
 
 
 
 
 
 
 

Smart Structures and Systems, Vol. 13, No. 1 (2014) 099-109 
DOI: http://dx.doi.org/10.12989/sss.2014.13.1.099                                                 99 

Copyright © 2014 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=sss&subpage=8         ISSN: 1738-1584 (Print), 1738-1991 (Online) 
 
 

 

 
 
 
 

Quantity vs. Quality in the Model Order Reduction (MOR) of a 
Linear System 

 

Sara Casciati1a and Lucia Faravelli2 
 

1Department DICA, University of Catania, Piazza Federico di Svevia, 96100 Siracusa, Italy 
2Department DICAR, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy 

 
(Received March 13, 2013, Revised April 20, 2013, Accepted May 4, 2013) 

 
Abstract.    The goal of any Model Order Reduction (MOR) technique is to build a model of order lower 
than the one of the real model, so that the computational effort is reduced, and the ability to estimate the 
input-output mapping of the original system is preserved in an important region of the input space. Actually, 
since only a subset of the input space is of interest, the matching is required only in this subset of the input 
space. In this contribution, the consequences on the achieved accuracy of adopting different reduction 
technique patterns is discussed mainly with reference to a linear case study. 
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1. Introduction 
 

Numerical tools for structural dynamics are widely available both on the software market 
((MSC 2013) among others) and as open access codes ((SDTools 2012) among others). They also 
include special features as sub-structuring and “model order reduction” (MOR) which become 
quite useful when iterative procedures are required, as in the design of a control system or, along 
an optimization process, in conducting a sequence of numerical analyses allowing one to estimate 
the sensitivity of the selected utility function to the different design variables (Benjeddou 2009; 
Casciati 2008, 2010). 

Sub-structuring is a process where models are divided into components and component models 
are reduced before a coupled system prediction is performed. This process is known as Component 
Mode Synthesis in the literature. The reference (Craig 1987) details the historical perspective, 
which relies on the assumption of linear system response; the references (MacNeal 1971) and 
(Hurty et al. 1971) can be regarded as the pioneering papers in the area.  

Model order reduction (MOR) is a term used in several different situations. The reference 
(Preumont and Seto 2008) is mainly using it to address the reduction of a continuous system to a 
model with a finite number of degrees of freedom. Actually, finite element models of structures 
need to have many degrees of freedom to represent the geometrical detail of complex structures. 
For models of structural dynamics, one is however interested in: 
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 a restricted frequency range;  

 a small number of inputs and outputs;  

 a limited parameter space.  

These restrictions on the expected predictions allow the creation of low order models that 

accurately represent the dynamics of the full order model in all the considered loading/parameter 

conditions.  

Model Order Reduction (MOR) technique (Schilders et al. 2008) offers a low computational 

effort coupled with the ability to estimate, in an important region of the input space, the 

input-output mapping of the original system.  

Within the MOR techniques, the current research efforts (Carlberg et al. 2011, Kaczmarek 2010) 

are mainly addressed to capture lower order models for nonlinear systems. In particular the proper 

generalized decomposition is attracting the attention of several research groups (see (Chinestaa et 

al. 2011), among others). A further aspect which should be mentioned is how to incorporate the 

effects induced by uncertainties and lack of knowledge.  

Nevertheless, also the correct application of MOR when dealing with linear systems still 

requires attention. In this paper, a linear, time invariant structural problem is studied and the 

manner in which the reduction cascade can affect the accuracy of the final reduced model is 

discussed. The investigation was motivated by the fact that many benchmark problems ((Ohtori et 

al. 2004), from where the case study is taken, but also (Ni et al. 2012)) were recently suggested in 

the literature covering structural control and structural health monitoring. All of them assume a 

real structure as reference and then introduce a model of reduced order to compute the structural 

response. Often, however, the way to generate the reduced order model is not publicized and this 

leaves a missed link between the structure one presumes to study and the responses one simulates. 

 

 

2. Governing relations 

 
The numerical models adopted in structural engineering consist of partial differential equations 

whose spatial derivatives (the elliptic components) are easily accounted by algebraic equations 

after finite element discretization. For a dynamic system, then the problem is rearranged in terms 

of ordinary differential equations where the second derivative with respect to time appears. The 

number of equations represents the order of the model, say N. Introducing the so-called state space 

representation, only linear derivative of time are considered, with the number of equations being 

doubled. One writes 

�̇� (𝑡) =  𝐴 𝑧(𝑡) +  𝐵 𝑢(𝑡)        (1) 

where z is the state variable vector of size 2N, the superimposed dot denotes time derivative, u is 

the vector of the external excitations, of size p, and A and B are time invariant matrices of sizes 2N 

by 2N and 2N by p, respectively. The state variables are not supposed to have any physical 

meaning. But they are linked to any set of observables variables y(t) (denoted as “observed 

variables”)  by a second set of equations, this time of the algebraic type 

𝑦( 𝑡) =  𝐶 𝑧(𝑡) +  𝐷 𝑢(𝑡)        (2) 

Provided the vector y is ordered to give N (relative to the base) displacements followed by N 

(relative) velocities, a further vector of length N can be computed as the vector of the (absolute) 

accelerations, provided no external action enters the equilibrium equation (i.e., p=1 and u(t) 
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represents the base excitation only) 

𝑦𝑎(𝑡) = − [(
𝐾

𝑀
)  (

𝑐

𝑀
)] 𝑦(𝑡)                   (3)  

where M, c and K are the matrices of mass, damping and stiffness, respectively. D is assumed to be 

0 in that follows. 

Model reduction procedures are discrete versions of Ritz/Galerkin analyses: they seek solutions 

in the subspace generated by a reduction matrix T. Assuming  =TR , the second order finite 

element model for structural dynamics in the frequency domain (with Z(s) = Ms
2
 + cs + K), is 

projected as follows 

[T
T
MTs

2
 + T

T
cTs + T

T
KT]

RR NN \  R (s) = T
T
b (s)                (4) 

Modal analysis, model reduction, component mode synthesis, and related methods, all deal 

with an appropriate selection of singular projection bases (TNx NR with NR << N). An accurate 

model is defined by the fact that the input/output relation is preserved for a given frequency and 

parameter range (say ) 

C [Z(s, )]
-1

 b = [CT] [T
T
Z(s, )T]

-1
 [T

T
b]                    (5) 

Three main policies for reducing the model order in such a linear context can be foreseen: 

A) Assume that some subsets of z variables can be replaced by fictitious variables, with all 

the z in the subset equal to its replacement; the approximation propagates to Eq. (2) where the 

number of different observed variables decreases (the nodes in the geometry discretization are 

regarded as masters and slaves); 

B) Assume that the left end side of some equations in Eq. (1) is negligible; then those 

equations can be solved as algebraic equation to obtain an expression for the associated state 

variable; this expression is  used in Eq. (1) to reduce the order and in Eq. (2) to express all the 

original observed variables in terms of a reduced number of state variables (often referred to as 

static condensation); 

C) Re-write Eq. (1) in a different basis system and apply to the obtained balanced system a 

truncation using Hankel singular values; the basis transformation also applies to Eq. (2) and 

after truncation just a bit of information is lost. 

The last path requires further details. From the model of Eqs. (1) and (2), the Gramian matrices 

of controllability and observability, Wc and Wo, satisfy the following pair of Lyapunov equations 

𝐴 𝑊𝑐 + 𝑊𝑐  𝐴𝑇 +  𝐵𝐵𝑇 = 0                (4) 

𝐴𝑇 𝑊𝑜 +  𝐴𝑊𝑜  +  𝐶𝑇𝐶 = 0               (5) 

respectively. The steps to perform a reduction by balanced transformation are described as follows. 

1) Find the  Gramian matrices Wc and Wo  as solutions of the Lyapunov equations ; 

2) Perform the Cholesky factorizations of the Gramian matrices 

𝑊𝑐 = 𝐿𝑐𝐿𝑐
𝑇  ;   𝑊𝑜 = 𝐿𝑜𝐿𝑜

𝑇                             (6) 

3) Consider the Singular Values Decomposition (SVD) of the Cholesky factors 

𝐿𝑜
𝑇 𝐿𝑐 = 𝑈𝛬𝑉𝑻             (7) 

where U is the matrix of the eigenvectors of the matrix in the r.h.s., say Q, by its transpose, V is the 

matrix of the eigenvectors of Q
T
Q and  is the diagonal matrix of the singular values. 
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4) Define the balanced transformation 

      𝑇 =   𝐿𝑐𝑉𝛬−1/2;    𝑇−1 = 𝛬−1/2𝑈𝑇𝐿𝑜
𝑇        (8) 

5) Build the state space matrix balanced representation by introducing the matrices 

𝐴𝑏 = 𝑇−1𝐴𝑇 =  𝛬−1/2𝑈𝑇𝐿𝑜
𝑇   𝐴  𝐿𝑐𝑉𝛬−1/2                 (9) 

𝐵𝑏 = 𝑇−1𝐵 = 𝛬−1/2𝑈𝑇𝐿𝑜
𝑇  𝐵                               (10) 

21/
cb VCLCTC                                (11) 

The Hankel singular values are then introduced to operate a model reduction. 

 

 

3. Discussing the effects of the different policies on a case study 
 

The different policies of Model Order Reduction (MOR) introduced in the previous section 

were applied to the structural system in Fig. 1, used for the benchmark defined in (Ohtori et al. 

2004). In particular Table 1 gives the different model adopted. Indeed, the starting model consists 

of 138 nodes for a total of 396 degrees of freedom (full model, say F), but they are reduced to 291 

(model A) by assuming that the horizontal displacements of all the nodes in the same floor are 

identical. The dynamic excitation is restricted to the horizontal ground acceleration which follows 

a recorded time history (the El Centro record is selected among the 4 offered by the benchmark in 

(Ohtori et al. 2004)).  

 

 

Fig. 1 The frame analyzed in (Ohtori et al. 2004) and studied in this paper 

 
Table 1  Modelling the plane frame in Figure 1 (dof = degree of freedom) 

Model Description 
Number of 

states 

Solution time 

F (full) 3 independent dof for every node  792 4h 30’ 

FC66 F balanced and truncated 66 2’ 27” 

FC44 F balanced and truncated  44 2’ 19” 

FC20 F balanced and truncated 20 1’ 52” 

A (replacing some z 

variables by a subset)  

2 independent dof for every node + 

1horizontal dof for each floor 
582 3h 00’ 

AC20 A balanced and truncated 20 1’ 30” 
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(a) 

 

(b) 

Fig. 2 The diamonds represent the initial positions of the nodes, the circles the deformed positions at t = 

6.86 s (to be regarded as any generic time step) . In (a) all the deformed positions are provided; in 

(b) only the master nodes is shown, since all the floor displacements are forced to be equal to that 

of the master node 

 

 

In Fig. 2 a summary of the solutions discussed in this paper is graphically given. Again, model 

F means that the degrees of freedom for the nodes of each storey are all independent one of the 

other, while model A means that the horizontal motion is forced to be the same for all nodes in 

every single storey. Since the stiffness of the external column is lower than the one of the internal 

columns, and the associated node mass is halved, in model A the external columns show quite 

lower horizontal displacements than those of the internal nodes at the same floor. The horizontal 

displacements of nodes 135 and 138 (as in Figure 1), as computed by model F, are compared in 

Fig. 3. This different behaviour of the two nodes is fully lost in model A.  

Indeed model A provides, for each floor, a horizontal displacement response which fits well the 

average of the six displacements of that specific floor, as shown in Fig. 4, where a zoom also 

allows one to appreciate some minor discrepancies. Fig. 5 is organized as Fig. 4, but the time 

histories are those of the velocity associated with the horizontal degree of freedom, and the 

discrepancies are now on the peak values. 

Fig. 6, eventually, provides a comparison of the accelerations. In this figure the horizontal 

acceleration of node 135, obtained from model A, is compared with the average of the 

accelerations computed for the six nodes of floor 20. It is seen that also the accelerations show a 

good agreement. But, in Figure 6, also the actual horizontal accelerations of nodes 135 and 138, as 

resulting from model F are drawn, to provide evidence of the high frequency components in their 
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plots. In other words, here the average is a poor information of the behavior of the single node in 

the same floor. 

 

 

 

Fig. 3 Comparison between the actual horizontal displacements of nodes 135 (dotted line) and 138 (solid 

line) 

 

 

 
(a) 

 

(b) 

Fig. 4 Top-floor response displacement time histories: (a) the dotted line results from model A, while the 

solid line is the average of the floor displacements as computed in model F; (b) a zoom from (a) 
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(a) 

 

(b) 

Fig. 5 Top-floor horizontal-response velocity time-histories: (a) the dotted line results from model A, 

while the solid line is the average of the floor velocities as computed in model F; (b) a zoom from 

(a) 

 

 

 

Fig. 6 Top-floor horizontal-response acceleration time-histories (zoom) 
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It is worth noting that in (Casciati et al. 2012), two further models were investigated, achieved 

by static condensation of the rotation degrees of freedom (model B1; 153 degrees f freedom) and 

of both the rotation and the vertical degrees of freedom (model B2; 42 degrees of freedom). In the 

latter case the so called shear type model is achieved. In (Casciati et al. 2012) balanced and 

truncated models (B1C and B2C) were introduced for these two further models. In both cases a 

reduced order model made of 20 states is achieved, each different from the other. In this specific 

paper such balanced and truncated models are achieved directly from models F and A, only. They 

will be marked as FCn or ACn, with n denoting the number of reduced states.  

 

 
(a) 

 
(b) 

Fig. 7 Plot of the Hankel singular values for model F (a) and model A (b) 
 

 
(a) 

 

(b) 

Fig. 8 Comparison: (a) between the horizontal displacements of node 135 achieved by models A and 

AC20 and (b) between the horizontal acceleration of node 135 achieved by models A and AC20 
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The authors of (Ohtori et al. 2004) introduced balancement and truncation on model A. With 

the plot of the Hankel singular values in Fig. 7(b)), the truncation was introduced at 20 states 

(model AC20). A comparison of the response achieved by model A and model AC20 is given in 

Fig. 8. It is seen that both displacements and accelerations are in perfect agreement. 

A trivial repetition of the procedure starting from model F and, forgetting to check the plot of 

the Hankel singular values in Fig. 7(b)), truncation at 20 states, would provide the results in Figure 

9 (model FC20), where it is seen a good agreement in displacement but not in accelearation. The 

exam of Fig. 7(a)) suggests that one cannot truncate before 60: in Fig. 10 (model FC66), one 

adopted 66 states to achieve a good agreement also in terms of acceleration. In order to provide a 

quantitative measure of the approximation, Table 2 gives the sum of the squares of the differences 

between the response, in terms of acceleration, from truncated models and the real response. 

 

 
 

(a) 

 

(b) 

 

(c) 

Fig. 9 Comparison of the results achieved by model F and FC20: (a) between the horizontal displacements 

of node 135, (b) between the horizontal displacement of node 138 and (c) between the acceleration 

of node 135 
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Table 2 Sum of the squares (divided by the number of points) of the differences between the acceleration 

response from truncated models and the true one, for the single nodes of the top floor 

 Sum of squares of the differences from the true response 

A-AC20 F-FC20 F-FC44 F-FC66 

Node 138  0.2392 0.0831 0.0758 

Node 137  0.6684 0.087 0.0643 

Node 136  0.7546 0.2016 0.1746 

Node 135 

(master) 

0.0000518 0.7546 0.2016 0.1746 

Node 134  0.6684 0.087 0.0643 

Node 133  0.2392 0.0831 0.0758 

 

 

 

Fig. 10 Comparison: a) between the horizontal acceleration of node 135 achieved by models F and FC66 

 

 

4. Conclusions 
 

The benchmark structural frame adopted in reference (Ohtori et al. 2004) was studied by a 

simplified model obtained after a first reduction of the mechanical degrees of freedom and then 

after the standard balancement-truncation procedure. Alternatively one can directly study the 

reduced order model achieved by applying the balancement-truncation procedure to the initial full 

numerical model. 

The investigation on this paper is intended to emphasize the bit of information lost on the 

kinematics of the structural system, associated with the true independent relative motion of nodes 

in the same floor. A direct model order reduction, on the other side, would have required a larger 

amount of states if the accuracy is pursued not only at displacement and velocity level, but also for 

the acceleration. It is worth noticing however that this increased number of states comes with CPU 

solution times of the order of a few minutes, still consistent with the envisaged use in structural 

monitoring and structural control. 

Future work is expected to cover 3D structural models to facilitate the investigation of 

monumental cultural heritage systems (Casciati-Borja 2004, Casciati-Osman 2005, Casciati-Al 

Saleh 2010). 
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