . 

Substituting Eqs. (2(a)-2(c)) in Eqs. (3(a) and 3(b)) yields 

  xx PSA 0 ,   and   xy PSB 0                     (4a, b) 

where        2
1222111222 /// AAALAkLAS ypyx  , 

           2
1222111211 /// AAALALAkS yypy  ,   
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


dQA
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N

m

m
ijij  
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
1

)(

1

, and i , j=1 and 2. 

Using Eqs. (2(a)-2(c)) and Eqs. (4(a) and 4(b)), we may determine the pre-buckling state of 
stresses in the plate as follows 
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  x
m

x
m

x Pf )()(  ,   and   x
m

y
m

y Pf )()(                   (5a, b) 

where )(m
xf and )(m

yf denote the influence functions of the pre-buckling membrane stresses of the 

mth-layer of the plate under bi-axial compressive loads, and y
m

x
mm

x SQSQf )(
12

)(
11

)(   and 

y
m

x
mm

y SQSQf )(
22

)(
12

)(  . 

The above-mentioned membrane stresses will be regarded as the initial stresses of the plate, 
and are introduced in the formulation corresponding to the perturbed state of the plate. 

 
 

3. Perturbed state in a multilayered FGM plate 
 
In this paper, we aim at extending the early RMVT-based FRLMs (Wu and Li 2010) to the 3D 

buckling analysis of simply-supported, multilayered FGM and FRCM plates under bi-axial 
compressive loads, and the detailed derivation of the formulation is described in the following 
subsections. 

 
3.1 The kinematic and kinetic assumptions  
 
Based on the use of 3D linear buckling theory, a set of membrane stresses given in Eqs. (5(a) 

and 5(b)) is assumed to exist in the plate just before instability occurs, and this is regarded as the 
initial state of stresses, which is introduced in Reissner’s energy functional of the multilayered 
FGM plate, in which the incremental stresses associated with the small incremental displacements 
perturbed from the state of neutral equilibrium will be considered. 

A discrete layer model with either linear, quadratic or cubic function distributions through the 
thickness coordinate for the incremental displacements is adopted as the kinematic field of the 

mth-layer of the plate in this formulation, of which the domain is in xLx 0 , yLy 0  and 

   2/2/ mmm hzh  , and is given by 
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where ( )()()( ,, mm
y

m
x uuu  ) denote the incremental displacement components of the mth-layer of the 

plate in the x, y and   directions, respectively;  imu )( ,  imv )( ,   j
mw )(  with )1,,2,1(  uni   

and  1,,2,1  wnj   are the incremental displacement components at the nodal planes of the 

mth-layer of the plate; and   )1,,1()(  ui
m

u ni   and   )1,,2,1()(  wj
m

w nj   are the 

corresponding shape functions, in which un  and wn  denote the related orders used for the 
expansion of the in- and out-of-plane incremental displacements, respectively.  
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The incremental transverse shear and normal stresses are also regarded as the primary variables 
in these RMVT-based FRLMs, and are assumed as follows 
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where  im)(
13 ,  im)(

23 ,   j
m)(

3  in which  1,,2,1  ni   and  1,,2,1  nj   are the 

transverse stress components at the nodal planes of the mth-layer of the plate; and 
  )1,,2,1()(   nii

m   and   )1,,2,1()(   nii
m   are the corresponding shape functions in 

which n  and n  denote the related orders used for the expansion of the incremental transverse 
shear and normal stresses, respectively.  

The linear constitutive equations for the mth-layer of the plate, which are valid for the 
orthotropic materials, are given by 
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where ( )()()( ,,, m
xy

m
y

m
x   ) are the incremental stress components; ( )()()( ,,, m

xy
m
y

m
x   ) are the 

incremental strain components; and )(m
ijc  are the stiffness coefficients, which are constants 

through the thickness coordinate in the homogeneous elastic layers, and variable through the 
thickness coordinate in the FGM layers (i.e.,  )(m

ijc ). 

The incremental strain components of each individual layer based on the assumed incremental 
displacement model in Eqs. (6)-(8) are written in the following form 
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in which the commas denote partial differentiation with respect to the suffix variables; 
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3.2 The Reissner mixed variational theorem 
 
The Reissner mixed variational theorem is used to derive the equilibrium equations at the 

perturbed state of the plate for the RMVT-based FRLMs, and its corresponding energy functional 
of the plate perturbed from the neutral equilibrium state is written in the form of 
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where   denotes the plate domain on the yx   plane; u and  denote the portions of the 

edge boundary, where the surface traction and displacement components (i.e., )(m
it , )(m

iu  in 

which i= x, y and  ) are prescribed, respectively; )( )(m
ijB   is the complementary density 

function, and ijij
m

ijB   /)( )( ; )(ˆ m
x  and )(ˆ m

y  denote the second-order terms of the 

incremental quantities of Green-Lagrange normal strains in x and y directions, respectively, and 
they are given by 
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 In this formulation, we take both the incremental displacement and the incremental transverse 
stress components to be the primary variables subject to variation. Using the kinematic and kinetic 
assumptions, given in Eqs. (6)-(11), we may express the first-order variation of the Reissner 
energy functional as follows 
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where the superscript T denotes the transposition of the matrices or vectors, and k= x, y and  ; 
and u  and   stand for the boundary edges, in which the essential and natural conditions are 
prescribed.  
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and the detailed expressions of matrices )(m
kB  are given in Wu and Li (2010), and not repeated. 

 

3.3. Euler_lagrange equations 
 
The edge boundary conditions of each individual layer are considered as fully simple supports, 

which requires that the following quantities are satisfied. 
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0)()()(  m
x

mm
y uu        at 0x , xLx   and lNm ,,2,1          (21a) 

0)()()(  m
y

mm
x uu  ,     at 0y , yLy   and lNm ,,2,1          (21b) 

By means of the separation of variables, the primary field variables of each individual layer are 
expanded as the following forms of a double Fourier series, so that the boundary conditions of the 
simply supported edges are exactly satisfied. They are given as 
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in which xLmm /ˆ~  , yLnn /ˆ~  ; and m̂  and n̂  are positive intergers. 

Introducing Eqs. (22)-(24) in Eq. (20) and imposing the stationary principle of the Reissner 

energy functional (i.e., 0 R ), we obtain the Euler_Lagrange equations of the plate as follows 
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the detailed expressions of matrices )(~ m
kB  are also given in the Appendix. 

Using Eq. (25) and assembling the local linear and geometric stiffness matrices of each layer 
constituting the plate by following the standard process of the FEMs, in which the displacement 
and transverse stress continuity conditions at the interfaces between adjacent layers are imposed 
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and thus satisfied a priori for these RMVT-based FRLMs, we may construct the global linear and 
geometric stiffness matrices for the plate, which are given as 
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Eq. (26) represents a standard eigenvalue problem, and a nontrivial solution of this exists if the 
determinant of the coefficient matrix vanishes. The critical loads ,  crxP , of the plate for a set of 

fixed values  nm ˆ,ˆ  can be obtained by 
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Once Eq. (27) is solved, the eigenvalues and their corresponding eigenvectors, which are the 
critical loads and their corresponding modal field variables at each nodal plane, respectively, can 
be obtained. 

 
 
4. Illustrative examples 

 

In the following examples,  nn
nn wu

LM  is defined to represent various RMVT-based FRLMs, in 

which the in- and out-of-plane displacements are expanded as the un - and wn -order Lagrange 
polynomials, respectively, in the thickness coordinate of each layer, and the transverse shear and 
normal stresses are expanded as the n - and n -order ones. In addition, the implementation of 
various RMVT-based FRLMs for the bending analysis of multilayered FRCM/FGM plates (Wu 
and Li 2010) showed that letting  nnnn wu   in the formulation will lead to efficient and 
stable computation, and it is therefore adopted for this work, in which the values of 

)and,,( vuknk   are taken as 1,  2 , and 3 for the h-refinement process. 
 
4.1 Laminated composite plates 
  
Table 1 shows convergence studies for the present solutions of the lowest critical load 

parameters of  s00 90/0  plates under uni-axial compression (i.e., 0pk ) and with different 

orthotropic ratios, in which the critical load parameter, and the material properties of each layer 
constituting the plates and their geometric parameters, are given as follows 

       3/ hELPP Tycrxcrx   or      32 / hELpP Tycrxcrx               (28) 

 TL EE / =3, 10, 20, 30 and 40, 6.0/ TLT EG , 5.0/ TTT EG , 25.0 TTLT       (29a-d) 
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Table 1 Convergence studies for the present solutions of the lowest critical load parameters of laminated [00 / 
900] s plates under uni-axial compression and with different orthotropic ratios 

Theories 
EL / ET; (m̂ , n̂) 

3; (1 ,1) 10; (1 ,1) 20; (1, 1) 30; (1, 1) 40; (1 ,1) 

Present LM1
1

1
1 (Nl = 4) 

5.3046  
(5.3278) 

9.7823  
(9.8428) 

15.0905  
(15.1831) 

19.4385  
(19.5528) 

23.0817  
(23.2122) 

Present LM1
1

1
1 (Nl = 8) 

5.3017  
(5.3248) 

9.7598  
(9.8196) 

15.0180  
(15.1088) 

19.3044  
(19.4162) 

22.8829  
(23.0101) 

Present LM1
1

1
1 (Nl = 16) 

5.3015  
(5.3247) 

9.7594  
(9.8191) 

15.0169  
(15.1077) 

19.3023  
(19.4140) 

22.8793  
(23.0065) 

Present LM1
1

1
1 (Nl = 32) 

5.3015  
(5.3246) 

9.7594  
(9.8191) 

15.0168  
(15.1076) 

19.3021  
(19.4139) 

22.8790  
(23.0062) 

Present LM1
1

1
1 (Nl = 40) 

5.3015  
(5.3246) 

9.7594  
(9.8191) 

15.0168  
(15.1076) 

19.3021  
(19.4138) 

22.8790  
(23.0062) 

Present LM2
2

2
2 (Nl = 4) 

5.3017  
(5.3248) 

9.7600  
(9.8197) 

15.0185  
(15.1093) 

19.3053  
(19.4170) 

22.8840  
(23.0112) 

Present LM2
2

2
2 (Nl = 8) 

5.3015  
(5.3247) 

9.7594  
(9.8191) 

15.0169  
(15.1077) 

19.3023  
(19.4140) 

22.8793  
(23.0065) 

Present LM2
2

2
2 (Nl = 16) 

5.3015  
(5.3246) 

9.7594  
(9.8191) 

10.0167  
(15.1076) 

19.3021  
(19.4139) 

22.8790  
(23.0062) 

Present LM2
2

2
2 (Nl = 32) 

5.3015  
(5.3246) 

9.7594  
(9.8191) 

10.0168  
(15.1076) 

19.3021  
(19.4138) 

22.8790  
(23.0062) 

Present LM2
2

2
2 (Nl = 40) 

5.3015  
(5.3246) 

9.7594  
(9.8191) 

10.0167  
(15.1076) 

19.3021  
(19.4138) 

22.8790  
(23.0062) 

Present LM3
3

3
3 (Nl = 4) 

5.3015  
(5.3246) 

9.7594  
(9.8191) 

15.0168  
(15.1076) 

19.3021  
(19.4138) 

22.8790  
(23.0062) 

Present LM3
3

3
3 (Nl = 8) 

5.3015  
(5.3246) 

9.7594  
(9.8191) 

15.0168  
(15.1076) 

19.3021  
(19.4138) 

22.8790  
(23.0062) 

Present LM3
3

3
3 (Nl = 16) 

5.3015  
(5.3246) 

9.7594  
(9.8191) 

15.0168  
(15.1076) 

19.3021  
(19.4138) 

22.8790  
(23.0062) 

Present LM3
3

3
3 (Nl = 32) 

5.3015  
(5.3246) 

9.7594  
(9.8191) 

15.0168  
(15.1076) 

19.3021  
(19.4138) 

22.8790  
(23.0062) 

Present LM3
3

3
3 (Nl = 40) 

5.3015  
(5.3246) 

9.7594  
(9.8191) 

15.0168  
(15.1076) 

19.3021  
(19.4138) 

22.8790  
(23.0062) 

Exact 3D solutions  
(Noor 1975) 

5.3044 9.7621 15.0191 19.3040 22.8807 

LM4 (D’Ottavio and  
Carrera 2010) 

5.3051 9.7628 15.0196 19.3045 22.8811 

LM2 (D’Ottavio and  
Carrera 2010) 

5.3061 9.7673 15.0328 19.3301 22.9220 

EMZ4 (D’Ottavio and  
Carrera 2010) 

5.3056 9.7704 15.0485 19.3635 22.9761 

EMZ3(D’Ottavio and  
Carrera 2010) 

5.3153 9.8147 15.1674 19.5679 23.2667 
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Table 1 Continued      

Theories 
EL / ET; (m̂ , n̂) 

3; (1 ,1) 10; (1 ,1) 20; (1, 1) 30; (1, 1) 40; (1 ,1) 

LD2 (D’Ottavio and  
Carrera 2010) 

5.3066 9.7710 15.0423 19.3584 22.9690 

EDZ4 (D’Ottavio and  
Carrera 2010) 

5.3056 9.7710 15.0508 19.3684 22.9842 

ED3 (D’Ottavio and  
Carrera 2010) 

5.3060 9.7720 15.0551 19.3785 23.0021 

ED2 (D’Ottavio and  
Carrera 2010) 

5.3556 9.9945 15.6458 20.4027 24.4816 

FSDT (D’Ottavio and  
Carrera 2010) 

5.3991 9.9653 15.3513 19.7566 23.4529 

CLPT (D’Ottavio and  
Carrera 2010) 

5.7538 11.4918 19.7124 27.9357 36.1597 

The solutions in parentheses are obtained using the uniform stress assumption for the pre-buckling state of 
stress. 

 
 

 1/ yx LL ,  10/ hLx                         (30a, b) 

in which the subscripts, L and T, denote the directions parallel and transverse to the fiber directions, 
respectively. 

It can be seen in Table 1 that the performances of various RMVT-based FRLMs are 
11
11

22
22

33
33 LMLMLM  , in which “>” means better accuracy and faster convergence rate. The 

convergent solutions are obtained at 32lN , 16 and 4 for 33
33

22
22

11
11 LMandLM,LM , respectively, 

when TL EE / =40, while at 16lN , 8 and 4 when TL EE / =3, which means the convergence 
rates of various FRLMs increase as the orthotropic ratio becomes smaller. The solutions in 
parentheses are obtained using the uniform stress assumption for the pre-buckling state of stress, in 
which the influence functions )(m

xf  and )(m
yf  based on the constant strain assumption, which are 

given in Eqs. (5(a) and 5(b)), are simply replaced by  hLf y
m

x /1)(   and 0)( m
yf . It is shown 

that higher critical load parameters are obtained when the constant stress assumption is used, and 
the deviations between these solutions on the basis of the constant strain and stress assumptions 
increase when the orthotropic ratio becomes larger although these are minor, which are less than 
0.6% in these cases. 

The present RMVT-based FRLM solutions are also compared with the exact 3D ones (Noor 
1975) and those from some of classical and more advanced 2D theories available in the literature 
(D’Ottavio and Carrera 2010), such as the RMVT-based second- and fourth-order layerwise 
theories (i.e., LM2 and LM4), PVD-based second-order layerwise theory (i.e., LD2), PVD-based 
ESLTs with first-, second- and third-order models (i.e., FSDT, ED2 and ED3), PVD-based ESLT 
with fourth-order model accounting for the zig-zag effect (i.e., EDZ4), RMVT-based ESLT with 
third- and fourth-order models accounting for the zig-zag effect (i.e., EMZ3 and EMZ4), and 
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classical lamination plate theory (CLPT). It can be seen in Table 1 that the present convergent 
solutions are in excellent agreement with the exact 3D and accurate 2D ones obtained using LM4, 
and ESLTs may provide the accurate solutions for the plates with low orthotropic ratios, whereas 
layerwise theories are required for the plates with high orthotropic ratios. 

Table 2 shows convergence studies for the present solutions of the lowest critical load 
parameters of  s00 90/0  plates under uni- and bi-axial compression (i.e., pk =0 and pk 0, 

respectively) and with different length-to-thickness ratios, in which the load intensity ratio, the 
material properties of each layer constituting the plates, and their geometric parameters are given 
as follows 

pk =0, 0.25, 0.5, 0.75, 1.0                          (31) 

TL EE / =25,   6.0/ TLT EG ,   5.0/ TTT EG ,   25.0 TTLT           (32a-d) 

1/ yx LL ,   10/ hLx , 50                     (33a, b) 

It can be seen in Table 2 that the convergent solutions are obtained at 32lN , 16 and 4 for 
33
33

22
22

11
11 LMandLM,LM , respectively, when hLx / =10, while at 8lN , 4 and 4 when hLx /

=50, which means the convergence rates of various FRLMs increase as the plate becomes thinner. 
The solutions in parentheses are obtained using von anmarK  ’s approximation, in which the 
second-order terms of the incremental quantities of Green-Lagrange normal strains in x and y 

directions, which are given in Eq. (19), are simply approximated by   2/,ˆ
2)()(

x
mm

x u    and 

  2/,ˆ
2)()(

y
mm

y u   . Higher critical load parameters are obtained when von anmarK  ’s 

approximation is used, and the deviations between these solutions on the basis of the full 
kinematic nonlinearity and the von anmarK  ’s approximation increase when the plate becomes 
thicker, and are about 2% for the moderately thick plates ( hLx / =10) and less than 0.2% for the 

thin ones ( hLx / =50).  

 
 
Table 2 Convergence studies for the present solutions of the lowest critical load parameters of laminated [00 / 

900]s plates under uni- and bi-axial compression and with different total number of layers and load 
intensity ratios 

Lx / h Theories 
kp; (m̂ , n̂) 

0; (1, 1) 0.25;(1, 1) 0.5; (1, 1) 0.75; (1, 1) 1; (1, 1) 

10 Present LM1
1

1
1 (Nl = 4) 

17.3661 
(17.6943) 

13.9271 
(14.1455) 

11.6245 
(11.7818) 

9.9749 
(10.0947) 

8.7352 
(8.8301) 

 Present LM1
1

1
1 (Nl = 8) 

17.2636 
(17.5890) 

13.8445 
(14.0612) 

11.5552 
(11.7115) 

9.9153 
(10.0344) 

8.6829 
(8.7773) 

 Present LM1
1

1
1 (Nl = 16) 

17.2620 
(17.5873) 

13.8432 
(14.0598) 

11.5541 
(11.7103) 

9.9143 
(10.0334) 

8.6821 
(8.7764) 

 Present LM1
1

1
1 (Nl = 32) 

17.2619 
(17.5872) 

13.8431 
(14.0597) 

11.5540 
(11.7103) 

9.9143 
(10.0333) 

8.6820 
(8.7764) 
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Table 2 Continued      

Lx / h Theories 
kp; (m̂ , n̂) 

0; (1, 1) 0.25;(1, 1) 0.5; (1, 1) 0.75; (1, 1) 1; (1, 1) 

 Present LM1
1

1
1 (Nl = 40) 

17.2619 
(17.5872) 

13.8431 
(14.0597) 

11.5540 
(11.7103) 

9.9143 
(10.0333) 

8.6820 
(8.7764) 

 Present LM2
2

2
2 (Nl = 4) 

17.2643 
(17.5897) 

13.8450 
(14.0617) 

11.5556 
(11.7119) 

9.9157 
(10.0347) 

8.6832 
(8.7776) 

 Present LM2
2

2
2 (Nl = 8) 

17.2620 
(17.5873) 

13.8432 
(14.0599) 

11.5541 
(11.7104) 

9.9144 
(10.0334) 

8.6821 
(8.7764) 

 Present LM2
2

2
2 (Nl = 16) 

17.2619 
(17.5872) 

13.8431 
(14.0597) 

11.5540 
(11.7103) 

9.9143 
(10.0333) 

8.6820 
(8.7764) 

 Present LM2
2

2
2 (Nl = 32) 

17.2619 
(17.5872) 

13.8431 
(14.0597) 

11.5540 
(11.7103) 

9.9143 
(10.0333) 

8.6820 
(8.7764) 

 Present LM2
2

2
2 (Nl = 40) 

17.2619 
(17.5872) 

13.8431 
(14.0597) 

11.5540 
(11.7103) 

9.9143 
(10.0333) 

8.6820 
(8.7764) 

 Present LM3
3

3
3 (Nl = 4) 

17.2619 
(17.5872) 

13.8431 
(14.0597) 

11.5540 
(11.7103) 

9.9143 
(10.0333) 

8.6820 
(8.7764) 

 Present LM3
3

3
3 (Nl = 8) 

17.2619 
(17.5872) 

13.8431 
(14.0597) 

11.5540 
(11.7103) 

9.9143 
(10.0333) 

8.6820 
(8.7764) 

 Present LM3
3

3
3 (Nl = 16) 

17.2619 
(17.5872) 

13.8431 
(14.0597) 

11.5540 
(11.7103) 

9.9143 
(10.0333) 

8.6820 
(8.7764) 

 Present LM3
3

3
3 (Nl = 32) 

17.2619 
(17.5872) 

13.8431 
(14.0597) 

11.5540 
(11.7103) 

9.9143 
(10.0333) 

8.6820 
(8.7764) 

 Present LM3
3

3
3 (Nl = 40) 

17.2619 
(17.5872) 

13.8431 
(14.0597) 

11.5540 
(11.7103) 

9.9143 
(10.0333) 

8.6820 
(8.7764) 

 
LM4 (D’Ottavio and 

Carrera 2010) 
17.2645 NA NA NA 8.6820 

 
LM2 (D’Ottavio and 

Carrera 2010) 
17.2835 NA NA NA 8.6914 

 
EMZ4 (D’Ottavio and 

Carrera 2010) 
17.3075 NA NA NA 8.7010 

 
EM3 (D’Ottavio and 

Carrera 2010) 
17.3145 NA NA NA 8.7043 

 
EDZ4 (D’Ottavio and 

Carrera 2010) 
17.3110 NA NA NA 8.7028 

 
ED4 (D’Ottavio and 

Carrera 2010) 
17.3127 NA NA NA 8.7057 

 
FSDT (D’Ottavio and 

Carrera 2010) 
17.6568 NA NA NA 8.8284 

 
CLT (D’Ottavio and 

Carrera 2010) 
23.8239 NA NA NA 11.9120 

50 Present LM1
1

1
1 (Nl = 4) 

23.4645 
(23.4903) 

18.7740 
(18.7913) 

15.6464 
(15.6589) 

13.4120 
(13.4215) 

11.7361 
(11.7436) 
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Table 2 Continued      

Lx / h Theories 
kp; (m̂ , n̂) 

0; (1, 1) 0.25;(1, 1) 0.5; (1, 1) 0.75; (1, 1) 1; (1, 1) 

 Present LM1
1

1
1 (Nl = 8) 

23.4563 
(23.4821) 

18.7675 
(18.7847) 

15.6410 
(15.6534) 

13.4074 
(13.4169) 

11.7320 
(11.7396) 

 Present LM1
1

1
1 (Nl = 16) 

23.4563 
(23.4821) 

18.7675 
(18.7847) 

15.6409 
(15.6534) 

13.4073 
(13.4168) 

11.7320 
(11.7395) 

 Present LM1
1

1
1 (Nl = 32) 

23.4563 
(23.4821) 

18.7675 
(18.7847) 

15.6409 
(15.6534) 

13.4073 
(13.4168) 

11.7320 
(11.7395) 

 Present LM1
1

1
1 (Nl = 40) 

23.4563 
(23.4821) 

18.7675 
(18.7847) 

15.6409 
(15.6534) 

13.4073 
(13.4168) 

11.7320 
(11.7395) 

 Present LM2
2

2
2 (Nl = 4) 

23.4564 
(23.4822) 

18.7676 
(18.7848) 

15.6410 
(15.6535) 

13.4074 
(13.4169) 

11.7320 
(11.7396) 

 Present LM2
2

2
2 (Nl = 8) 

23.4563 
(23.4821) 

18.7675 
(18.7847) 

15.6409 
(15.6534) 

13.4073 
(13.4168) 

11.7320 
(11.7395) 

 Present LM2
2

2
2 (Nl = 16) 

23.4563 
(23.4821) 

18.7675 
(18.7847) 

15.6409 
(15.6534) 

13.4073 
(13.4168) 

11.7320 
(11.7395) 

 Present LM2
2

2
2 (Nl = 32) 

23.4563 
(23.4821) 

18.7675 
(18.7847) 

15.6409 
(15.6534) 

13.4073 
(13.4168) 

11.7320 
(11.7395) 

 Present LM2
2

2
2 (Nl = 40) 

23.4563 
(23.4821) 

18.7675 
(18.7847) 

15.6409 
(15.6534) 

13.4073 
(13.4168) 

11.7320 
(11.7395) 

 Present LM3
3

3
3 (Nl = 4) 

23.4563 
(23.4821) 

18.7675 
(18.7847) 

15.6409 
(15.6534) 

13.4073 
(13.4168) 

11.7320 
(11.7395) 

 Present LM3
3

3
3 (Nl = 8) 

23.4563 
(23.4821) 

18.7675 
(18.7847) 

15.6409 
(15.6534) 

13.4073 
(13.4168) 

11.7320 
(11.7395) 

 Present LM3
3

3
3 (Nl = 16) 

23.4563 
(23.4821) 

18.7675 
(18.7847) 

15.6409 
(15.6534) 

13.4073 
(13.4168) 

11.7320 
(11.7395) 

 Present LM3
3

3
3 (Nl = 32) 

23.4563 
(23.4821) 

18.7675 
(18.7847) 

15.6409 
(15.6534) 

13.4073 
(13.4168) 

11.7320 
(11.7395) 

 Present LM3
3

3
3 (Nl = 40) 

23.4563 
(23.4821) 

18.7675 
(18.7847) 

15.6409 
(15.6534) 

13.4073 
(13.4168) 

11.7320 
(11.7395) 

 
LM4 (D’Ottavio and 

Carrera 2010) 
23.4565 NA NA NA 11.7320 

 
LM2 (D’Ottavio and 

Carrera 2010) 
23.4575 NA NA NA 11.7325 

 
EMZ4 (D’Ottavio and 

Carrera 2010) 
23.4588 NA NA NA 11.7331 

 
EM3 (D’Ottavio and 

Carrera 2010) 
23.4591 NA NA NA 11.7333 

 
EDZ4 (D’Ottavio and 

Carrera 2010) 
23.4590 NA NA NA 11.7332 

 
ED4 (D’Ottavio and 

Carrera 2010) 
23.5693 NA NA NA 11.7334 
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lowest critical load parameter occurs at the first longitudinal mode ( m̂ =1) when the 
length-to-width ratio is low, about less than 2, and the dominant longitudinal mode will change in 
the series of 1- to 5 when this ratio increases from 0.5 to 10, while in the cases of bi-axial 
compression ( pk =0.5 and 1.0), the dominant longitudinal mode always occurs at the first 

longitudinal mode ( m̂ =1) when the length-to-width ratio increases from 0.5 to 10. 
 

4.2 FGM sandwich plates  
 
We consider the buckling responses of a simply-supported and uni- and bi-axially loaded, FGM 

sandwich plate consisting of a soft FGM core layer bounded with two stiff homogeneous face 
sheets, in which the thickness ratio for each layer of the sandwich plate is 321 :: hhh , in which 

31 hh   and hh
m

m 


3

1

, as well as the effective engineering constants of each layer are written as 

follows 

       )(
00

)( m
f

m EEEE               (m=1, 2 and 3)           (34a) 

 constant)( m                          (m=1, 2 and 3)           (34b) 

in which 0E  denotes the Young’s modulus of the material at the mid-surface of the core, for 

which 0E =70 GPa (aluminum) and fE =380 GPa (alumina) are used in this example; )(m  

(m=1-3) are taken to be 0.3; )(m  (m=1-3) are the volume fractions of the constituents of the plate, 
and are given by 

    1)1(                            when    2/2/ 2hh            (35a) 

     2// 2
)2( h               when    2/2/ 22 hh            (35b) 

1)3(                            when    2/2/2 hh              (35c) 

According to Eqs. (35(a)-35(c)), when  =0, 1)2(  , this FGM sandwich plate reduces to a 
single-layered homogeneous plate with material properties fE =380 GPa and f =0.3; while 

when  = , 0)2(  , this FGM sandwich plate reduces to a homogeneous sandwich one with 

material properties )3()1( EE  =380 GPa, )2(E =70 GPa, and )(m =0.3 (m=1-3). The critical load 
parameter in these FGM sandwich plate cases is defined as follows 

     3/ hELPP fycrxcrx   or      32 / hELpP fycrxcrx               (36) 
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(a) (b) 
 

(c) 

Fig. 2 Variations of the critical load parameters of uni- and bi-axially loaded,  S00 90/0  laminated 

plates with the length-to-width ratio for m̂ =1-5, (a) 0pk , (b) 5.0pk , (c) 0.1pk  

 

Table 3 shows the convergence studies of the present 22
22LM  and 33

33LM  solutions of the 
lowest critical load parameters of FGM sandwich plates under uni- and bi-axial compression, in 
which pk =0.0, 0.5 and 1.0; lN =10, 20, 40 and 80; yx LL   and 10/ hLx ;  0, 1, 5, 10 and 

 ; hhhhhh 1.0:8.0:1.0:: 321  . It can be seen in Table 3 that the convergence rate of these 
solutions of single-layered homogeneous plates (  0) and homogeneous sandwich ones (   ) 
is faster than that of FGM sandwich plates, and the relative errors of the 20-layer 22

22LM / 33
33LM  

solutions in comparison with the convergent solutions are about less than 0.3%. The critical load 
parameter for the FGM sandwich plate becomes smaller as the material-property gradient index 
( ) increases, which means the global stiffness of the plate becomes softer. Table 4 shows the 
convergent 22

22LM  and 33
33LM  solutions of the lowest critical load parameters of FGM sandwich 

plates under uni- and bi-axial compression and with different load intensity ratios, thickness ratios 
for each layer, and material-property gradient indices, in which pk =0.0, 0.5 and 1.0; lN =80; 

yx LL   and 10/ hLx ;  0, 1, 5, 10 and  ; hhhhhh 1.0:8.0:1.0:: 321  , 0.2h:0.6h:0.2h and 

(h/3):(h/3): (h/3). It is shown that the lowest critical load parameter decreases when the load 
intensity ratio becomes larger, and this increases when the thickness of FGM layer becomes 
thinner. In addition, the lowest critical load occurs at the buckling modes with 1ˆˆ  nm  for the 
moderately thick plates, in which 10/ hLx . 
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Table 3 Convergence studies for the present solutions of the critical load parameters of FGM sandwich 

plates under uni- and  bi-axial compressive loads and with different load intensity ratios and 
material-property gradient indices 

pk ; 

 nm ˆ,ˆ  
Theories 

0 1 5 10  

0.0; (1, 1) Present 22
22LM ( lN =10) 3.3814 2.8605 2.2385 2.0528 1.7964 

 Present 22
22LM ( lN =20) 3.3814 2.8681 2.2559 2.0685 1.7964 

 Present 22
22LM ( lN =40) 3.3814 2.8698 2.2605 2.0732 1.7964 

 Present 22
22LM ( lN = 80) 3.3814 2.8702 2.2616 2.0745 1.7964 

 Present 33
33LM ( lN =10) 3.3814 2.8605 2.2385 2.0528 1.7964 

 Present 33
33LM ( lN =20) 3.3814 2.8681 2.2559 2.0685 1.7964 

 Present 33
33LM ( lN =40) 3.3814 2.8698 2.2605 2.0732 1.7964 

 Present 33
33LM ( lN =80) 3.3814 2.8702 2.2616 2.0745 1.7964 

0.5; (1, 1) Present 22
22LM ( lN =10) 2.2542 1.9070 1.4923 1.3685 1.1976 

 Present 22
22LM ( lN =20) 2.2542 1.9121 1.5039 1.3790 1.1976 

 Present 22
22LM ( lN =40) 2.2542 1.9132 1.5070 1.3821 1.1976 

 Present 22
22LM ( lN =80) 2.2542 1.9134 1.5078 1.3830 1.1976 

 Present 33
33LM ( lN =10) 2.2542 1.9070 1.4923 1.3685 1.1976 

 Present 33
33LM ( lN =20) 2.2542 1.9121 1.5039 1.3790 1.1976 

 Present 33
33LM ( lN =40) 2.2542 1.9132 1.5070 1.3821 1.1976 

 Present 33
33LM ( lN =80) 2.2542 1.9134 1.5078 1.3830 1.1976 

1.0; (1, 1) Present 22
22LM ( lN =10) 1.6907 1.4303 1.1192 1.0264 0.8982 

 Present 22
22LM ( lN =20) 1.6907 1.4341 1.1279 1.0342 0.8982 

 Present 22
22LM ( lN =40) 1.6907 1.4349 1.1302 1.0366 0.8982 

 Present 22
22LM ( lN =80) 1.6907 1.4351 1.1308 1.0372 0.8982 

 Present 33
33LM ( lN =10) 1.6907 1.4303 1.1192 1.0264 0.8982 

 Present 33
33LM ( lN =20) 1.6907 1.4341 1.1279 1.0342 0.8982 

 Present 33
33LM ( lN =40) 1.6907 1.4349 1.1302 1.0366 0.8982 

 Present 33
33LM ( lN =80) 1.6907 1.4351 1.1308 1.0372 0.8982 

 

 
Figs. 3 and 4 show the variations of the present convergent solutions of the critical load 

parameters of FGM sandwich plates with the length-to-width ratio, and under uni-axial ( pk =0) and 

bi-axial ( pk =1) compression, respectively, for 51ˆ m , in which hLx / =10, 

hhhhhh 1.0:8.0:1.0:: 321  ,  =1, 5 and  . Referring to the figures, the magnitude of the lowest 



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critical load parameter and its corresponding number of half-waves ( m̂ ) for a wide range of the 
length-to-thickness ratio are shown using a solid dark line. It can be seen in Figs. 3 and 4 that the 
lowest critical load parameter decreases as the material-property gradient index becomes greater, 
which also means that the gross stiffness of the plate becomes decreases. Again, results of Fig. 3 
shows that in the cases of uni-axial compression, the dominant longitudinal mode will change in 
the series of 1- to 5 when this ratio increases from 0.5 to 10; while those of Fig. 4 shows that in the 
cases of bi-axial compression, the dominant longitudinal mode always occurs at the first 
longitudinal mode ( m̂ =1) when the length-to-width ratio increases from 0.5 to 10. 
 

 
Table 4 The present convergent solutions of the lowest critical load parameters of FGM sandwich plates 
under uni- and bi-axial compressive loads 

pk  321 :: hhh  
 nm ˆ,ˆ

 
Theories  

    0 1 5 10 
0.0 hhh 1.0:8.0:1.0  (1, 1) Present 22

22LM 3.3814 2.8702 2.2616 2.0745 1.7964

   Present 33
33LM 3.3814 2.8702 2.2616 2.0745 1.7964

0.0 hhh 2.0:6.0:2.0  (1, 1) Present 22
22LM 3.3814 3.0779 2.6968 2.5891 2.4430

   Present 33
33LM 3.3814 3.0779 2.6968 2.5891 2.4430

0.0      3/:3/:3/ hhh  (1, 1) Present 22
22LM 3.3814 3.2489 3.0536 2.9993 2.9286

   Present 33
33LM 3.3814 3.2489 3.0536 2.9993 2.9286

0.5 hhh 1.0:8.0:1.0  (1, 1) Present 22
22LM 2.2542 1.9134 1.5078 1.3830 1.1976

   Present 33
33LM 2.2542 1.9134 1.5078 1.3830 1.1976

0.5 hhh 2.0:6.0:2.0  (1, 1) Present 22
22LM 2.2542 2.0519 1.7979 1.7261 1.6287

   Present 33
33LM 2.2542 2.0519 1.7979 1.7261 1.6287

0.5      3/:3/:3/ hhh  (1, 1) Present 22
22LM 2.2542 2.1659 2.0357 1.9995 1.9524

   Present 33
33LM 2.2542 2.1659 2.0357 1.9995 1.9524

1.0 hhh 1.0:8.0:1.0  (1, 1) Present 22
22LM 1.6907 1.4351 1.1308 1.0372 0.8982

   Present 33
33LM 1.6907 1.4351 1.1308 1.0372 0.8982 

1.0 hhh 2.0:6.0:2.0  (1, 1) Present 22
22LM 1.6907 1.5389 1.3484 1.2946 1.2215 

   Present 33
33LM 1.6907 1.5389 1.3484 1.2946 1.2215 

1.0      3/:3/:3/ hhh  (1, 1) Present 22
22LM 1.6907 1.6245 1.5268 1.4996 1.4643 

   Present 33
33LM 1.6907 1.6245 1.5268 1.4996 1.4643 

 
 
 Fig. 5 shows the variations of the present convergent solutions of the critical load parameters 

of FGM sandwich plates with the length-to-thickness ratio, and under bi-axial compression, in 
which yx LL  , hhhhhh 1.0:8.0:1.0:: 321  ,  =1, 5 and  , and pk =1. It is observed that the 

lowest critical load, rather than its parameter, decreases as the plate becomes narrower and thinner, 




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and that again the lowest critical load parameter occurs at the first longitudinal mode ( m̂ =1) for a 
wide range of the length-to-thickness ratios, which are hLx / =1-1000, in these bi-axial 
compression cases. In addition, the variation patterns of the critical load parameters with different 
length-to-width and length-to-thickness ratios remain identical to those obtained using different 
material-property gradient indices, which means the critical buckling mode will not be affected by 
changing these.   

 
 

  

(a) (b) 

 

(c) 

Fig. 5 Variations of the critical load parameters of bi-axially loaded, FGM sandwich plates with the 
length-to-thickness ratio for m̂ =1-5 and 0.1pk , (a) 1 , (b) 5 , (c)   

 
 

5. Conclusions 
 
In this work, we developed a unified formulation of various RMVT-based FRLMs to 

investigate the buckling responses of simply-supported, multilayered composite plates and FGM 
sandwich ones under uni- and bi-axial compression. In the implementations of these methods with 
the h-refinement process, we find that the present solutions of the critical load parameters of 

22
22LM  and 33

33LM  converge rapidly, and their convergent solutions are in excellent agreement 
with the exact 3D and accurate 2D ones available in the literature. It is shown in the illustrative 
examples that higher critical loads are obtained when the pre-buckling state of stress is determined 
on the basis of the constant stress assumption, rather than the constant strain one, although the 
deviation between these two solutions is minor. Higher critical loads are also obtained when von 

san'marK   approximation, rather than full kinematic nonlinearity, is used, and the deviation 
between these two solutions is negligible in practic for the thin-plate case, while it increases as the 
plate becomes thicker. The lowest critical load decreases as the load intensity ratio and the 
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material-property gradient index increases, and also as the plate becomes narrower and thinner. In 
addition, changing the material-property gradient index will not affect the dominant buckling 
mode. 
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